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This chapter addresses cue combination from the perspective of probabilistic 

modeling and machine learning. We introduce probabilistic graphical models (Jordan 
1998) as providing a framework for clearly formalizing perceptual problems – an 
exemplar of which is cue combination and, in the process, understanding the issues 
faced by the human central nervous system (CNS) in solving such problems. The 
solution to inference in probabilistic model formalized for a given perceptual problem 
provides the “ideal observer” strategy against which human experimental performance 
can be compared. For example, the frequently cited “rule” of inverse variance 
weighting for cue combination is the solution to inference in a probabilistic model with 
a single unknown and many noisy Gaussian distribution observations. Various chapters 
in this book make this comparison in detail for specific combinations of perceptual 
cues. 

In particular, we will illustrate the use of probabilistic graphical models to 
understand cue combination problems where there is uncertainty about the model that 
should describe the data. This has been called structure inference (Hospedales et al., 
2007) or causal inference (Kording and Tenenbaum 2007). Consider the problem of 
following a multi-party conversation. This ideally requires solution to the problem of 
combining visual (lip) information with auditory information to best understand and 
disambiguate speech. However, the CNS must also solve an additional problem of 
correctly associating the cues, i.e., appropriately matching speech segments with the 
person who uttered them before combining the cues. Both components of this problems 
can be understood in a unified way in the probabilistic modeling framework – in 
machine learning jargon, we have a model selection as well as an inference problem. 
For example, in a multi-party conversation involving two other participants, it might be 
necessary to model each of the potential contributors as two different models with 
different conditional dependencies, representing the hyptheses that the observed speech 
was uttered by person A or B. In this case, the optimal observer infers both the source of 
the speech (the model) and the content of the speech (the latent variable). While this 
may seem initially like a needlessly complex solution, it is actually a principled and a 
powerful approach. This single framework will turn out to explain a remarkable variety 
of experimental data (Kording & Tenenbaum 2007). 

As specific examples, we consider the following audio-visual (AV) experiments. 
In the localization experiments of Wallace (Wallace et al., 2004), subjects must localize 
an audio stimulus in the presence of another visual stimulus which may or may not be 
spatially conincident. In this case, the model structure uncertainty is whether the stimuli 
are actually correlated or not, and hence, whether they should be combined or not? 
Comparing the probabilistic modeling predictions with the experimental results, it turns 

 



out that the CNS does indeed infer the appropriate model as well as the stimulus 
location on the fly (Kording & Tenenbaum, 2007). In the counting experiments of 
Shams (Shams & Beierholm 2005), subjects must report the number (count) of AV 
stimuli presented, in a paradigm where the number presented in each modality may or 
may not be correlated. The results reflect increased interaction (perceptual fusion) of 
the number perceived in each modality when the true numbers were similar across 
modalities, and less interaction when they were more dissimilar. This is again explained 
by inferring the variables and structure in a set of probabilistic models. When the 
stimuli are similar, the fused model is more likely, and the cues’ estimates are 
increasingly integrative. Alternately, when the stimuli are more dissimilar, the fused 
model is less likely and the cues’ estimates are increasingly independent. 

Thus far the inference about the appropriate model seems to be a necessary 
nuisance enroute to inferring the latent quantities; however, it turns out to be of intrinsic 
interest of its own. Returning to the multiparty conversation example, inference of the 
latent variables in the model may answer the questions of “what was said?” or “where 
did that come from?” depending on the particular perceptual problem posed. 
Knowledge of the correct model, however, encodes the causal structure of the data. 
Inference of the model, therefore, represents the “ideal observer” solution to higher 
level relational questions such as “who said what”. 

To further illustrate these points, we describe an unsupervised machine learning 
application that we have developed (Hospedales et al. 2007) to model audio-visual 
perception, learning and scene analysis. This model performs cue combination to make 
inferences about observed humans, including learning their speech, visual appearance 
and location using unsupervised techniques in addition to inferring the association 
between cues and sources; allowing the model to understand “who said what” for a 
realistic, real time video tracking and transcription application.  
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