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Physiological and psychophysical studies have demonstrated the importance of colinearity in visual processing. Motivated
by these empirical findings we present a novel computational model of recurrent long-range processing in the primary visual
cortex. Unlike other models we restrict the long-range interaction to cells of parallel orientation with colinear aligned
receptive fields. We also employ a recurrent interaction using modulatory feedback, in accordance with empirical findings.
Self-normalizing shunting equations guarantee the saturation of activities after a few recurrent cycles. The primary
computational goal of the model is to evaluate local, often noisy orientation measurements within a more global context and
to selectively enhance coherent activity by excitatory, modulating feedback. All model simulations were done with the same
set of parameters. We show that the model qualitatively reproduces empirical data of response facilitation and suppression
for a single bar element depending on the local surround outside the classical receptive field (M. K. Kapadia, M. Ito, C. D.
Gilbert, & G. Westheimer, 1995). Next we evaluate the model performance for the processing of artificial and natural
images. We quantitatively evaluate the model using two measures of contour saliency and orientation significance. We
show that both measures monotonically increase during the recurrent interaction and saturate after a small number of
recurrent cycles. The model clarifies how basic tasks of early vision can be accomplished within a single, biologically
plausible architecture.
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Introduction

The response properties of neurons in the early visual
stages are characterized by their receptive field (RF)
properties (Hubel & Wiesel, 1962). The classical RF is
shaped by the feedforward connections of afferent fibers.
More recent studies have shown that the response
properties of cortical neurons are substantially influ-
enced by stimuli outside their classical RFs (e.g., Gilbert,
1992; Gilbert & Wiesel, 1990; Kapadia, Ito, Gilbert, &
Westheimer, 1995; Lamme, 1995). These contextual
influences are mediated by lateral horizontal interactions
and feedback connections (Gilbert, Das, Ito, Kapadia, &
Westheimer, 1996). The precise functional role of both
horizontal and feedback connections is unclear. It has
been hypothesized that the more global integration of
information from distant areas neurophysiologically
“highlights” perceptually salient image features (Lamme
& Spekreijse, 2000). The contextual influences seem to be
related to low- and mid-level tasks such as contour and
feature linking (Allman, Miezin, & McGuinness, 1985;
Grossberg & Mingolla, 1985b; Li, 1998) or preattentive
texture segmentation (Li, 2000b) as well as higher-level

processes like perceptual organization, attention, and
visual awareness (Lamme & Spekreijse, 2000).
In this article we focus on the role of recurrent long-

range processing for the enhancement of contours. We
present a model of contour integration using intralaminar
long-range horizontal connections in V1. We employ a
novel connection pattern where the horizontal connections
are confined to parallel, near colinear orientations. Unlike
cocircular filters that have been employed previously,
connections between parallel, near colinear orientations
have been found in vivo (Bosking, Zhang, Schofield, &
Fitzpatrick, 1997; Schmidt, Goebel, Löwel, & Singer,
1997). One goal of the present paper is to investigate
whether this connection pattern found in vivo can enhance
contours in noisy artificial and natural images. The core of
the model is a recurrent loop where top-down activity
generated by the long-range pattern is fed back to a
previous stage. Unlike previous models, our model uses
modulatory feedback that cannot generate activity at the
lower stage, but can only modulate the activity already
present, in agreement with physiological findings (Hirsch
& Gilbert, 1991; Hupé et al., 1998; Salin & Bullier, 1995).
Again, our goal is to investigate whether such modulatory
feedback is sufficient to enhance contours. The overall goal
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is to define and evaluate a complete model for contour
enhancement that is based on known anatomical and
physiological findings in the early visual cortex. We believe
that such an algorithm is a valuable step from a purely
conceptual model based on some intuition that some
mechanisms should work as expected toward a rigorous,
quantitative, and computational understanding of perceptual
organization in primary visual cortex. The recurrent
interaction that is the essential ingredient of our model is
nontrivial and a full mathematical stability analysis for
arbitrary two-dimensional input patterns has not been
presented. When an analytical solution is missing a neural
model is of particular value, since it allows us to investigate
the recurrent interactions for a large variety of input stimuli.
The robust and reliable extraction of contours is an

important task in early visual processing. However, initial
contrast measurements which define the first processing
stage in the computation of contour signals are often noisy
and fragmented. Therefore, the salient or prominent
contours have to be determined out of an array of noisy,
cluttered contrast responses.
How is this accomplished? We suggest a computational

framework involving long-range connections, modulating
feedback, and recurrent interactions. The task of contour
extraction cannot be solved solely on the basis on the
incoming data (the feedforward excitatory input), but
requires additional constraints and making assumptions on
the shape of salient contours. The feedforward input is
insufficient to define a contour, because the initial
measurements are fragmented and noisy. Thus, additional
knowledge about the shape a salient contour needs to be
incorporated in the visual system. A main property of
salient contours is that they are smooth or colinear, as
reflected in the Gestalt law of good continuation
(Wertheimer, 1923). It has been suggested that the neural
implementation for the law of good continuation may be
found in the horizontal long-range connections that exist
in the superficial layers of early visual areas V1 and V2
(Schmidt et al., 1997). The assumptions or a priori
information (such as expressed in the law of good
continuation) have to be sufficiently supported by the
incoming data to prevent the generation of arbitrary
contour responses. We suggest that modulatory feedback
between layers in V1 plays a central role in this matching
process by selectively enhancing only those feedforward
input signals that are consistent with the assumptions. The
interaction between feedforward data and feedback
assumptions requires certain time steps. In each step the
result of the interactions is recursively fed into the same
matching process. Such a process of recurrent interaction
might be used by the brain to determine the most stable
and consistent representation depending on both the
assumptions and the given input data. Recent physiolog-
ical findings have found a close correlation between the
responses of neurons in V1 and the perceptual saliency of
contours (Li, Piëch, & Gilbert, 2006). These results show
that V1 plays a pivotal role in contour integration.

Motivated by empirical findings we present a model of
recurrent long-range interaction in the primary visual
cortex for contour processing. The model enhances
initially weak oriented activity along a contour that fits
into a global context, while suppressing spurious noisy
activity. At the same time, activities for multiple orienta-
tions at corners and junctions are preserved. With the
same parameter settings, the model is employed to
simulate physiological data on contour grouping (Kapadia
et al., 1995). Here, the model successfully accounts for the
increase in activity by colinear flankers, and the surround
suppression by noisy textures. We next applied the model
for the processing of natural images, and found that
contours were successfully enhanced. An extensive
numerical evaluation of the temporal evaluation using
two measures of contour saliency and orientation signifi-
cance shows that the model robustly enhances contours
for a wide range of input images. All model simulations
were carried out with the same set of parameters.

Methods

In this section we describe the model and present the
measures of contour saliency for the numerical evaluation
of the model.

Model definition

We propose a biologically plausible model of contour
integration using intralaminar long-range horizontal con-
nections and interlaminar recurrent interactions in the
primary visual cortex. The model connections create a
recurrent network which transforms the feedforward input
to a stable point where contours are more salient compared
to noise.

Motivation of the model components and the model
architecture

The model has several key components. The model
incorporates (i) localized receptive fields for oriented
contrast processing, (ii) cooperative horizontal long-range
integration, (iii) inhibitory short-range connections, and
(iv) feedforward and feedback processing. These compo-
nents are motivated by empirical findings.

Oriented contrast processing

Simple and complex cells in the primary visual cortex
respond best to a respond best to oriented edges and bars
defined by a luminance contrast (Hubel & Wiesel, 1968).

Horizontal long-range connections

Contour integration of aligned edges requires a mecha-
nism that links cells of proper orientation over larger
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distances. Horizontal long-range connections found in the
superficial layers of V1 may provide such a mechanism:
They span large distances (Gilbert & Wiesel, 1983;
Rockland & Lund, 1983) and selectively link cells with
similar feature preference (Gilbert & Wiesel, 1989;
Stettler, Das, Bennett, & Gilbert, 2002; Ts’o, Gilbert, &
Wiesel, 1986) and colinearly aligned RFs (Bosking
et al., 1997; Schmidt et al., 1997). Evidence for
nonlocal integration also comes from psychophysical
experiments for contrast detection (Kapadia et al., 1995;
Kapadia, Westheimer, & Gilbert, 2000; Polat & Sagi,
1993, 1994) and contour integration (Field, Hayes, &
Hess, 1993; Yen & Finkel, 1998). Facilitation is generally
strongest for colinear flankers and rapidly declines with
the angular difference between target and flankers. Here
we focus on these strong facilitatory interactions between
iso-oriented items.

Inhibitory short-range connections

Short-range connections are rather unspecific for a
particular orientation (Amir, Harel, & Malach, 1993;
Bosking et al., 1997; DeAngelis, Freeman, & Ohzawa,
1994) and most likely belong to an inhibitory system
(Kisvárday, Kim, Eysel, & Bonhoeffer, 1994).

Modulating feedback

Several physiological studies indicate that feedback
projections have a modulation or gating rather than
generating effect on cell activities (Hirsch & Gilbert,
1991; Hupé et al., 1998; Salin & Bullier, 1995). Feedback
alone is not sufficient to drive cell responses, i.e., initial
bottom-up activity is necessary to generate activity
(Sandell & Schiller, 1982).

The framework builds upon previous work by Grossberg
and colleagues (Grossberg & Mingolla, 1985b; Grossberg
& Raizada, 2000), and shares basic computational
components such as divisive normalization by nonlinear
so-called “shunting” inhibition, recurrent interactions and
nonlocal long-range integration.

The core model architecture that we propose here
consists of three main stages:

1. an initial preprocessing of the input and a recurrent
processing within the two following stages,

2. a combination stage of modulatory feedback and
feedforward input, and

3. a cooperative-competitive stage of center-surround
long-range interaction (Figure 1).

The key component of this architecture is the recurrent
processing at the stages 2) and 3) (Hansen, Sepp, &
Neumann, 2001; Neumann & Sepp, 1999). In this
recurrent scheme of two interacting regions, let them be
cortical layers or areas, each region has a distinct purpose.
The lower region serves as a stage of feature measurement
and signal detection. The higher region represents expect-
ations about visual structural entities and context infor-
mation to be matched against the incoming data carried by
the feedforward pathway. This architecture has been
successfully applied to different domains, such as the
disambiguation of local motion (Bayerl & Neumann,
2004), the detection of texture boundaries (Thielscher,
Kölle, Neumann, Spitzer, & Grön, 2008; Thielscher &
Neumann, 2003, 2005, 2007), the detection of junctions
(Hansen & Neumann, 2004a) or to model feature attention
(Bayerl & Neumann, 2007). Here we employ the same
core architecture for a neural model of contour integration
by inter-laminar recurrent interactions within V1. Hori-
zontal long-range interactions are modeled by a spatial
weighting function where the interaction is confined to
parallel edge elements (i.e., of the same orientation as the
target cell) at colinear or near-colinear spatial locations.
Overall, the model implements a simplified architecture of
V1 (Gilbert, 1993). In the following we shall present the
components of the model in more detail.

Feedforward preprocessing

In the feedforward path, the initial luminance distribu-
tion is processed by isotropic LGN cells, followed by

Figure 1. Overview of the model stages. Icons above each stage sketch the receptive field of cells with an orientation of 0 deg. For the
long-range stage, the spatial weighting function of the bipole filter is shown together with the spatial extent of the inhibitory short-range
interactions (dashed).
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orientation-selective simple and complex cells. The
interactions in the feedforward path are governed by basic
linear equations to keep the processing in the feedforward
path relatively simple and to focus on the contribution of
the recurrent interaction. A more elaborated processing in
the feedforward path would make use of, e.g., nonlinear
processing at the level of LGN cells and simple cells
(Hansen & Neumann, 2004b; Neumann, Pessoa, &
Hansen, 1999). In our model, complex cell responses as
output of the feedforward path (cf. Figure 1) provide an
initial local estimate of contour strength, position and
orientation which is used as bottom-up input for the
recurrent loop.

LGN on- and off-cells

Retinal ganglion cells and cells in the LGN have
receptive fields with a circular center-surround organiza-
tion (Kuffler, 1953) that can be modeled by a difference-
of-Gaussians (DoG) operator (Enroth-Cugell & Robson,
1966). Responses of isotropic LGN-cells are modeled by
the correlation of the initial input stimulus I with values in
the range [0, 1] by a DoG operator. Two types of LGN
cells are modeled, namely on and off, which generate
rectified output responses Kon/off

K ¼ DoGAc;As
*I

Kon ¼ ½K�þ

Koff ¼ ½jK�þ:

ð1Þ

Here and in the following * denotes the spatial correlation
operator and [x]+ := max{x, 0} denotes half-wave-
rectification. The DoG operator is parameterized by the
standard deviation of the center and surround Gaussian
(Ac = 1, As = 3), respectively.
The chosen ratio of the size of the center and surround

As/Ac = 3 is larger than the ratio 1.6 that would
approximate a Laplacian (Marr & Hildreth, 1980) and
smaller than the ratio of about 5 found in vivo (Enroth-
Cugell & Robson, 1966) and the ratio of 6 that has been
used in a recent investigation of the center-surround
properties of retinal ganglion cell RFs (Graham, Chandler,
& Field, 2006). We choose a ratio of 3 that allows a robust
computation of contrast while at the same time keeping
the size of the DoG operator reasonably small. This
reduces the computation time of the initial stages and
allows us to focus on the contributions of nonlocal cortical
interactions.

Simple cells

Simple cells in V1 have elongated subfields (on and off)
which sample the input of appropriately aligned LGN
responses. Input sampling is modeled by correlation with
rotated, anisotropic Gaussians. The Gaussians are shifted
perpendicularly to their main axis by C = T3 to model left

and right subfields of an odd-symmetric simple cell. Thus,
e.g., for the on-channel, the equations read

Ron;left;E ¼ Kon � GAx;Ay;0;jC;E

Ron;right;E ¼ Kon � GAx;Ay;0;C;E:
ð2Þ

The activations of the off-channel are computed analogously.
Simple cells are modeled for two polarities (dark–light

and light–dark) in Omax = 4 orientations (E = 1, :/Omax,I,
(Omax j 1):/Omax). The standard deviations of the
anisotropic Gaussians are set to Ay = 1, Ax = 3Ay. For
each orientation, the simple cell activity is computed by
pooling the two subfield responses. The equation for
light–dark (ld) and dark–light (dl) simple cells read

Sld;E ¼ Ron;left;E þ Roff;right;E

Sdl;E ¼ Roff;left;E þ Ron;right;E:
ð3Þ

We employed separate equations for the on and off
subfields here because this makes the connection to a
proposed a model variant of early feedback clearer (Model
variant using early feedback section). In this variant of the
model we replace Equation 2 by a feedback-controlled
inhibition from cells of opposite contrast polarity.

Complex cells

Cortical complex cells are polarity insensitive. Their
response is generated by pooling simple cells of opposite
polarities. Before pooling, simple cells of opposite polar-
ities compete and are spatially blurred. The corresponding
equations read

Seld;E ¼ Sld;E j Sdl;E
� � � GAx;Ay;0;0;E

� �þ

Sedl;E ¼ Sdl;E j Sld;E
� � � GAx;Ay;0;0;E

� �þ

CE ¼ Seld;E þ Se
dl;E:

ð4Þ

The final complex cell responses represent oriented
contrast energy similar to the energy models proposed
to measure motion energy (Adelson & Bergen, 1985).
The present model is a simplified version of the simple
cell model we have proposed for visual contrast measure-
ment based on segregated on and off pathways (Neumann
et al., 1999).

Recurrent long-range interaction

The output of the feedforward preprocessing defines the
input to the recurrent loop which has two stages, namely a
combination stage where bottom-up and top-down inputs
are fused, and a stage of long-range interaction.
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Combination stage

At the combination stage, feedforward complex cell
responses CE and feedback long-range responses WE are
added and subject to “shunting interaction,” i.e., a non-
linear compression of high amplitude activity following the
Weber–Fechner law (Fechner, 1889; Weber, 1846):

¯tVE ¼ j!VVE þ ð"V j VEÞnetE; where ð5Þ

netE ¼ CE þ %VWE: ð6Þ

Solving the equation at equilibrium ¯tVE = 0 results in a
normalization of activity

VE ¼ "V
netE

!V þ netE
: ð7Þ

The weighting parameter %V = 2 is chosen so that
dimensions of CE and WE are approximately equal, the
decay parameter !V = 0.2 is chosen small compared to
netE, and "V = 10 scales the activity to be sufficiently large
for the subsequent long-range interaction. For the first
iteration step, feedback responses WE are set to CE.

Long-range interaction

At the long-range stage, the contextual influences on
cell responses are modeled. Orientation-specific, aniso-
tropic long-range connections provide the excitatory
input. The inhibitory input is given by isotropic inter-
actions in both the spatial and orientational domain. Long-
range connections are modeled by a filter whose spatial
layout is similar to the bipole filter as first proposed by
(Grossberg & Mingolla, 1985a). The spatial weighting
function of the long-range filter is narrowly tuned to the
preferred orientation, reflecting the highly significant
anisotropies of long-range fibers in visual cortex (Bosking
et al., 1997; Schmidt et al., 1997). The size of the long-
range filter is about four times the size of the RF of a
complex cell.
Essentially, excitatory input is provided by correlation

of the feedforward input with the long-range filter BE.
A cross-orientation inhibition prevents the integration of
cell responses at positions where responses for the
orthogonal orientation also exist. The excitatory input is
governed by

netþE ¼ ½VE j VEjj
�þ * BE; ð8Þ

where * denotes spatial correlation and [x]+ := max{x, 0}
denotes half-wave-rectification.
The long-range filter is defined as a polar-separable

function

BEð8; rÞ ¼ Bangð8ÞBradðrÞ: ð9Þ

The angular function Bang is maximal for the preferred
direction E and smoothly rolls off in a cosine fashion,
being zero for angles deviating more than !/2 from the
preferred orientation:

Bangð8Þ ¼ cosð2:=2!ðEj 8ÞÞ

if j8j Ej e !=2; else 0:

The parameter ! that defines the opening angle of the
long-range filter is set to 20 deg. The radial function Brad

is constant for values smaller than rmax = 25 and smoothly
decays to zero in a Gaussian fashion for values larger
than rmax:

BradðrÞ ¼ expðjr2=ð2AÞÞ if r 9 rmax; else 1: ð11Þ

The standard deviation of the Gaussian is set to A = 3. The
long-range filter is finally normalized such that the filter
integrates to one. A plot of the long-range filter for a
reference orientation of 0 deg is depicted in Figure 2.
Long-range filters of similar spatial but different

orientational layout have been proposed previously
(Grossberg & Mingolla, 1985b; Grossberg & Raizada,
2000; Grossberg & Williamson, 2001; Guy & Medioni,
1996; Heitger, von der Heydt, Peterhans, Rosenthaler, &
Kübler, 1998; Li, 1998, 1999a, 1999b, 2000a, 2000b;
Neumann & Sepp, 1999; Parent & Zucker, 1989;
Peterhans & Heitger, 2001; Ross, Grossberg, & Mingolla,
2000). In particular, all these formulations allow inter-
actions between elements of different orientations, such as
cocircular orientations. The physiological evidence for
these types of connections is sparse. On the contrary, a
large number of studies have found maximal interaction
between cells of the same orientations (Bosking et al.,
1997; Buzás, Eysel, & Kisvárday, 1998; Gilbert & Wiesel,
1989; Malach, Amir, Harel, & Grinvald, 1993; Schmidt
et al., 1997; Schmidt & Löwel, 2002; Sincich & Blasdel,
2001; Ts’o et al., 1986; Weliky, Kandler, Fitzpatrick, &
Katz, 1995), to name a few. Here we investigate how the
long-range facilitation when restricted to the biologically
plausible pattern of co-aligned cells of parallel orientation
can be used to enhance contours in artificial and natural
images.
Responses are not salient if neighboring cells of

random orientation show strong responses. Such activ-
ity has an inhibitory effect on the target cell (Kapadia

Figure 2. Spatial weighting function for the long-range interaction
for a reference orientation of 0 deg.

ð10Þ
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et al., 1995). This inhibitory effect is modeled by an
sampling of activity with isotropic Gaussians from the
orientational geAo,E

, Ao = 0.5 and spatial neighborhood
GAsur

, Asur = 8:

netjE ¼ netþE � geAo;E � GAsurf
: ð12Þ

The standard deviation of the Gaussian in the spatial
domain is set to Asur = 8 to model the smaller extend of
the inhibitory short-range connections. This parameter-
ization results in an effective spatial extension of about
half the size of the excitatory long-range interaction
modeled by the long-range filter. The standard devia-
tion in the orientational domain is set to Ao = 0.5 to
give near-zero input for the orthogonal orientation. The
orientational weighting function geAo,E

is implemented by a
1D Gaussian gA, discretized on a zero-centered grid of
size Omax, normalized, and circularly shifted so that the
maximum value is at the position corresponding to E.
The spatial profile of the 2D Gaussians weighted by the
orientational Gaussian is visualized in Figure 3.
The final activity of the long-range stage results from

interactions between the excitatory long-range input netE
+

and the inhibitory input netE
j. The excitatory long-range

input netE
+ is gated by the activity VE to implement a

modulating rather than generating effect of lateral
interaction on cell activities (Hirsch & Gilbert, 1991;
Hupé et al., 1998). Similar to Equation 7, the inhibition
from netE

j is divisive. The shunting for the long-range
stage reads

¯tWE ¼ j!WWE þ "WVEð1þ )þnetþE Þj)jWEnet
j
E :

ð13Þ

The equation is solved at equilibrium, resulting in the
following nonlinear, divisive interaction at the long-range
stage:

WE ¼ "W
VEð1þ )þnetþE Þ
!W þ )jnetjE

ð14Þ

where !W = 0.2 is the decay parameter and )+ = 5, )j = 2,
and "W = 0.001 are scale factors.
The multiplicative contribution of VE ensures that long-

range connections have a modulating rather than generat-
ing effect on cell activities (Hirsch & Gilbert, 1991; Hupé
et al., 1998). If the bottom up-input VE is zero, no activity
will be generated, because the multiplication by VE = 0
would annihilate any long-range activity netE

+.
The result of the long-range stage is fed back and

combined with the feedforward complex cell responses,
thus closing the recurrent loop. The divisive shunting
interactions governing both the long-range interactions
and the combination of feedback and feedforward input
ensure a saturation of activities after a few recurrent
cycles and result in graded responses within a bounded
range of activations (Grossberg, 1973, 1981; Grossberg,
Mingolla, & Ross, 1997).
To understand the general behavior let us consider the

second term of Equation 13, "WVE(1 + )+netE
+). This term

denotes the soft-gating of the activity from the long-range
integration netE

+ by the response of the combination stage
VE. Stability concerning the boundedness of input and
output activation is achieved by the combined effect of
this soft-gating mechanism together with the divisive, or
shunting, inhibition that is effective by incorporating the
third term of Equation 13, )jWEnetE

j . In addition, the
gating variable VE is also bounded by employing a
shunting mechanism to achieve mass action for the
excitatory term (compare Equation 7).
The model is robust against parameter changes

mainly due to the compressive transformation equations.
For the combination of responses (Equation 7), however,
it is crucial to have activities in both streams of similar
order of magnitude. Also the relative RF sizes must not
be substantially altered. The current parameter setting
results in relative RF sizes of complex cells: isotropic
short-range filter: long-range interaction of about 1:2.5:4,
assuming a cut-off of the Gaussians at 2A (or 95% of the
total energy).
The model is implemented in Matlab; the mfiles of the

model implementation are provided as Supplementary
Material.

Figure 3. 3D Gaussians in (x, y, E) space are visualized as Omax = 4 Gaussians in (x, y) space. Left to right: Gaussians for E j $E, E,
E + $E, and E + 2$E. Note that the Gaussian for the orientation E + 2$E orthogonal to E is near zero at all positions.
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Model evaluation

Two measures of contour saliency and orientation
significance are used to numerically evaluate the com-
petencies of the model.

Contour saliency

To quantify the contour enhancement, we use a saliency
measurement as suggested by Li (1999a, 1999b). Li
defined the net saliency S at each position as the response
of the maximally activated orientation

S ¼ max
E

XE: ð15Þ

The relative enhancement of contour activity was then
defined as the ratio of the mean saliency along the contour
and the mean saliency measured over all positions:

r ¼ S
�
contour

S
�
all

: ð16Þ

A second measurement compared the standard deviation
of the saliencies at all positions Aall with the difference of
the mean saliencies:

z ¼ S
�
contour j S

�
all

Aall
: ð17Þ

A salient contour is characterized by high values of r and z.

Modifications of the saliency definition

We also investigated modifications of the saliency
definition as given above. In these modifications, we
defined the net saliency as the sum across all orientations
at a given position:

S
È ¼

X
E

XE: ð18Þ

Further, we used an alternative formulation for the ratio
where the mean saliency along the contour was compared
with the mean saliency of the background:

r
È ¼ S

�
contour

S
�
background

: ð19Þ

Orientation significance

We used a measure of orientation significance to
quantify this relative enhancement of contour response
across orientations. Orientation significance is a measure
of orientation bandwidth that is bounded between zero and
one. Cells not tuned for orientations have zero orientation
significance. Cells that are very sharply tuned have an
orientation significance value close to one. The orientation
significance is defined as the length of the vector resulting

from summing all orientations normalized by the absolute
sum of orientations (Batschelet, 1981; Ringach, Hawken,
& Shapley, 1997). The formal definition reads

osgnf Wð Þ ¼ jPE WEexpð2iEÞjP
EWE:

ð20Þ

The factor of 2 in the argument of the exponential
function stretches the range of orientations E Z [0, :] to
the full turn [0, 2:], such that circular statistics can be
applied.

Results

In this section we show the competencies of the model in a
number of simulations. We shall begin with an artificial
image that allows us to highlight and evaluate various
properties of the proposedmodel.We shall then demonstrate
the performance of the model on a number of real world
images. The resulting edge images for both the complex cell
stage and the long-range stage show pooled responses which
are obtained by summing over all orientations.
The values of the model parameters as specified in

Model definition section are employed in all simulations.
The model response saturates after a few recurrent cycles.
Unless denoted otherwise, a number of 12 recurrent cycles
is employed. The resulting edge images for both the
complex cell stage and the long-range stage show pooled
responses which are obtained by summing over all
orientations.

Processing of noisy artificial images

In a first simulation a synthetic stimulus of a noisy
square is employed. The image is heavily corrupted by
high-amplitude additive Gaussian noise of standard
deviation equal to 100% of the luminance difference at
the edge (so-called 100% Gaussian noise). Figure 4
demonstrates the functionality of lateral long-range inter-
action for the enhancement of coherent structure. Outline
contrasts are detected and subsequently enhanced such
that the activities of salient contrast as well as orientation
significance is optimized.
The capabilities of the model can be further assessed by

a close-up of the top left corner of the square (Figure 5).
The simulations demonstrate three important properties of
the recurrent long-range interaction:

1. Contour enhancement: The weak initial orientation
estimates of the square contour are enhanced.

2. Noise suppression: Spurious noisy activities in the
background are suppressed.
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3. Noise suppression: Spurious noisy activities in the
background are suppressed.

The preservation of multiple activities near corners and
junctions provide an implicit signature or labeling of
such points. These higher order features play a significant
role in object recognition and depth segregation (e.g.,
Biederman, 1985). We have shown that corners and
junctions can be extracted with high accuracy from the
contour representation resulting from the recurrent inter-
action (Hansen & Neumann, 2004a).
Overall, the proposed model circuit is thus capable to

perform main tasks of low and mid-level vision, namely
contour enhancement, noise suppression and junction
detection within a single architecture. The model thus
defines a computational framework suggesting how these
tasks can be accomplished by the neural machinery.

Simulation of empirical data

In order to address the empirical relevance of the
model, the model is probed with fragmented contour
patterns and texture stimuli such as used in the study of
Kapadia et al. (1995). In particular, we investigated the
relative contributions of surround inhibition by randomly
oriented bars and long-range excitation from colinear
flankers on the activity of a central bar element (Kapadia

et al., 1995; Knierim & van Essen, 1992). The simulation
results are depicted in Figure 6.
We compared the results of the model simulations to

results from single cell recordings (Figure 12C in Kapadia
et al., 1995). To obtain a qualitative fit, the relative
responses of the empirical data were scaled down by a
factor of 10. The selectivity of real neurons typically
varies over a large range, and the particular neuron we
considered from the study by Kapadia et al. (1995)
showed a high selectivity. Our model neurons all have
the same selectivity which may be close to the average
selectivity found in vivo. We cannot test this because data
of only a few neurons were shown in Kapadia et al.
(1995).
We first simulated the response to a single central bar

element which serves as the reference activity. Adding
two colinear flanking bars results in a increase of activity.
The responses of feedforward complex cells to the
flanking bars are integrated by the long-range filter,
resulting in higher activation at the long-range stage. In
the feedback loop, this higher activity selectively enhan-
ces the response to the central bar element. In another
experiment, the central bar is embedded into a texture of
randomly oriented bars. This results in a response
decrease compared to the central bar alone. Here, the
short-range inhibitory filter which samples activity
summed across all orientations is activated by the
randomly oriented bars.

Figure 5. Orientation plot of a close-up of the top left corner of the noisy square. The size of the close-up images is 9 � 9 pixels. Left to
right: Input image and close-up of the top left corner (white square inset in the input image) for complex cell responses and long-range
responses. In the close-ups, three important properties of the long-range interaction can be seen: i) enhancement of the orientation
coaligned to the contour, ii) suppression of noisy activity in the background, and iii) preservation of the significant orientations at corners.

Figure 4. Processing of a square pattern with additive high amplitude noise. The size of the images is 256 � 256 pixels.
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We finally simulated the response to the combined
pattern of colinear flankers and a texture of randomly
oriented bars. Here, the contributions of the surround
inhibition and long-range excitation result in a net effect
of excitatory feedback, which is weaker than the response
without the textured surround. Adding two more colinear
flankers further increases the excitatory feedback and
causes a higher activity of the central bar.

Kapadia et al. (1995) found cells where the neuronal
response to five colinear bars embedded in a texture was
even larger than the response to three coaligned bars
without the texture. The simulated data shows deviates
from this pattern and the model response do not show
such an increase. The empirically observed increase could
be due to feedback from higher cortical stages such as V2,
which acts on a larger scale and was not incorporated in
the present model. A further increase in the model may be
achieved by integrating feedback from boundary cells in
V2 (Neumann & Sepp, 1999).
Overall, the model exhibits basic response character-

istics of long-range excitation and surround suppression in
good qualitative agreement with the empirical data.

Processing of natural images

To further examine the model, natural stimuli are used
as input. We first employed a cell image depicted in
Figure 7. The results show that the outlines of the cells are
enhanced by the recurrent long-range interaction. In partic-
ular, week initial estimates and low contrast measurements
are enhanced, e.g., the longer colinear structures at the top
border of the rightmost cell or smaller salient structures like
the nuclei. This demonstrates how the proposed circuit can
accentuate meaningful structures like object boundaries and
may thus serve as a prerequisite offigure-ground segregation.
We have also processed an image of a 3D laboratory

scene (Figure 8). Those locations with high contrast
complex cell responses and low orientation uncertainty
are further stabilized by the recurrent loop. In addition,
weak initial estimates such responses along the contour of
the pedestal are enhanced, while weak spurious responses
to the ground are suppressed. Note that no artifacts are
introduced by the long-range interaction, and that, e.g.,
L-junctions are not turned into crosses. This is due to the
modulatory feedback which ensures that no illusory
activity can be generated at locations where no initial
bottom-up activity exists.
In a final set of simulations we used images from a

collection of fruit and vegetable images (Williams, 1998).

Figure 7. Model responses for a cell stimulus (256 � 195 pixels). Week responses to the cell border are enhanced during the recurrent
long-range interaction.

Figure 6. Model responses to generic contour patterns as used in
an empirical study by Kapadia et al. (1995). The results depict the
percent change of response for different input stimuli relative to
the response to a single bar. The relative responses of the
empirical data were scaled down by a factor of 10. The left inset in
the leftmost stimulus indicates the relative size of the bipole filter.
The model responses (gray bars) are in good qualitative agree-
ment with the empirical data (black bars): Adding colinear flankers
to a central bar element results in a response increase, adding a
texture and randomly oriented bars results in a response
decrease. The net effect of combined flankers and texture is a
response increase, which strength depends on the strength of
supporting activity from collinear flanking bars.
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For the banana image, a close-up of the orientation
distribution is shown for the complex cell responses and
the long-range responses (Figure 9). Though the image is
rather simple because the banana is shown against a
uniform background, the initial estimates at the complex
cell stage are still noisy and wrong orientation responses
occur. These responses are suppressed by the long-range
interaction, and only the salient responses along the contour
remains. The result is a purified representation of only
those contours that are coherent within a broader context.
In a last simulation on natural images we used an image

of a sweet potato. Simulations results for the potato image
are shown in Figure 10.
The initial complex cells responses to this stimulus

already provide a rather good representation of the
contours, but show considerable amplitude differences.
These differences are compensated by the long-range
processing, yielding a more equal contour activity. To
demonstrate this property, each image is thresholded at
40% of its relativemaximum value (Figure 10, bottom row).
Thresholding of the long-range images results in longer
continuous contour segments. Some gaps still remain in the
thresholded contour, at those locations where the initial
response amplitude is considerably lower compared to
other parts of the contour. The model responses assume a
range of values instead of providing only a binary “all-
or-none” response, in accordance with the idea of “analog
sensitivity” (Grossberg et al., 1997). Overall, the selective

equalization of amplitude differences may ease the tasks of
subsequent processing stages of, e.g., figure-ground deter-
mination and object recognition.
The simulations of natural images demonstrate core

competencies of the model. Initial complex cell activations
generated for localized high contrast contours are further
stabilized. Initially weak activations in coherent spatial
arrangements are enhanced. The results show that noisy
low contrast arrangements can be significantly enhanced to
form elementary items of smooth contour segments.

Quantitative evaluation and analysis

In the following, we shall define two measurements of
contour saliency and orientation significance which allow
for a quantitative, more rigorous assessment of the
capabilities of the model.
One core property of the proposed circuit is to enhance

initially weak and noisy responses along contours. This
property is quantitatively evaluated using a measure of
contour saliency. The results show that the model success-
fully enhances the saliency of contours in noisy images. The
measure of contour saliency compares responses at different
locations (i.e., at the contour and at other locations). A robust
contour processing scheme however should also suppress
conflicting responses at the same location, such that only the
valid response in the contour directions remains. To

Figure 9. Close-up of the model responses for a banana image. The close-up has a size of 17 � 9 pixels and is shown as a small white
square inset in the input image. Only those orientation responses which are coaligned along the contour are enhanced by the recurrent
long-range processing relative to other spurious responses.

Figure 8. Model responses for a laboratory scene (230 � 246 pixels). The responses to the pedestal and the top of the cube are enhanced
during the recurrent long-range interaction.
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quantitatively address this property, a complementary
measure of orientation significance is introduced.
We evaluated the temporal evolution of orientation

significance for a variety of different contrast and noise
values for a number of different realizations of the noise
process. In all cases the orientation significance at the
contour is considerable increased. At the background, on
the contrary, the orientation significance remains almost
the same. Next we analyzed the orientation significance
for a synthetic orientation distribution to develop some
insight into the range of significance values assumed. In
particular we show that for a prototypic synthetic
orientation distribution the significance values at the
background cannot decrease below a certain limit.

Contour saliency

One core property of the proposed circuit is contour
enhancement: The activity at contour locations should be
increased compared to background locations. This property
has already been demonstrated in the initial simulation of
the noise square (Figure 4) and becomes even more
prominent in a close-up of the top border of the square
(Figure 11). Besides the strengthening of the contour
activity, the results also demonstrate that the model circuit
can close gaps (as can be seen in the right part of the
contour), as long as some amount of initial bottom-up
activity is present.
To quantify the contour enhancement, we used a

saliency measurement as suggested by Li (1999a,
1999b). Li employed a measure r to quantify the ratio of
the mean saliency along the contour and the mean

saliency across the whole stimulus, and second measure
z that compares the standard deviation of the saliencies at
all positions with the difference of the mean saliencies, as
detailed in Contour saliency section. A salient contour is
characterized by high values of r and z.
Li used contour saliency to determine the saliency of

boundaries in synthetic textures consisting of bars of
different orientations. Here we use the saliency to quantify
the enhancement in the processing of noisy artificial
stimuli. The saliency values we obtained are of the same
order of magnitude as those computed by Li. Because of
differences in the input stimuli, the results are not directly
comparable.

Temporal evolution of contour saliency

In this section we evaluate the contour enhancement
property of the proposed model in terms of the saliency
measure. In particular, we are interested in the time course
of both measures during the recurrent interaction: Does
the saliency of the contour increases, as expected? Is the
increase monotonically, and does the network converge to
stable point, or does it oscillate? Does the network
dynamics saturate, and if so, after how many recurrent
interactions?
A plot of the temporal evolution of both saliency values

(r, z) for the noisy square stimulus is given in Figure 12.
For the contour values, we considered positions defined
by stripes of a width of two pixels along each of the four
sides of the square. Mean saliency values at these
positions are then compared against mean saliency
values measured over all pixels of the whole input
stimulus. The curves show an increase in saliency for

Figure 10. Model responses for a sweet potato image (610 � 256). The binary images were thresholded at 40% of the maximum value.
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both values during the recurrent processing: initial saliency
values of (r, z) = (2.3, 2.9) as obtained at the complex cell
level are increased to (r, z) = (5.7, 7.0) after 12 recurrent
cycles.
Regarding our initial questions, the simulation results

show i) that the model successfully increases the contour

saliency of an initially fragmented contour of low
saliency, ii) that this increase is monotonic and saturates
after about 12 recurrent cycles, and iii) that the largest
increase occurs within the first recurrent interaction.
The saliency measure is based on the comparison of

values along the contour against all the values in the
image, including the contour. We investigated a modifi-
cation of the saliency measure where we compared
disjunctive data sets, i.e., the values along the contour
with the values of the background (Equation 19). We have
also investigated a modification of the net saliency
measure based on the sum across all orientation instead
of the maximum orientation (Equation 18). The results of
these modifications of the saliency measures were vir-
tually indistinguishable from the original measure such
that we kept the original definition.
Having established contour saliency as a suitable

measurement of the model competencies we now employ
this measure to investigate the effect of parameter
variations on the behavior of the model.

Effects of the extent of the long-range interactions on
contour saliency

One central parameter of the model is the extent of the
long-range interactions. In this section we investigate how
of a smaller size of the long-range filter effects contour
saliency. For a fixed scale of the preprocessing stages we
modified the parameters of the long-range interaction. In
particular, we varied the effective radius rmax of the long-
range filter, and the standard deviation Asur of the
Gaussian used for the short-range inhibition.
Recall that the parameters are set to rmax = 25 and Asur = 8

in the original model as specified in Model definition

Figure 12. Temporal evolution of contour saliency for the noisy
square. Top solid curve denotes the temporal evolution of the
z value, the bottom bold curve denotes the r value. The initial
values (r, z) = (2.3, 2.9) monotonically increase during the
recurrent interaction and saturate at about 12 recurrent cycles at
values (r, z) = (5.7, 7.0).

Figure 11. Close-up of the processing results obtained for the top contour of the noisy square. The size of the close-up images is 61 � 42
pixels. Top row, left to right: Input image and the initial complex cell responses. Bottom row, left to right: Result of the recurrent long-range
processing at three discrete time steps (t = 1, 2,I, 12).
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section. This setting results in a relative RF size of
complex cells: isotropic short-range filter: long-range
interaction of about 1:2.5:4. For the scale variations, we
simulated three different scenarios, with decreasing
relative RF size of the long-range filter, namely 3, 2, and
1.5 times the filter size used at the complex cell level. The
relative size of the short range filter is kept fixed at
approximately 2.5/4 = 0.625 the size of the long-range
filter. The parameter settings for the three scenarios are as
follows:

1. scale 3, relative RF sizes 1:1.875:3, (rmax = 19, Asur = 6)
2. scale 2, relative RF sizes 1:1.25:2, (rmax = 13, Asur = 4)
3. scale 1, relative RF sizes 1:1:1.5, (rmax = 9, Asur = 3)

The resulting temporal evolution of the saliency values
are depicted in Figure 13. The plots show that the saliency
drops to considerably smaller values if the range of
interactions at the long-range stage is decreased, validat-
ing the relative scale of the long-range interaction and the
inhibitory short-range interaction that was chosen in the
definition of the model.

Orientation significance

The saliency measure as introduced above allowed us to
compare the response at different positions, but does not
allowed us to quantify the strength of a particular response
relative to other responses of different orientations at the
same position. For this purpose we used a measure of
orientation significance that allows us to quantify the
relative enhancement of contour response across orienta-
tions. Orientation significance, as defined in Orientation
significance section is a measure of orientation bandwidth
which is bounded between zero and one. Cells not tuned
for orientations have a zero orientation significance. Cells
that are sharply tuned have an orientation significance
close to one.

Temporal evolution of orientation significance

In a pilot study, we examined the changes of orientation
significance during recurrent long-range interaction for the
image of the noisy square. Similar to the investigations for
the measure of contour saliency, we were interested how
the orientation significance changes during the time
course of the recurrent long-range interaction. Does the
orientation significance also increases monotonically and
then saturates, similar to behavior found for the measure
of contour saliency?
We therefore investigated the temporal evolution of the

mean orientation significance for two patches of size of
2 � 40 pixels. Results are depicted in Figure 14. One
patch is placed at the contrast boundary (upper solid line)
and the other at the background (lower solid line). The
curves for the two patches show that the recurrent
interaction increases orientation significance only at the
borders while leaving the significance at the background
almost unchanged.
Orientation significance of the border increases mono-

tonically and saturates at about 12 recurrent cycles,
similar to the behavior found for the contour saliency.
This shows that the model not only increases the activity
at the contour (as shown by the measure of contour
saliency), but that in addition this increase is highly
selective and only increases the orientation that is tangent
to the object contour.

Analysis of the domain of the orientation significance
function

The numerical evaluation in the previous section has
shown that the orientation significance differs consider-
able between the contour and the background. However,
one may wonder about the values taken by the orientation
significance function: Why do the values at the border
level off at about 0.8 instead of approaching 1, and why,
on the other hand, does the background significance
assumes values about 0.33 instead of lower values near

Figure 13. Temporal evolution of contour saliency for the noisy square for different scales of the long-range interactions. The top solid
curve denotes the temporal evolution of the z value, the bottom bold curve denotes the r value. The increase of the initial values (r, z) =
(2.3, 2.9) is considerably smaller if the range of the long-range interaction decreases: the final significance values are (r, z) = (5.1, 6.4) for
scale 3, (r, z) = (3.9, 4.5) for scale 2, and (r, z) = (3.0, 3.0) for scale 1.5, as compared to (r, z) = (5.7, 7.0) for the original parameter setting
(see Figure 12).
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zero? Further, one may intuitively presume a decrease of
orientation significance at background locations. The
purpose of the following analysis is to address these
points and to develop some intuition about the values
assumed by the orientation significance function.
We consider an idealized distribution of orientation

responses that has a response wopt 9 1 at the preferred
orientation, zero response at the orthogonal orientation
and unit-valued residual responses at all other orienta-
tions. The function that describes the values of orientation
significance depending on the value of wopt is derived in
Orientation significance section for a synthetic distribution
in Appendix A. A sample plot of the orientation signifi-
cance values for Omax = 4 orientations and for varying
strengths of the optimal orientation wopt = 1, 2,I, 10
is depicted in Figure 15. The minimal and maximal
values of the optimal orientation (wopt = 1 and wopt = 10)
result in orientation significances of 0.33 and 0.83,
respectively. These values are in good agreement with
the orientation significance at the background and the final
orientation significance at the contour as measured in
the simulation of the noisy square stimulus (compare
Figure 14). Increasing the number of orientations results
in a shift of the orientation significance curve toward zero
and in a slightly steeper slope of the curve. For Omax = 8,
e.g., the significance values for wopt = 1 and wopt = 10 are
given by 0.14 and 0.63, respectively.

The above analysis has clarified that the orientation
significance cannot decrease below 0.33 (given a zero
response at the orthogonal orientation), and that an
orientation significance of about 0.8 results from a tenfold
higher response at the preferred orientation compared to
the residual responses. Consequently, values significantly
below 0.33 can only arise for equal responses along all
orientations. However, the local image structure in noisy
artificial and natural images almost always has a small
orientation bias that results in higher responses for this
orientation and vanishing or near zero responses at the
orthogonal orientation. A pronounced decrease of orienta-
tion significance during long-range processing would
require an increase or even generation of activity
orthogonal to the local image structure, thus violating
the idea of modulating feedback.

Orientation significance for different contrast and noise
levels

So far, we have shown the competency of the model to
increase orientation significance only for a single noisy
image, i.e., for a single contrast and noise level and a
particular realization of the noise process. For a more
complete assessment of the competencies of the model,
the temporal evolution of mean orientation significance is
evaluated for a square image using a larger variation of
the input parameters (contrast and noise levels) and for a
number of different realizations of each noise level. The
term “contrast” here denotes the contrast amplitude, i.e.,
the difference between maximal and minimal luminance
values in the input image. We have simulated a square of
0.1 contrast, corrupted with 10%, 20%, 50%, and 100%

Figure 15. Evaluation of orientation significance for a synthetic
orientation response distribution. The abscissa denotes the
response strength of the preferred orientation, wopt = 1, 2,I, 10,
the ordinate denotes the corresponding orientation significance.
The 10 orientation plots inset at the top depict the corresponding
orientation distribution.

Figure 14. Temporal evolution of mean orientation significance for
a patch placed at the contrast boundary (upper solid line), and a
second patch placed at the background (lower solid line). The
dashed horizontal lines indicate the corresponding mean initial
significance obtained for the complex cell responses. The
abscissa denotes the discrete time steps (t = 0, 1, I, 12), the
ordinate denotes mean orientation significance. The curves show
a pronounced increase in orientation significance at the borders
(increasing from 0.46 to 0.72), while the significance at the
background remains almost unchanged (increasing only slightly
from 0.31 to 0.33). This corresponds to an increase in the ratio of
the orientation significance at the border and at the background
from 1.47 to 2.20 during the recurrent processing.
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Gaussian noise (Figure 16, left) and a square of higher
contrast of 0.2, corrupted with 5%, 10%, 20%, and 40%
Gaussian noise (Figure 16, right). The different and smaller
noise values for the high-contrast stimulus are chosen to
guarantee input luminance values in the range [0, 1]. The
simulation results are averaged over 100 different realiza-
tions of the noise process to exclude effects resulting from
a particular realization. The results of this extensive
numerical evaluation are shown in Figure 16.
The results show that the model interactions increase

the orientation significance along contours for a large
variety of contrast and noise levels. This is important for
the robust processing of natural images, where the contrast
along a contour is not constant and noise of different
sources and strength may occur.

Model variant using early feedback

In the model proposed above, the feedback signal is
combined with the feedforward signal at a relatively high
level, namely with the feedforward signal as generated by
the complex cells (see Figure 1). This circuit models the
intralaminar recurrent interaction of layer 2/3 pyramidal
cells. Physiological and anatomical studies indicate the
existence of another interlaminar recurrent cycle in V1.
This recurrent loop runs from layer 4 to layer 2/3 and
feeds back via layer 5 and 6 to layer 4 (Bolz, Gilbert, &
Wiesel, 1989), where the feedback signal is combined
with layer 4 simple cells. In this section we introduce a
modification of the model using early feedback, where the
feedback signal also influences simple cell responses. The

Figure 17. Overview of model stages of the new model using early feedback. Instead of terminating only at the combination stage
(cf. Figure 1), the feedback signal now feeds also into the simple cell stage. Icons above each stage sketch the receptive field of cells with
an orientation of 0 deg. For the long-range stage, the spatial weighting function of the bipole filter is shown together with the spatial extent
of the inhibitory short-range interactions (dashed).

Figure 16. Temporal evolution of mean orientation significance under variation of the input contrast and noise level. Results are averaged
over 100 different realizations of the noise process. Left: Contrast of 0.1, corrupted with 10%, 20%, 50%, and 100% Gaussian noise.
Right: Contrast of 0.2, corrupted with 5%, 10%, 20%, and 40% Gaussian noise. The top four curves in each plot show the mean
orientation significance along the contours of the square for increasing noise levels (top to bottom). The bottom curves show the
corresponding orientation significance at the background. The insets show the initial complex cell response and the final long-range
response for the highest noise level. The results show an enhancement of orientation significance along the contour, while at the
background the orientation significance remains almost the same.
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core model architecture using early feedback is depicted
in Figure 17.
So far we have only motivated the new termination of

the feedback connection within the simple cell layer. How
should this combination be specified? We have proposed a
mechanism of dominating opponent inhibition (DOI) that
reduces the noise sensitivity of simple cells (Hansen &
Neumann, 2004b). DOI introduces an adaptive threshold
controlled by the activity in the opponent path. This
adaptive threshold suppresses activity at the background,
but not at locations of high contrast such as edges. In the
simple cell model with DOI, the contrast locations are
only determined locally in a single feedforward sweep.
The DOI mechanism could be made even more robust by
integrating more global contour information such as
provided by the long-range interactions. The idea is to
control the amount of DOI by long-range feedback
signals, such that DOI occurs only at the background but
not at contour locations signaled by high orientation
significance. These ideas are made rigorous in the
following section, were the precise equations of the model
variant with early feedback are provided.

Modification of the model equations

We modify the model equations as introduced in Model
definition section at the simple cell stage to introduce
early feedback.

Simple cells

The simple cells combine input from different subfields.
In the new model, the subfield responses R are generated
by a feedback controlled DOI signal I. Equation 2 are
replaced by

Ron;left;E ¼ Konj I I Koffð Þ*GAx;Ay;0;jC;E

� �þ

Ron;right;E ¼ Konj I I Koffð Þ*GAx;Ay;0;C;E

� �þ ð21Þ

where the feedback control is defined as

I ¼ J j osgnfðWÞ: ð22Þ

The DOI parameter J is set to 2 (Hansen & Neumann,
2004b). In Equation 22, high orientation significance
along contours leads to a decrease of inhibition of the
opponent channel. Low significance values of osgnf(W)
close to zero results in high dominating inhibition with
I , J. In the first iteration,W is set to zero. The activations
of the off-channel are computed analogously. The old
model results from setting I = 0.
The use of the orientation significance to control the

DOI signal I is motivated mainly computationally. The
orientation significance has three useful features: it
robustly distinguishes between oriented and non-oriented
structures, it is bound between [0, 1], and it grows during

long-range processing. From a biological point of view, the
computation of orientation significance requires only local
computations within a hypercolumn. While the use of
orientation significance for feedback control has not been
shown empirically and hence is speculative, such a signal
could principally be computed by the neural machinery.

Simulation results using early feedback

In this section we show simulation results for the model
with early feedback. We start with a simulation of the
noisy square image used in the simulations with the
standard model. The simulation results are depicted in
Figure 18. The recurrent processing with the new model
generated a slightly more pronounced contour activity
(Figure 18, top row as compared to simulation results for
the standard model in Figure 4), while the orientation plot
of the top right corner appears to be nearly the same
(Figure 18, bottom row as compared to simulation results
for the standard model in Figure 5).
For a rigorous comparison of the two models, more

qualitative measurements are needed. Such measurements
have been defined above as contour saliency and orienta-
tion significance.

Figure 18. Processing of a square pattern with additive high
amplitude noise by the model with early feedback. The size of the
images is 256 � 256 pixels. Top row, left to right: Initial complex
cell responses and the result of the recurrent long-range
processing. Bottom row, left to right: Orientation plot of a close-
up of the top right corner of the noisy square for the complex
cells and the long-range stage. The size of the close-up images
is 9 � 9 pixels.
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In a first experiment, we compare the contour saliency
of the two models Figure 19. The results show a stronger
increase in saliency for the new model, especially in the
relative enhancement as expressed by the r value.
We have also redone the extensive simulations measur-

ing the temporal evolution of orientation significance for a
variety of input parameters (noise and contrast) and differ-
ent realizations of each respective noise level (Figure 20).
The results show a slightly better performance of the old
model. In particular, the orientation significance of back-
ground locations is increased less for the old model. Due
to the opponent inhibition at the simple cell level, the new
model has a sharper orientation tuning, resulting in a
slightly higher initial orientation significance at the back-
ground (about 3.6 as compared to 3.3 in Figure 16, left) as
well as a slightly higher final significance value (about
0.37 as compared to 3.4 in Figure 16, left).
The results can be interpreted in terms of complemen-

tary roles of the two kinds of feedback as employed in the
model variants: while early feedback results in a more
salient contour response, late feedback results in higher
orientation significance. The results may indicate a func-
tional role for the different kinds of feedback loops as
observed in vivo.

Discussion

Summary of findings

We proposed a model circuit of V1 contour processing
utilizing long-range interactions and recurrent processing.
The model realizes a biologically plausible algorithm of

Figure 19. Temporal evolution of contour saliency for the noisy
square generated by the model with early feedback. Top solid
curve denotes the temporal evolution of the z value, the bottom
bold curve denotes the r value. The dashed lines indicate the
respective curves of the standard model. The saliency values
monotonically increase during the recurrent interaction and level
off at about 12 recurrent cycles at values (r, z) = (6.7, 7.3) as
compared to (r, z) = (5.7, 7.0) for the standard model. The
increase of the z value is nearly the same for both models (4.0 for
the standard model and 4.1 for the new model), but the increase
of the r value is considerably stronger for the model variant with
early feedback (3.3 compared to 4.0).

Figure 20. Temporal evolution of mean orientation significance under variation of the input contrast and noise level for the new model with
early feedback. Results are averaged over 100 different realizations of the noise process. The corresponding results for the standard
model are depicted in Figure 16. Left: Contrast of 0.1, corrupted with 10%, 20%, 50%, and 100% Gaussian noise. Right: Contrast of 0.2,
corrupted with 5%, 10%, 20%, and 40% Gaussian noise. The top four curves in each plot show the mean orientation significance along
the contours of the square for increasing noise levels (top to bottom). The bottom curves show the corresponding orientation significance
at the background. The results show an enhancement of orientation significance along the contour, while at the background the
orientation significance increases only slightly.
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contour integration that allows us to retrieve the contours
in a scene. We evaluated the model using a variety of
artificial and natural images. We showed that the model
enhances initially weak oriented activity along a contour
that fits into a global context, while suppressing spurious
noisy activity. The increase in activation is paralleled by
an increase of orientation selectivity at contour locations.
At the same time, responses to multiple orientations at
corners and junctions are preserved.
We also evaluated the model response to contour

fragments as used in an physiological study by Kapadia
et al. (1995). The model results are in good agreement
with the single-cell recordings: embedding a single line in
a texture of randomly oriented lines results in a decrease
of response due to surround suppression. Adding colinear
flankers results in a response increase. Finally, we
developed a variant of the model that incorporates early
feedback; this model shows an even greater performance
on contour salience.

Numerical evaluation

To numerically evaluate the model we used a measure
of contour saliency (Li, 1999a, 1999b) and a second
measure of orientation significance (Batschelet, 1981;
Ringach et al., 1997). We show that both measures
increase monotonically during the recurrent interaction
and saturate after about 12 recurrent cycles.
Another approach to evaluate the model would be to

first build a generative model of contours (for instance a
model where contours are chains of Gabor-like edges and
more likely to be cocircular) and then optimize the model by
maximizing the efficiency of detecting the contours. This
would allow us to write more general selectivity measures
and would translate all choices of the model components
and architecture to a framework of maximizing the
efficiency of an algorithm. One problem with this approach
is that no conclusive and generally agreed upon generative
model of contours exists. Thus a number of arbitrary a priori
choices would be necessary to define the generic properties
of a contour (such that contours are chains of Gabor-like
edges and more likely to be cocircular).

Comparison to other models

A number of different models have been proposed for
contour integration. For a review, see Neumann and
Mingolla (2001). Among the first approaches that utilize
recurrent processing for contour extraction is the Boun-
dary Contour System (Grossberg & Mingolla, 1985a,
1985b). A slightly revised version of the original
Boundary Contour System serves as the basic building
block for a model of recurrent intracortical contour
processing between areas V1 and V2 (Ross et al., 2000).
Our model focuses on the intralaminar processing within

V1. Grossberg and coworkers suggest that V1 and V2
circuits are homologous and differ only in the size of their
constituent neurons’ receptive fields: they propose that V2
is basically V1 at larger scale. In contrast, we propose that
V1 and V2 have different functional roles, such that, e.g.,
cells responding to illusory contours occur in V2 and
corner selective cells occur in V1. Our model uses
modulating feedback: initial bottom-up activity is neces-
sary to generate activity. Consequently, in contrast to the
model of Grossberg and coworkers, our model of V1 does
not allow for the creation of illusory contours. Illusory
contours evoke cell responses in V2 (von der Heydt,
Peterhans, & Baumgartner, 1984) and have been inves-
tigated in a model of V1–V2 interactions (Neumann &
Sepp, 1999). For natural stimuli, small responses due to
sensor noise also occur between fragmented contours. We
have shown that those small responses can be enhanced by
our model of V1, making it suitable for contour formation.
Other models have explicitly used end-stop operators

that provide the model input (Finkel & Edelman, 1989;
Finkel & Sajda, 1992; Heitger et al., 1998; von der Heydt
& Peterhans, 1989), while we used activity from initial
contrast measurements that is sharpened by feedback
modulation.
An alternative approach to model V1 recurrent inter-

action has been suggested by Li (1998, 1999a, 1999b,
2000b). The model of Li differs from our model in a
number of features. Li uses a two-layer recurrent model of
excitatory and inhibitory neurons, which interact by linear
dynamics. In our model, nonlinear shunting equations are
used to combine inhibitory and excitatory signals. Li also
uses two types of highly tuned anisotropic filters for
excitatory and inhibitory interactions that gather input
from various orientations. Instead, we employed an
excitatory long-range filter that collects input from the
same orientation only. Further, we used a shorter range
inhibitory isotropic Gaussian filter that is not tuned for
orientation. These more basic interaction structures are in
agreement with empirical findings in vivo. Long-range
integration from different orientations based on a circular-
ity constraint such as proposed by a large variety of
models (Li, 1998; Parent & Zucker, 1989; Yen & Finkel,
1998) are speculative and have not been found in vivo.
More recently, Ben-Shahar and Zucker (2004) have
formulated a model of long-range interaction based on
differential geometry, showing that texture and shading
continuation could serve as complementary functional
explanations to contour integration.

Multiscale processing

A number of studies have stressed the importance of
multiple spatial scales for the proper extraction of images
features (Lindeberg, 1998; Mokhtarian & Suomela, 1998;
Würtz & Lourens, 2000). In particular, multiscale models
inspired by the functional architecture of V1 have been
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proposed for the processing of synthetic aperture radar
images (Grossberg, Mingolla, & Williamson, 1995), to
infer 3D shape from texture (Grossberg, Kuhlmann,
& Mingolla, 2007), to model brightness perception
(Grossberg & Hong, 2006; Hong & Grossberg, 2004;
Sepp & Neumann, 1999), and to implement a sparse
approximation of images (Fischer, Cristóbal, & Redondo,
2006, 2007). The present model operates only on a single
scale. However, the model neurons integrate information
over successively increasing regions of the visual space in
the time course of the recurrent interactions. At the first
iteration a target neuron receives information from
neighboring neurons with a maximum distance as defined
by the extent of the long-range filter. At the second
recurrent iteration, the neighboring neuron itself has
received information from its neighboring neurons and
can convey this information to the target neuron. Thus,
information of different scales is available during the
temporal evolution of the orientation responses.

Convergence and stability of the recurrent
model

Evaluation of the model with various input stimuli
showed that the model dynamics saturate after a small
number of recurrent cycles (about 12). This is due to the
divisive shunting interactions that govern the computa-
tions at the long-range stage and the combination stage
(compare the discussion at the end of Recurrent long-
range interaction section). It has been shown that suitably
designed shunting networks can adapt their sensitivity and
give a sensitive response within finite intervals even if the
input fluctuates in a much broader dynamic range
(Grossberg, 1973, 1981; Grossberg et al., 1997).
Formally, absolute stability of global pattern formation

has been proven in a classical paper by Cohen and
Grossberg (1983) for a broad class of nonlinear systems.
Our model equations are largely consistent with this
scheme but differ in two aspects. First, we use an excitatory
long-range input, i.e., an input that depends on the activity
of neighboring neurons (analogous to the inhibitory input).
Networks with an excitatory long-range input have been
extensively evaluated numerically, suggesting that absolute
stability should also exist for these networks (Cohen &
Grossberg, 1983). Second, the gating activity of the
excitatory input is from a previous stage and described
by another nonlinear differential equation. Both extensions
make the investigation of stability more complicated.
The present model defines a system of two coupled

nonlinear shunting equations. The well-posedness for such
a system has been proven under simplifying assumptions,
such as negligible lateral interactions (Cardanobile,
Cohen, Corchs, Mugnolo, & Neumann, 2008). Several
extensions of the Cohen–Grossberg theorem have been
investigated (e.g., Chen, Lu, & Chen, 2005; Guo &
Huang, 2006; Lu & Chen, 2003), but a formal proof of

stability for the network architecture used in our model is
still a matter of future mathematical investigations.

Subsymbolic enhancement and symbolic
representation of contours

The model we presented enhances contours in a large
variety of contexts. The idea of enhancement is that the
tasks of subsequent processing stages will be easier if the
contours are less noisy. The enhanced contour in our
model is still represented as a set of discrete orientation
activities at different points in space, like the initial input
activity. The model does not attach a common symbolic
label that marks points as belonging to the same contour.
In this sense, the present model does not group anything.
One may argue that surfaces must still be discovered and
represented and objects must be identified. The processing
within our model is one step toward this ultimate goal.
Our model aims at understanding how exactly this step
can be realized by the neural circuitry in V1.
The present model could be extended in various ways to

derive a more symbolic and explicit representation of a
contour. For example, one could propagate labels along the
contours. Another approach would be to have several
independent and competitive layers each defining a contour
(Wersing, Steil, & Ritter, 2001). Yet another approach
would be to have the purified contour activity of the long-
range stage providing the input to a subsequent stage
where a symbolic representation is derived. In previous
work we have pursued the latter approach. We have
shown that the model output of the recurrent long-range
interaction can be used to precisely detect corners and
junction points in the image (Hansen & Neumann, 2004a).
One may question the need for an explicit, symbolic

representation of contours. While the symbolic extraction
of contours is the prevailing assumption and processing
strategy pursued in computer vision, it is by no means
clear that the visual system has an explicit, symbolic
representation of contours and surfaces. There is some
consensus about the existence of a level or stage where
objects are represented, but the existence of symbolic
representations at intermediate stages is more controver-
sial (Peterson & Rhodes, 2003). For example, it has been
shown that most cells in V2 and V4 respond well to
complex stimuli, indicating that the population of these
cells represents complex shape information (Hegdé & Van
Essen, 2000, 2003, 2007). However, such a distributed
representation is different from an explicit symbolic
representation of single contours in the brain. The purpose
of vision is to find out what is in the world by seeing,
which may not necessarily involve an intermediate
representation at which, e.g., a tree is a represented as a
set of 12786 contour segments. As Wertheimer (1923)
writes at the beginning of his seminal paper (p. 301) “I
stand at the window and see a house, trees, sky. [I] I see
it in this definite common form, in this definite separation.
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[I] What a surprise, if I discover after prolonged
viewing, after many attempts, in a very unnatural attitude,
that over there at the window parts of the dark frame
together with a bare branch form the letter N.”

Understanding an information processing
system

In his influential monograph “Vision” Marr (1982)
points out three levels at which an information processing
system needs to be understood before one can claim
complete understanding:

1. Computational theory: What is the computational
problem that needs to be solved, i.e., what is the
goal of the computation, and what is the underlying
logic of the computational procedures?

2. Representation and algorithm: How can this com-
putational theory be implemented? In particular,
how is the input and output represented, and what is
the algorithm of the transformation?

3. Hardware implementation: How can the representa-
tion and algorithm be realized physically?

Here we presented a neural model for contour integration
by interlaminar recurrent interactions in V1. The model
addresses the level of representation and algorithm with a
consideration of the neuronal implementation. In particular,
we used a set of discrete orientation activities (a hyper-
column) at each point in visual space to define the
representation of the input and output. The algorithm is
based on the integration of matching activity from neighbor-
ing neurons, modulatory feedback of this integrated activity
to local measurements, and a recurrent interaction of this
feedback process. At each stage, divisive shunting normal-
ization ensures that the activity is bounded in a certain range
(Grossberg, 1973, 1981; Grossberg et al., 1997).
The value of a purely computational model is to clarify

the computational procedures the problem demands. The
value of a neural model is to clarify the representation and
algorithms by which the computational problem can be
solved using principles and processes that can be realized
by neuronal hardware. Each kind of model has is
particular pitfalls. A computational model may come up
with an elegant and efficient solution of the problem, but
may be completely ignorant about how the proposed
computations could be implemented by the brain. A
computational model yields only one out of potentially
many possible computational solutions, and the particular
solution found may be fundamentally different from the
solutions realizedVand realizableVby neuronal interac-
tions. A neural model, on the other hand, may result in a
grab-bag of quasi-neural structures that cannot be inde-
pendently motivated. We have tried to circumvent this
problem by using a limited set of neural mechanisms and
processes, which are well motivated and which each

serve a distinct computational purpose (as detailed in
Motivation of the model components and the model
architecture section). These mechanisms operate within a
basic architecture of two interacting regions that has been
employed to model visual processes in other domains
(Bayerl & Neumann, 2004, 2007; Hansen & Neumann,
2004a; Thielscher & Neumann, 2003).

Summary

We have shown that basic tasks in early vision
processing, such as contour enhancement, noise suppres-
sion and preservation of multiple activities at junctions
can be realized by a neural model based on principles that
are consistent with empirical findings of neural processing
within V1.

Appendix A

Orientation significance for a synthetic
distribution

We consider an idealized distribution of orientation
responses that is similar to the typical distribution
resulting from the preprocessing scheme. For the purpose
of analysis we define an idealized synthetic orientation
response distribution Wsynth having a response wopt 9 1 at
the preferred orientation, zero response at the orthogonal
orientation and unit-valued residual responses at all other
orientations:

Wsynth ¼ wopt if E ¼ Eopt

¼ 0 if E ¼ Enonopt ¼ Eopt þ :=2

¼ 1 else:

For an even number of orientations Omax mod 2 = 0, the
responses can be grouped in pairs of mutually orthogonal
orientations E and E6, whose responses wE and wE6
provide antagonistic contributions to the orientation
significance:

wEexpð2iEÞ þ wE6expð2iðEþ :=2ÞÞ

¼ wEexpð2iEÞ þ wE6expð2iEÞexpð:=2Þ

¼ ðwE j wE6Þexpð2iEÞ: ðA2Þ

The residual responses obey wE = wE6
= 1, such that

these responses cancel each other. The only remaining
term in the numerator of the significance function is then

(A1)
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given by the pair of optimal and non-optimal responses.
The denominator is the sum of all responses. The
orientation significance for the synthetic orientation
response distribution Wsynth thus reads

osgnf Wsynth

� � ¼ jðwopt j wnonoptÞexpð2iEoptÞj
wopt þ ðOmax j 2Þ

¼ wopt

wopt þ Omax j 2
:

For Omax = 4, the value used in all simulations, the
orientation significance function is given by

osgnf Wsynth

� � ¼ osgnf wopt

� �

¼ wopt

wopt þ Omax j 2
ðA4Þ

¼ wopt

wopt þ 2
:
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Schmidt, K. E., & Löwel, S. (2002). Long-range intrinsic
connections in cat primary visual cortex. In B. Payne

& A. Peters (Eds.), The cat primary visual cortex
(pp. 387–428). Orlando, FL: Academic Press.

Sepp, W., & Neumann, H. (1999). A multi-resolution
filling-in model for brightness perception. In Pro-
ceedings of the ICANN, Edinburgh, UK.

Sincich, L. C., & Blasdel, G. G. (2001). Oriented axon
projections in primary visual cortex of the monkey.
Journal of Neuroscience, 21, 4416–4426. [PubMed]
[Article]

Stettler, D. D., Das, A., Bennett, J., & Gilbert, C. D.
(2002). Lateral connectivity and contextual interac-
tions in macaque primary visual cortex. Neuron, 36,
739–750. [PubMed] [Article]

Thielscher, A., Kölle, M., Neumann, H., Spitzer, M., &
Grön, G. (2008). Texture segmentation in human
perception: A combined modeling and fMRI study.
Neuroscience, 151, 730–736. [PubMed]

Thielscher, A., & Neumann, H. (2003). Neural mecha-
nisms of cortico-cortical interaction in texture boun-
dary detection: A modeling approach. Neuroscience,
122, 921–939. [PubMed]

Thielscher, A., & Neumann, H. (2005). Neural mecha-
nisms of human texture processing: Texture boun-
dary detection and visual search. Spatial Vision, 18,
227–257. [PubMed]

Thielscher, A., & Neumann, H. (2007). A computational
model to link psychophysics and cortical cell activa-
tion patterns in human texture processing. Journal of
Computational Neuroscience, 22, 255–282. [PubMed]

Ts’o, D. Y., Gilbert, C. D., & Wiesel, T. N. (1986).
Relationships between horizontal interactions and
functional architecture in cat striate cortex as revealed
by cross-correlation analysis. Journal of Neuro-
science, 6, 1160–1170. [PubMed] [Article]

von der Heydt, R., & Peterhans, E. (1989). Mechanisms of
contour perception in monkey visual cortex. I. Lines
of pattern discontinuity. Journal of Neuroscience, 9,
1731–1748. [PubMed] [Article]

von der Heydt, R., Peterhans, E., & Baumgartner, G.
(1984). Illusory contours and cortical neuron
responses. Science, 224, 1260–1262. [PubMed]

Weber, E. H. (1846). Tastsinn und Gemeingefühl. In R.
Wagner (Ed.), Handwörterbuch der Physiologie.
Reprinted in W. Ostwald (1905), Klassiker der
exakten Wissenschaften (vol. 149). Leipzig, Germany:
Engelmann.

Weliky, M., Kandler, K., Fitzpatrick, D., & Katz, L. C.
(1995). Patterns of excitation and inhibition evoked
by horizontal connections in visual cortex share a
common relationship to orientation columns. Neuron,
15, 541–552. [PubMed]

Journal of Vision (2008) 8(8):8, 1–25 Hansen & Neumann 24

http://www.ncbi.nlm.nih.gov/pubmed/10592025?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/10592018?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/11361259?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/8506641?ordinalpos=29&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/8116270?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/9153392?ordinalpos=28&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/6306066?ordinalpos=55&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/10987511?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/7831395?ordinalpos=13&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/6288886?ordinalpos=29&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/9182961?ordinalpos=21&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/11404428?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.jneurosci.org/cgi/content/full/21/12/4416
http://www.ncbi.nlm.nih.gov/pubmed/12441061?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WSS-478BFW2-N&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=26b1d595a894106fc14b58fc3031a16d
http://www.ncbi.nlm.nih.gov/pubmed/18191901?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/14643761?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/15856938?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/17103312?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/3701413?ordinalpos=19&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.jneurosci.org/cgi/reprint/6/4/1160
http://www.ncbi.nlm.nih.gov/pubmed/2723747?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.jneurosci.org/cgi/reprint/9/5/1731
http://www.ncbi.nlm.nih.gov/pubmed/6539501?ordinalpos=16&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/7546734?ordinalpos=27&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


Wersing, H., Steil, J. J., & Ritter, H. (2001). A
competitive-layer model for feature binding and
sensory segmentation. Neural Computation, 13,
357–387. [PubMed]

Wertheimer, M. (1923). Untersuchungen zur Lehre
von der Gestalt. II. Psychologische Forschung, 4,
301–305. Translated as “Laws of organization in
perceptual forms.” In W. D. Ellis (Ed.) (1955), A
source book of Gestalt psychology (pp. 274–282).
London: Routledge & Kegan Paul. Also available
online from http://psychclassics.yorku.ca

Williams, L. R. (1998). Fruit and texture images. http://
www.cs.unm.edu/~williams/saliency
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