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Classification images for chromatic signal
detection

Thorsten Hansen and Karl R. Gegenfurtner
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The number and nature of the mechanisms for the detection of colored stimuli are still unclear. We use the
paradigm of classification images to investigate the detection of a signal of homogeneous color added to a noisy
texture. Both signal and noise colors were chosen from the isoluminant plane of the Derrington–Krauskopf–
Lennie (DKL) color space. The signal consisted of a square of homogeneous color that was chosen from either
cardinal or noncardinal directions of the DKL color space. The noisy texture consisted of small squares of vary-
ing colors that were chosen randomly across the isoluminant plane. Classification images reveal that (1) the
cardinal axes play no specific role; (2) the widths of the tuning curves vary between 30 and 90 deg, consistent
with the variation of tuning widths of neurons at early cortical stages; and (3) detection is not based on the
whole region covered by the signal but is influenced mostly by a small spot around the fixation point. © 2005
Optical Society of America
OCIS codes: 330.1880, 330.5510.
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. INTRODUCTION
olor vision starts with the transduction of electromag-
etic radiation by three types of photoreceptor in the
etina. On the basis of their peak sensitivities at short,
edium, and long wavelengths the photoreceptors are

ommonly denoted as S, M, and L. Already at the level of
etinal ganglion cells, the signals of these three types of
hotoreceptor are combined to form three color-opponent
hannels: an achromatic channel from pooled L and M
one input �L+M� and two chromatic channels, one chan-
el that signals the differences of L and M cone responses
L−M� and another channel that signals differences be-
ween the S cone responses and the summed L+M cone
esponses �S− �L+M��. The properties of these early
tages have been studied in great detail and are well
nderstood.1–3 However, the properties of subsequent
igher-order stages of cortical processing are less clear
nd a subject of intense research.
Chromatic mechanisms are typically characterized by

heir number, tuning peak direction, and tuning width. In
europhysiological studies, a rather consistent scheme
as been found. Subcortical neurons in the retina and the
GN have a broad tuning with peak sensitivities that
luster into distinct classes, with preferred modulation
long the cardinal directions in color space.4,5 A broad
uning characterized by a half-width at half-height
HWHH) of �60 deg is consistent with a linear transfor-

ation of cone inputs. Cortical neurons, on the other
and, have a continuous distribution of peak sensitivities
nd show a large variety of tuning widths.6 For example,
n V1 of the macaque monkey, tuning widths with
WHHs ranging from 10 to 90 deg have been found.7

arrow tuning widths below 60 deg indicate a nonlinear
ransformation of cone inputs.

The diversity of tuning widths for cortical neurons and
he difference in the number of directions between corti-
1084-7529/05/102081-9/$15.00 © 2
al and subcortical levels found in neurophysiological
tudies are reflected by a diversity of results from psycho-
hysical experiments. Data from chromatic signal detec-
ion experiments have been interpreted to reveal linear,
roadband mechanisms either limited to a few directions
n color space8–10 or with a more continuous
istribution11–15 as well as multiple nonlinear, narrowly
uned mechanisms.16,17

The mechanisms in these studies are typically investi-
ated using the paradigm of chromatic masking. In chro-
atic masking studies, the properties of the noise are var-

ed and the effect on detection threshold is studied.
ecently, the paradigm of classification images has been

ntroduced by Beard and Ahumada as a psychophysical
ounterpart to the reverse-correlation technique.18 The
aradigm of classification images makes very few a priori
ssumptions about the nature of the underlying features
hat influence the performance in a specific task. In the
aradigm of classification images, the task is run with a
uge number of different realizations of the same noise
rocess, typically in the range of 2000–5000 trials. The
bserver’s response in a particular trial is influenced by
he specific noise pattern used in the trial. By averaging
he noise patterns for each of the possible responses of the
bserver, one can determine those features in the image
hat influence the observer’s response. Classification im-
ges have been applied, e.g., in Vernier acuity tasks,19,20

o determine perceptive fields of illusory contours21 or to
dentify the spatiotemporal features of luminance con-
rast detection.22 More recently, classification images
ave been used in a chromatic signal detection task
here a Gaussian pulse has to be detected in chromatic
oise varying at high temporal frequency.11 Here we use
he paradigm of classification images to study the detec-
ion of a homogeneous square embedded in a noisy chro-
atic texture.
005 Optical Society of America



2
T
o
t
s
a

A
S
g
d
w
l
�
T
b
m
t
e
l
m
t
r
b
s
o
m
m
o
a
m
p
=
c
t
S

B
T
t
c
c
a
o

d
t
m

L
c
o
s
g
o
c
a
p
b
f
t

C
T
m
a
p
t
i

m
n
t
d
n
0
c
3
d
c
r

D
W
s
n
a
s
t

F
−
m ent exp

2082 J. Opt. Soc. Am. A/Vol. 22, No. 10 /October 2005 T. Hansen and K. R. Gegenfurtner
. METHODS
he task of the observers was to detect a signal consisting
f a central square of homogeneous color added to a noisy
exture of isoluminant color patches. The color of the
quare was varied systematically, and classification im-
ges were computed for each signal color.

. Apparatus
oftware for the presentation of the stimuli was pro-
rammed in C using the SDL library. The stimuli were
isplayed on a Sony GDM-20se II color CRT monitor that
as viewed binocularly at a distance of 0.40 m in a dimly

it room. The monitor resolution was set to 1280
1024 pixels with a refresh rate of 120 Hz noninterlaced.
he monitor was controlled by a PC with a color graphics
oard with 8-bit intensity resolution for each of the three
onitor primaries. For each primary, the nonlinear rela-

ionship between voltage output and luminance was lin-
arized by color look-up tables. To generate the three
ook-up tables, the luminances of each phosphor were

easured at various voltage levels using a Graseby Op-
ronics Model 307 radiometer with a Model 265 photomet-
ic filter, and a smooth function was used to interpolate
etween the measured data. A Photo Research PR-650
pectroradiometer was employed to measure the spectra
f each primary at maximum intensity. The spectra were
ultiplied with the Judd-revised CIE 1931 color-
atching functions23,24 to derived CIE x ,y ,Y coordinates

f the monitor phosphors.25 In the following, luminance
nd photometric luminance refer to the V��� curve as
odified by Judd.23 The x ,y ,Y coordinates of the monitor

rimaries are given by R= �0.613,0.349,20.289�, G
�0.283,0.605,64.055�, and B= �0.157,0.071,8.631�. Cone
ontrasts were computed from the spectral distribution of
he monitor primaries using the cone fundamentals of
mith and Pokorny.26

. Color Space
he stimuli are defined within the isoluminant plane of
he DKL color space.4,27 The DKL color space is a spheri-
al color space spanned by three axes, namely, the two
hromatic axes [L−M] and S− �L+M� and the achromatic
xis L+M, corresponding to the three second-order cone-
pponent channels (Fig. 1). The three axes define the car-

ig. 1. (Color online) Left: DKL space with the isoluminant pla
�L+M� axes that together with the achromatic L+M axis defin
inant plane. The chromaticities of the stimuli used in the pres
inal directions of the DKL color space and intersect at
he gray point. The two chromatic axes define the isolu-
inant plane.
The DKL color space is a linear transformation of the

MS cone contrast space.28 Along the L−M axis, the ex-
itation of the S cones is constant whereas the excitation
f the L and M cones covaries such that their sum is con-
tant. Color along the L−M axis changes from blue-
reenish to reddish. Conversely, along the S− �L+M� axis,
nly the excitation of the S cones changes whereas the ex-
itation of the L and M cones remains constant. Color
long the S− �L+M� axis changes from yellow-green to
urplish. Within the isoluminant plane, colors are defined
y their chromatic direction given by the azimuth ranging
rom 0 to 360 deg and their chromatic contrast given by
he distance from the white point.

. Stimuli
he stimuli consisted of a noisy texture of 24�24 isolu-
inant square patches. The values of chromatic direction

nd chromatic contrast for each patch were drawn inde-
endently from a uniform distribution. Chromatic con-
rast was limited to 40% of the maximum contrast. Each
ndividual patch subtended 0.5 deg visual angle.

In half of the trials, a signal made from a square of ho-
ogeneous color, covering 8�8 patches, was added to the
oisy texture. The square was centered in the noisy tex-
ure and spatially aligned with the texture patches. Eight
ifferent chromatic directions were employed for the sig-
al, four along the cardinal directions (with color azimuth
, 90, 180, and 270 deg) and four along intermediate, non-
ardinal directions (with color azimuth 45, 135, 225, and
15 deg). The chromatic contrast of the signal square was
etermined in a pilot session for each subject and each
hromatic direction to yield a detection rate of 75% cor-
ect.

. Paradigm
e used a yes/no paradigm to study the ability of the ob-

ervers to detect the square signal embedded in chromatic
oise. Observers viewed a blank neutral gray screen with
central fixation point for 1000 ms, followed by the pre-

entation of the stimulus for 250 ms, and pressed one of
wo keys to indicate whether the signal was present. The

led area). The isoluminant plane is spanned by the L−M and S
ardinal axes of the DKL color space. Right: Display of the isolu-
eriment are confined to the isoluminant plane.
ne (fil
e the c
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xation point was shown throughout the entire trail. Re-
ponse feedback was given after each trial. For each sig-
al color, a total of 2000 stimuli with different noisy tex-
ures were presented in four blocks of 500 trials.
ccording to the response of the subject, the noisy
ackground texture was sorted into one of four possible
timulus–response categories (hit, miss, false alarm, cor-
ect rejection). The background textures were then
veraged within each category. The classification image C
as then computed by subtracting averaged background

mages B that lead to a “no” response from those resulting
n a “yes” response:

�1�

here � denotes the mean over all images in the respec-
ive category. This is the standard formula for computing
lassification images.18 By first-order statistics (i.e., com-
uting the mean), classification images show those image
eatures that influence the observers’ decision.

. Observers
our observers participated in the study, two male and
wo female. One of them was an author (TH), the others
ere naive as to the purpose of the experiment. All had
ormal color vision and normal or corrected-to-normal vi-
ual acuity. No systematic differences between the observ-
rs were found.

. RESULTS
. Classification Images
irst, classification images as detailed in Eq. (1) were de-
ived for the eight different signal colors. Classification
mages for a single subject (CA) are shown in Fig. 2, top
anel. All images show a strong color-dependent modula-
ion. This modulation is confined mainly to a circular cen-
ral region covered by the signal square, showing that
his part of the signal had the strongest influence on de-
ection performance. Furthermore, the patches at the
ackground outside the signal region seem to vary at ran-
om independent of the signal color. Finally, no differ-
nces between signal colors along cardinal versus noncar-
inal directions were found.
Next we averaged the classification images across all

ubjects. The results are shown in Fig. 2, bottom panel.
he resulting classification images are less noisy because
f the large number of samples. Otherwise, the averaged
ata do not deviate systematically from the data of a
ingle subject. The findings from the basic classification
mages can be summarized as follows: (1) the central re-
ion shows a strong color-dependent modulation, (2) de-
ection is based on the central part of the signal square
ut not on the background, and (3) results do not differ
etween cardinal versus noncardinal directions.
. Classification Histograms
lassification images show the first-order statistics of the

mage features. For a two-dimensional feature such as
soluminant color (the third color dimension, luminance,
s the same by definition of the stimuli), the classification
mages per se cannot tell the tuning width of the detection

echanisms. For example, a feature pixel in the classifi-
ation image with a chromatic direction of 45 deg may re-
ult from many stimulus colors of exactly 45 deg chro-
atic direction, or, alternatively, from a distribution of

ifferent chromatic directions symmetrically spaced
round 45 deg. Moreover, the width of such a distribution
oes sharpen with an increasing number of presentations,
eading to an incorrect estimation of the tuning width of
he detection mechanism.

To estimate the tuning width of the detection mecha-
isms, we used color histograms. A color histogram shows
or each chromatic direction the summed chromatic con-
rast of the color in the image, normalized by the number
f pixels. From the color histograms of the background
mages in the four stimulus-response categories, a color
lassification histogram can be computed analogously to
he computation of a classification image. Let H�hit�,
�false alarm�, H�correct rejection�, and H�miss� denote

he color histograms of a background image in the four
timulus-response categories, and let ��·� denote the av-
rage of all color histograms in the particular stimulus-
esponse category. Analogous to the computation of a
tandard classification image (Eq. (1)), we suggest that a
olor classification histogram Hc can be computed as fol-
ows:

�2�

From the above definition of a classification histogram
t becomes clear that, unlike a normal histogram, a clas-
ification histogram can take negative values for those
eatures that result in a “no” response.

A color classification histogram is thus computed from
veraged color histograms. Color histograms show for
ach chromatic direction the frequency of occurrence.
olor histograms of an image region are created as fol-

ows: For each pixel within that region, the DKL coordi-
ates in the isoluminant plane are determined, i.e., chro-
atic direction �0 to 360 deg� and chromatic contrast,

nd a counter corresponding to the chromatic direction is
ncremented by the amount of chromatic contrast. The re-
ulting histograms are smoothed with a Gaussian ��
10 deg� and normalized by the number of pixels in the
egion. Color histograms are generated for two regions of
he stimulus image, namely, the central region where the
ignal is presented and the remaining background region.
olor classification histograms for observer CA for each of

he eight different signal colors are depicted in Fig. 3. The
istograms for the signal region have a strong, narrowly
uned peak whereas the histograms for the background
egion remain essentially flat. Results do not vary consid-
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rably between subjects. Peaks of the color histograms
nd HWHH values for all observers are listed in Table 1.
olor classification histograms averaged across all four
ubjects are shown in Fig. 4.

To determine whether differences exist between signals
resented at cardinal versus noncardinal directions, we
omputed the mean and standard deviation of the
WHHs for both cardinal and noncardinal signals. Data
ooled across all four observers show a larger mean
WHH for the cardinal axes (63.5 deg, SD 13.7 deg) com-
ared with the noncardinal axes (51.0 deg, SD 12.8 deg).
The tuning width for signals presented at the cardinal

xes lies more closely along the linear prediction of a tun-
ng width of 60 deg than the intermediate axes. This is
onsistent with the idea that sensitivity to intermediate
olors are combined nonlinearly from input along the car-
inal axes.

ig. 2. Classification images for observer CA (top panel) and clas
mages are scaled up to maximum chromatic contrast. The centra
anel, the upper row shows the classification images along the
ntermediate, noncardinal directions.
Next we plotted a histogram of the distribution of the
WHH as determined for all subjects and all colors of the

ignal. Data are shown in Fig. 5, left plot. The determined
WHHs show a large variation, ranging from 30 to al-
ost 90 deg. A similar range of HWHH distributions was

lso found in physiological measurements in macaque V17

nd V2.29 For comparison, these data are shown in Fig. 5.

. Deviation from Signal Color
he color histograms shown so far have been centered at

heir maxima. Generally, the corresponding chromatic di-
ection of the maximum differs from the chromatic direc-
ion of the signal presented. This indicates that the clas-
ification images do not simply replicate the signal color,
ut do reveal internal mechanisms for chromatic classifi-
ation.

on images averaged across all four observers (bottom panel). The
re in each image outlines the extent of the signal patch. For each
al directions, the bottom row shows classification images along
sificati
l squa
cardin
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Polar plots of the color histograms reveal how each ob-
erver’s tuning curves deviate from the signal color (Fig.
). The polar plots show a certain variation in the devia-
ion between the signal color and the measured peak of
he tuning curves. For some colors (e.g., 45 and 225 deg),
he deviation is rather small, whereas other colors tend to
how a larger variation (e.g., 270 deg).

Instead of considering the whole histogram, it is also
nstructive to consider only the distribution of the peak in
he classification histogram for each signal color (Fig. 7).

Table 1. Peaks of the Color Histogra

Observer 0 deg 90 deg 180 deg

CA 342±60 112±84 123±66
EM 329±47 83±67 149±74
MD 338±67 119±53 154±50
TH 338±66 86±60 166±66

ig. 3. (Color online) Color histograms for observer CA. The abs
elative contribution of each chromatic direction in the classificat
orresponding to no influence of the color on the detection resu
lmost no color-specific modulation, whereas the color histograms
n the signal color; the vertical line at 0 deg marks the maximum
osition of the signal color. Gaussian fits to the data are shown w

Fig. 4. (Color online) Color histog
he peaks are given by the maxima in the color histo-
rams and thus are independent of any model used to fit
he data. Plotting for each signal color the absolute loca-
ion of the peak of the detected color (Fig. 7, left plot)
hows that peaks tend to cluster at certain chromatic di-
ections such as 110 deg and −20 deg, whereas other
hromatic directions, e.g., 180 deg, are avoided.

Interestingly, a plot of the relative deviation for the dif-
erent colors reveals a rather consistent pattern between
ubjects (Fig. 7, right plot). In particular, color preference

nd ±HWHH for the Four Observers

g 45 deg 135 deg 225 deg 315 deg

5 43±46 118±48 235±30 338±57
4 52±62 113±59 266±35 327±47
0 53±36 153±57 230±31 343±51
9 45±68 93±65 205±65 319±72

enotes relative chromatic direction, and the ordinate denotes the
togram in the range �−0.15,0.3�. The horizontal line marks zero,
e color histograms for the background (solid black curve) show
e signal region (filled area) have a strong modulation depending
e color histogram. The off-center vertical line marks the relative
dashed curve together with the corresponding HWHH values.

veraged across all four observers.
ms a

270 de

271±7
279±3
326±6
298±8
cissa d
ion his
lts. Th

for th
of th
rams a
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or color presented along the L−M axes seems to be ro-
ated clockwise by �20 deg, as revealed by the negative
eviation for 0 and 180 deg.
Finally, we verified that the deviation is consistent be-

ween subjects and not due to random variations of color
reference. For this purpose, we determined the deviation

ig. 5. Distribution of tuning curve widths (HWHH). The dash
ransformation of cone input. Left, data for all four subjects; mid

ig. 6. (Color online) Polar plots of the color histograms for fou
irections (solid curves) and along intermediate directions (dash

ig. 7. Deviation of the peak of the detected color from the s
ifferences.
eparately for the first block of 1000 trials and the second
lock of 1000 trials. In all cases, the first and second block
f trials were completed on different days, sometimes
ith a week or two in between. Data are shown in Fig. 8.
ll subjects show a high correlation between the two
locks of trials: When the peaks deviate from the true

s denotes the tuning width of 60 deg, corresponding to a linear
ta from macaque V1.7 Right, data from macaque V2.29

rvers. Tuning curves are shown for signal color at the cardinal
es).

olor for four subjects. Left, absolute differences; right, relative
ed line
r obse
ed curv
ignal c
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olor, this deviation is the same for different trials run by
he same observer. A considerable deviation between the
rst and the second block of trials occurs only for the vio-

et at 270 deg (subjects CA, MD, and TH) and for the cyan
t 225 deg (subject TH). For all other colors, the deviation
ies almost perfectly on the main diagonal corresponding
o 100% correlation. The results indicate that the devia-
ion is consistent within subjects.

. Finer Sampling of the Third Quadrant
he plot of the deviations show an uneven distribution of
he peak sensitivities. In particular, the third quadrant

ig. 8. (Color online) Deviation of the peak of the detected color
rom the signal color: correlation between blocks of trials. For a
erfect agreement between responses in the blocks of 1000 trials,
ll data points would fall on the main diagonal (dashed lines).
olid squares denote deviations for the cardinal directions, open
quares for intermediate directions. The dotted rectangle marks
deviation of ±45 deg. Except for the purplish color at 270 deg

or subjects CA, MD, and TH and the cyan color at 225 deg for
ubject TH, all colors lie almost perfectly on the main diagonal,
howing a high degree of correlation between the deviation in the
wo blocks.

ig. 9. (Color online) Color histograms for intermediate directi
D). The bluish colors can be detected with high accuracy as rev
ends to have only a single peak. To test whether these re-
ults reveal a general pattern, we tested color detection in
he third quadrant with a finer sampling of chromatic di-
ections every 15 deg (instead of 45 deg). Data for two ob-
ervers are shown in Fig. 9. The data show that the bluish
olors in the third quadrant can be detected with high ac-
uracy as revealed by the small offset between the peak in
he color histogram and the signal color.

. DISCUSSION
e have used the paradigm of classification images to

tudy chromatic signal detection. The classification im-
ges show a strong color-specific modulation within a cen-
ral, circular region where the signal is presented. Tuning
idths as determined by classification histograms show a
istribution of tuning widths consistent with the distribu-
ion of tuning widths of cortical neurons at early visual
tages. The results suggest that multiple chromatic
echanisms with a distribution of tuning widths ranging

bove and below the linear predicted width of 60 deg are
nvolved in higher-order stages in color vision.

The peaks in the color histograms often differ from the
hromatic direction of the signal presented. This indicates
hat the classification images do not simply replicate the
ignal color, but reveal internal mechanisms for chro-
atic classification. In other words, such a shift of the

eak in the classification histograms reveals a biased ob-
erver. This bias can be either due to higher-level, delib-
rate decisions or to properties of the chromatic mecha-
isms in the early visual pathway. Strictly speaking, the
mployed method of classification images cannot rule out
ither possibility. However, there are several reasons in
avor of the idea that any bias reflects chromatic mecha-
isms in the early visual pathway. First, the observer per-
ormed a low-level detection task where it is unlikely that
ny higher, deliberate decisions are involved. Second, the
hifts of the peaks show a high degree of consistency, as
etailed above (Subsection 3.C, Fig. 8). Deliberate deci-
ions to give more weight to a particular chromatic direc-
ion, which are of no direct relevance to the observer, most

the third quadrant (top row, observer CA, bottom row, observer
y the small offset between the maximum in the color histogram
ons in
ealed b

vertical line at 0 deg) and the signal color (off-center vertical line).
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ikely show a higher degree of variability. Finally, the ob-
erver received response feedback and presumably tried
o optimize performance rather than sticking to any a pri-
ri decisions such as to, e.g., “give more weight to blue
han to red” for a bluish-reddish signal. Therefore it
eems plausible to attribute the observed shifts of the
eak in the classification histograms to the intrinsic prop-
rties of chromatic mechanisms in the early visual path-
ay.
The detection of color signals in noise has been investi-

ated by numerous studies in the past using a variety of
aradigms, with a considerable variety of results. One of
he first studies that used a noise-masking paradigm was
y Gegenfurtner and Kiper.16 Using a Gabor pattern as a
ignal embedded in spatiotemporal chromatic noise, they
ound multiple, narrowly tuned mechanisms.

Giulianini and Eskew10 measured thresholds for de-
ecting Gaussian and Gabor signals in noise made of rings
r lines. Signals and noise were modulated independently
long various directions of color space. Their results ar-
ue for only three mechanisms for chromatic detection.
hese mechanisms are strictly linear, i.e., they do not ex-
ibit a narrow tuning in color space. The reason for the
iscrepancy of their results with those of Gegenfurtner
nd Kiper16 is unclear.
D’Zmura and Knoblauch13 have investigated the sensi-

ivity for detecting a signal consisting of a Gaussian pulse
hat was corrupted by chromatic flicker. The flicker was
dded to the signal. The color values of the flicker were
hosen from sectors of different width centered at the
olor of the signal. The detectability of the signal was un-
ffected by the width of the sector, suggesting a linear
rocessing. Results were consistent with a broadband, lin-
ar mechanism tuned to multiple orientations.

It has been argued by D’Zmura and Knoblauch13 that
he narrow tuning found by Gegenfurtner and Kiper16

ay be due to off-axis looking. Off-axis looking assumes
hat the observer has multiple broad mechanisms and
hat the detection in a particular task is based on mecha-
isms that are less affected by the noise, leading to a
easurement of narrow tuning curves. Recently, we have

erified in a rigorous analysis by a chromatic detection
odel that, depending on the noise characteristic of the

timuli, multiple broadly tuned mechanisms can indeed
esult in narrow-tuned tuning curves.14 In the present ex-
eriment, background noise is drawn from all color direc-
ions, such that off-axis looking cannot occur by definition
f the stimulus.

Recently, Bouet and Knoblauch11 have used the para-
igm of classification images to study chromatic signal de-
ection. Their study differs from ours in several ways.
irst, they used a temporally modulated Gaussian pulse
hat was corrupted by isoluminant noise flickering at a
igh temporal frequency of 50 Hz. The distribution of
oise colors was averaged over time, and a classification

mage was computed showing the regions in the isolumi-
ant plane (segmented into 9�9 bins) most likely leading
o a “present” or “absent” response. The images show a
arrow peak in the signal direction flanked by regions
ith a broader selectivity. In contrast to the results by
ouet and Knoblauch,11 we found smooth, Gaussian-
haped tuning curves of different widths for different
hromatic directions, but no singular narrow peak in the
ignal direction. The differences in our findings may be
aused by the different time course at which a color is
resent in the stimulus (for 20 versus 250 ms) and the
ethod used to determine the tuning widths. While Bouet

nd Knoblauch used weighted profiles, we determined
uning widths based on classification histograms.

McKeefry and colleagues30 have used an adaptation
aradigm in a Vernier alignment task to measure chro-
atic tuning widths. After adapting for 5 s to two flank-

ng peripheral stimuli that varied in chromaticity, sub-
ects judged the position of a central Gaussian blob in
elation to two identical Gaussian blobs that appeared at
he same position as the adapting stimuli. McKeefry and
olleagues found that the perceived offset of the central
timuli varied as a function of the separation of the target
nd the adapting stimuli in DKL color space: Offset was
aximal if both stimuli were varied along the same axis

nd minimal if the stimuli were presented at orthogonal
irections. The tuning widths depend on the adaptation
xis: Broad, linear tuning was found for adapting stimuli
t the L+M axis, whereas smaller tuning occurred at the
− �L+M� axis. Furthermore, the effect appeared only at
igh contrast. At low contrast, broad tuning occurred for
ll adapting axes. In contrast to their results, we have
ound no particular narrow tuning at the S− �L+M� axis,
ut did on intermediate axes such as 225 deg (Fig. 3) or
55 deg (Fig. 9). In Refs. 7 and 29 no particular correla-
ion between chromatic bandwidth and chromatic direc-
ion has been reported. In particular, for the unique hues,
o clustering of either narrowly or broadly tuned cells
as found.29

In a pilot study we have also determined classification
mages for low-contrast background noise (20% and 12%
ontrast instead of 40%) and found no contrast-dependent
ffect of the tuning widths. The discrepancies between
ur findings and those of McKeefry and colleagues may
ccur because the positional judgments necessary in the
cKeefry study might be mediated by a different popula-

ion of cells than the chromatic detection capabilities
tudied in the present work.

To sum up, we have used the paradigm of classification
mages to study the properties of chromatic detection

echanisms. The classification images reveal that the
ardinal axes play no specific role in the chromatic detec-
ion task. Furthermore, we found tuning widths that vary
etween 30 and 90 deg, consistent with physiological find-
ngs. Finally, detection is not based on the whole image
ut influenced mainly by a small spot around the fixation
oint.
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