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Abstract. Contours and surfaces are basic qualities which are processed
by the visual system to aid the successful behavior of autonomous beings
within the environment. There is increasing evidence that the two modal-
ities of contours and surfaces are processed in separate, but interacting
visual streams or sub-systems. Neurons at early stages in the visual sys-
tem show strong responses only at locations of high contrast, such as
edges, but only weak responses within homogeneous regions. Thus, for
the processing and representation of surfaces, the visual system has to in-
tegrate sparse local measurements into a dense, coherent representation.
We suggest a mechanism of confidence-based filling-in, where a confi-
dence measure ensures a robust selection of sparse contrast signals. The
new mechanism supports the generation of surface representations which
are invariant against size and shape transformation. The filling-in pro-
cess is controlled by contour or boundary signals which stop the filling-in
of contrast signals at region boundaries. Localized responses to contours
are most often noisy and fragmented. We suggest a recurrent processing
scheme for the extraction of contours that incorporates long-range con-
nections. The recurrent long-range processing enhances coaligned activ-
ity which is consistent within a more global context, while inconsistent
noisy activity is suppressed. The capability of the model is shown for
noisy synthesized and natural stimuli.

1 Introduction

Experimental studies indicate the existence of distinct perceptual subsystems
in human vision, one that is concerned with contour extraction and another
that assigns surface properties to bounded regions. The emerging picture from
the experimental investigations is one in which shape outlines are initially ex-
tracted, followed by the assignment of attributes such as texture, color, lightness,
brightness or transparency to regions [10,38,6,17]. Several perceptual completion
phenomena [35] suggest that, on a functional level, regions inherit local border
contrast information by means of “spreading mechanisms” or “filling-in” [32,7].
The assignment of surface properties would then be dependent on the determi-
nation of stimulus contrast in various feature dimensions, such as luminance,
motion direction and velocity, and depth, that would be used to fill-in bounded
regions.
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2 Neural Mechanisms for Representing Surface Features

The problem of deriving a dense representation of surface quality, such as bright-
ness or color, from local estimates, such as luminance or chromatic border con-
trast, is inherently ill-posed: there exists no unique solution nor is the solution
guaranteed to be stable. Such an inverse problem needs to be regularized in
the sense that certain constraints have to be imposed on the space of possible
solutions. The constraint of generating a smooth surface, as formalized by mini-
mizing the first order derivatives, leads to a linear diffusion process with a simple
reaction term [30].

In filling-in theory, feature signals which provide the source term of the filling-
in process are modeled as cells with circular receptive fields (RFs) such as retinal
ganglion cells or LGN cells. In previous filling-in models, such cells are modeled
to exhibit strong responses even to homogeneous regions [8,18]. Physiological
studies however show that retinal ganglion cells respond strongly only at posi-
tions of luminance differences or contrasts [11]. Motivated by these results we use
sparse contrast signals with no response to homogeneous regions. The sparse na-
ture of signals necessitates additional confidence signals for the filling-in process.
Confidence signals indicate the positions of valid contrast response to be taken
as source for the filling-in process. Having established the link between mod-
els of perceptual data for biological vision and the mathematical frameworks of
regularization theory this lead to the proposal of confidence-based filling-in [30].

2.1 Evidence for Neural Filling-in

Filling-in models are based on the assumption of distributed, topographically
organized maps of boundaries and regions [25]. This assumption has been ques-
tioned in favor of a non-topographic or sparse coding of contrasts and bound-
aries using a compact symbolic code or a sparse localized code [37]. Regarding
filling-in, both visual scientists and philosophers have argued against the logical
need for a neural spreading of activity and against a continuous representation
of the brightness profiles (for review, see [35]). It has been suggested that in-
stead of filling-in, the brain could simply assign a symbolic brightness label to
a bounded region or could ignore the absence of direct neural support. In sup-
port of the filling-in hypothesis, there is ample empirical evidence, mostly from
psychophysics, that brightness perception indeed depends on a neural activity
spreading.

Evidence comes from a study where a visual masking paradigm is used to
investigate two issues [32]. First, the role of edge information in determining
the brightness of homogeneous regions, and second the temporal dynamics of
brightness perception. If brightness perception relies on some form of activity
spreading, it should be possible to interrupt this spreading process. In the ex-
periment, a target of a bright disk is followed by a mask (e.g., a smaller circle or
a C-shape), which is presented at variable time intervals. For an interstimulus
interval of about 50–100 ms, the brightness of the central area is highly depen-
dent on the shape of the mask. For example, for a C-shaped mask, a darkening
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of the middle region is observed, with the bright region “protruding” inside the
C. For a circular-shaped mask, an inner dark disk is perceived. Both these re-
sults are consistent with the hypothesis that brightness signals are generated at
the borders of their target stimuli and propagate inward. Furthermore, it has
been demonstrated that for larger stimuli maximal suppression occurs later. This
finding supports the view that filling-in is an active spreading of neural activity,
i.e., a process which takes time.

Recently, a similar masking paradigm has been used to investigate brightness
filling-in within texture patterns [7]. Again the spreading could be blocked by
the mask if the interstimulus interval is in accordance with the propagation rate
required to travel the distance between boundary and mask position. Results
of a study employing Craik-O’Brien-Cornsweet (COC) gratings point in the
same direction: For higher spatial frequencies of the grating (i.e., for smaller
distances) the effect was stronger and persisted to higher temporal frequencies
of COC contrast reversal [9,34].

In summary, these studies are suggestive of active neural filling-in processes
that are initiated at region edges. Using brightness filling-in, the brain generates
a spatially organized representation through a continuous propagation of signals,
a process that takes time [35,30].

2.2 Mathematical Models for Filling-in

To introduce concepts, we consider the task of generating a continuous represen-
tation of surface layout as one of painting or coloring an empty region [26]. The
task thus consists of generating an internal representation of surface properties
from given data. Individual surfaces occur at different sizes and with various
shapes. Therefore, any such mechanism has to be insensitive to such size and
shape variations.

Models of brightness perception were among the first to explore the di-
chotomy of boundary and surface subsystems. Based on stabilized image studies,
it has been proposed that the perception of brightness can be modeled by filling-
in processes. Filling-in models suggest that feature measures are used in the
determination of surface appearance through a process of lateral spreading, or
diffusion [12]. The basic ideas are formalized in a model of complementary bound-
ary and surface systems (Boundary Contour System/Feature Contour System,
BCS/FCS) [8,17]. In a nutshell, BCS/FCS processing occurs as follows: The BCS
extracts boundaries via a hierarchy of processing levels, defining a segmentation
of the initial input image into compartmental boundaries. Within the FCS, these
boundaries control the lateral spreading or diffusion of contrast-sensitive input
signals. This proposal qualitatively accounts for a white variety of brightness
phenomena, including, e.g., simultaneous contrast, brightness assimilation and
the COC effect [18]. An extension of the model accounts for trapezoidal and
triangular Mach bands, low- and high-contrast missing fundamental stimuli and
sinusoidal waves, among others [33].
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Standard Filling-in Equation. The filling-in equation that is used in several
models of early vision [8,18,14,33,16] is equivalent to a linear inhomogeneous dif-
fusion with reaction term [30]. The reaction term consists of contrast-sensitive
input signals K and a passive decay of activity (with rate α). The diffusion
term describes the nearest-neighbor coupling Ni of filling-in activities which is
locally controlled by permeability signals P (inhomogeneous diffusion). Perme-
ability signals are a monotonically decreasing function of boundary or contour
signals, i.e., high contour signals imply low permeability and vice versa. In all,
the discretized equation for filling-in activity U reads

∂tUi = − αUi + Ki︸ ︷︷ ︸
reaction term

+
∑
j∈Ni

(Uj − Ui)Pij︸ ︷︷ ︸
diffusion term

, (1)

where ∂t denotes partial differentiation with respect to t. Discrete spatial lo-
cations are denoted by i and j. The nearest neighbor coupling is given by
Ni = {i−1, i+1} for the 1D case and Nij = {(i−1, j), (i+1, j), (j−1, i), (j+1, i)}
for the 2D case.

Confidence-based Filling-in Equation. Previous models of filling-in use a
dense representation of contrast-sensitive feature signals as source for the filling-
in process. Cells at early stages of the visual system, such as retinal ganglion
cells, show strong responses only at luminance discontinuities. Given the sparse-
ness of contrast signals which are zero within homogeneous regions, the visual
system has to compute a dense brightness surface from local contrast estimates.
Such inverse problems are generally ill-posed in the sense of Hadamard [41,36,
2]. This means that the existence and uniqueness of a solution and its continu-
ous dependence on the data cannot be guaranteed since the measurements are
sparse and may be noisy. The solution to the problem has to be regularized such
that proper constraints are imposed on the function space of solutions. Such a
constraint is the smoothness of the solution, for example. Smoothness can be
characterized by minimizing the first order derivatives of the desired solution.
The goal is to minimize both the local differences between the measured data
and the reconstructed function values (data term) and the stabilizing functional
imposed on the function (smoothness term). Minimizing a quadratic functional
finally leads to the discretized version of a new filling-in equation, where an
additional confidence signal Z steers the contribution of the data term [30]:

∂tUi = (−αUi + Ki)Zi +
∑
j∈Ni

(Uj − Ui)Pij . (2)

Note that for constant unit-valued confidence signals Z = 1 confidence-based
filling-in (Eq. 2) is equivalent to standard filling-in (Eq. 1).

Confidence signals are in the range [0; 1]. Zero confidence signals indicate
positions where no data are available, while unit-valued confidence signals oc-
cur at region boundaries and signal positions of reliable contrast measurements.
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Consequently, we suggest that an intermediate representation in the processing
of contour signals, namely complex cell responses C, are involved in the compu-
tation of confidence signals. A candidate mechanism is

Zi = β Ci + ε , (3)

where β is a scaling parameter, and ε is a small tonic input to achieve well-
posedness of the filling-in process. It is suggested that the complex cell interac-
tion incorporates the self-normalizing properties of a shunting interaction [22],
to generate signals in a bounded range such as [0; 1].

For a detailed description of the model equations and the parameters used
the reader is referred to [30].

2.3 Simulation Results

In this section we present simulation result which show that the proposed scheme
of confidence-based filling-in exhibits basic properties which makes it suitable
for the computation of surface properties in early vision. Results are compared
for confidence-based filling-in and the corresponding standard filling-in by set-
ting Z = 1.

First, we demonstrate the independence of the brightness predictions of
confidence-based filling-in on the shape and size of the regions (Fig. 1 and 2).
The mechanism of confidence-based filling-in is then applied to psychophysical
stimuli (Fig. 3). In order to demonstrate the model’s capacity to deal with real
world data, we finally show results of processing real camera images (Fig. 4).

Invariance Properties. The first investigation focuses on the properties of
the filling-in mechanisms and their dependency on the parameter settings and
the size of the region to be filled-in. We start with a simple luminance pattern
that shows a light square on a dark background (Fig. 1). The brightness signals
generated by the standard filling-in mechanism tend to bow depending on the
strength of the permeability coefficient. An increase in the permeability helps

Fig. 1. Generation of brightness appearance for a rectangular test pattern utilizing
mechanisms of standard and confidence-based filling-in. Left to right: Luminance pro-
file, simulation results for standard filling-in and confidence-based filling-in under vari-
ations of the permeability parameter
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Fig. 2. Filled-in brightness signals for shapes of different size but same luminance level.
Signal representations are generated by the filling-in mechanisms using the parameter
settings that achieved proper results for the square test pattern in Fig. 1. Top row, left to
right: Input luminance pattern, brightness signal generated by standard filling-in and
by confidence-based filling-in. Bottom row: Corresponding profiles of the luminance
function and the brightness patterns taken along the 2D picture diagonals (from upper
left to lower right corner)

generating flat signals (Fig. 1, middle). The corresponding brightness patterns
generated by confidence-based filling-in remain invariant against these parameter
changes and are always flat (Fig. 1, right). Next, the same mechanisms have
been applied to another test image that contains shapes of different form and
size but the same luminance level. The results reveal the potential weaknesses
of standard filling-in: Depending on the size or diameter of a pattern, which
is unknown, the brightness signals appear at a different amplitude and show
different amounts of bowing (Fig. 2, middle). With the confidence-based filling-in
mechanism the brightness patterns appear homogeneous and of almost the same
brightness (Fig. 2, right). We conclude that confidence-based filling-in helps to
generate a brightness representation that is largely invariant against shape and
size transformations, thus improving the robustness of filling-in mechanisms.

Psychophysical Data on Brightness Perception. In this section we demon-
strate the ability of confidence-based filling-in to process classical luminance
patterns that have been investigated in brightness perception. We particularly
focus on remote border contrast effects and their creation of brightness differ-
ences. These cases provide examples of the crucial role of edges in determining
the brightness appearance. For example, two regions of equal uniform lumi-
nance separated by a “cusp edge” appear differently bright, the so-called Craik-
O’Brien-Cornsweet (COC) effect. These types of stimuli have been identified
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Fig. 3. Filled-in brightness signals for a standard COC stimulus and a COC grating
(bottom row) made of cusps of opposite contrast polarity. Left to right: Input luminance
pattern with corresponding profile, and the profile of the brightness pattern generated
by confidence-based filling-in

as the most challenging ones for alternative theories of brightness perception,
such as, for example, filter theories. In fact, yet, only filling-in models appear
to properly predict the brightness appearance for COC stimuli and their vari-
ants (compare [4]). The processing of a standard COC stimulus is shown in
Fig. 3 (top row). A COC stimulus consist of a cusp edge, separating two regions
of equal luminance. Both regions seem to be of different brightness, where the
region which is associated with the negative lobe of the cusp is perceived as a
uniformly darker region compared to the right region. Confidence-based filling-in
correctly predicts this effect (Fig. 3, top right), as do previous filling-in models.

A COC grating (Fig. 3, bottom row) consists of a sequence of cusp edges hav-
ing pairwise opposite contrast polarities. This stimulus is perceived as a series
of alternating dark and bright stripes similar to a square wave. The temporal
dynamics of brightness perception in such COC arrangement is consistent with
a filling-in mechanism. Confidence-based filling-in, at equilibrium, correctly pre-
dicts the appearance of the final brightness square wave pattern (Fig. 3, bottom
right).

Real World Application. In order to demonstrate the functional significance
of the proposed mechanism, we show the processing results for a camera image
of a real object. In order to exclude any possible influences from 3D effects, e.g.,
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Fig. 4. Processing the camera images of a flat 3D object acquired from different dis-
tances. The target object of low reflectance is attached on a lighter background surface
and illuminated by a primary light source that generates a visible illumination gradi-
ent. Top: Input intensity image of the object at a larger viewing distance and a profile
section (left pair) together with the corresponding filling-in result and a profile section
(right pair). Bottom: Corresponding input representations and processing results for
the object at a closer viewing distance

by shadowing or variations in surface orientations, we used a card-board that
has been attached to a flat background surface. This intrinsically flat scene was
directly illuminated by a point-like light source at a distance of approximately
2 m. This generates a significant intensity gradient in the original intensity im-
age. The target surface has been imaged from two different distances at about
2 and 1 m, respectively.

Simulation results show that the mechanism of confidence-based filling-in
is capable of generating a representation of homogeneous surface properties
(Fig. 4). The result is independent of the projected region size, thus showing
the property of size invariance. Also the illumination gradient is discounted and
the noise is successfully suppressed.

2.4 Outlook

The proper restoration of reference levels remains a deficit of filling-in functional-
ity. The use of DC-free contrast signals discounts the illuminant, but at the same
time destroys all information about the reference levels of contrast signals. Sev-
eral approaches have been advocated to solve this problem, such as directional
filling-in [1] or an extra luminance channel [18,28], but fail to discriminate, e.g.,
COC stairs from luminance stairs, or are flawed by missing physiological evi-
dence. We suggest that a multi-scale approach [40] together with the localized
coding of luminance information at contrast positions may solve the problem.
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3 Contour Processing

The generation of brightness representations by means of filling-in relies on the
proper computation of contour signals. For the filling-in process, robust, reliable
contour extraction is important, since contour signals are used to determine
permeability signals which control the lateral spreading of activities (cf. Eqns.
1 and 2). Contour signals must not suffer from high amplitude variations to allow
for a stable representation of brightness surfaces. Initial contrast measurements,
however, which define the first processing stage in the computation of contour
signals, are often noisy and fragmented. Therefore, an important task in early
visual processing is to determine the salient or prominent contours out of an
array of noisy, cluttered contrast responses.

How can this task be accomplished? We suggest a computational framework
involving long-range connections, feedback, and recurrent interactions. The task
of contour extraction cannot be solved solely on the basis on the incoming data
alone, but requests for additional constraints and assumptions on the shape of
frequently occurring contours. An important principle of salient contours is that
they obey the Gestalt law of good continuation. It has been suggested that hori-
zontal long-range connections found in the superficial layers of early visual areas
like V1 and V2 provide a neural implementation of the law of good continua-
tion [39]. The assumptions or a priori information such as expressed in the law
of good continuation have to be carefully matched against the incoming data.
We suggest that feedback plays a central role in this matching process by selec-
tively enhancing those feedforward input signal which are consistent with the
assumptions. The interaction between feedforward data and feedback assump-
tions requires certain time steps. In each step the result of the interactions is
recursively fed into the same matching process. Such a process of recurrent inter-
action might be used by the brain to determine the most stable and consistent
representation depending on both the assumptions and the given input data.

Motivated by empirical findings we present a model of recurrent long-range
interaction in the primary visual cortex for contour processing.

3.1 Computational Model

The computational model incorporates feedforward and feedback processing,
lateral competitive interaction and horizontal long-range integration, and local-
ized receptive fields for oriented contrast processing. The model architecture is
defined by a sequence of preprocessing stages and a recurrent loop based on
long-range interaction. The model realizes a simplified architecture of V1 [13]
and is outlined in Fig. 5. The computational role of the proposed circuit is to
enhance the salient contours and to suppress noisy activities. The circuit com-
pensates for variations of amplitude strength and orientation selectivity in the
initial contrast measurements along the contour. This property allows for the
robust computation of closed contours to be used in the filling-in process.

The model uses modulating feedback, i.e., initial bottom-up activity is nec-
essary to generate activity. The model of V1 thus does not allow for the creation
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simple cells long-range combinationLGN cells complex cellsinput image

Cθ Vθ Wθ

Fig. 5. Overview of the model stages together with a sketch of the sample receptive
fields of cells at each stage for 0◦ orientation. For the long-range stage, the spatial
weighting function of the bipole filter is shown

of illusory contours. Illusory contours evoke cell responses in V2 [42] and have
been investigated in a model of V1–V2 interactions [31].

We propose a functional architecture for recurrent processing. In this ar-
chitecture of two interacting regions, let them be cortical layers or areas, each
region has a distinctive purpose. The lower region serves as a stage of feature
measurement and signal detection. The higher region represents expectations
about visual structural entities and context information to be matched against
the incoming data carried by the feedforward pathway [31,21].

In the feedforward path, the initial luminance distribution is processed by
isotropic LGN-cells, orientation-selective simple and complex cells. The inter-
actions in the feedforward path are governed by basic linear equations to keep
the processing in the feedforward path relatively simple and to focus on the
contribution of the recurrent interaction. A more elaborated processing in the
feedforward path would make use of, e.g., nonlinear processing at the level of
LGN cells and simple cells [19,29]. The computation in the feedforward path is
detailed in [20]. In our model, complex cell responses Cθ as output of the feed-
forward path (cf. Fig. 5) provide an initial local estimate of contour strength,
position and orientation which is used as bottom-up input for the recurrent loop.
The recurrent loop has two stages, a combination stage where bottom-up and
top-down inputs are integrated, and a stage of long-range interaction. At the
combination stage, feedforward inputs Cθ and feedback inputs Wθ are added
and subject to shunting interaction

netθ = Cθ + δV Wθ , (4)

∂tVθ = −αV Vθ − βV Vθ netθ + netθ . (5)

The equation is solved at equilibrium, resulting in a normalization of activity

Vθ = βV
netθ

αV + netθ
. (6)

The weighting parameter δV = 2 is chosen so that dimensions of Cθ and Wθ are
approximately equal, the decay parameter αV = 0.2 is chosen small compared
to netθ and βV = 10 scales the activity to be sufficiently large for the subsequent
long-range interaction. For the first iteration step, feedback responses Wθ are set
to Cθ.
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At the long-range stage, the contextual influences on cell responses are mod-
eled. Directional sensitive long-range connections provide the excitatory input.
The inhibitory input is given by undirected interactions in both the spatial
and orientational domain. Long-range connections are modeled by a bipole fil-
ter [17]. The spatial weighting function of the bipole filter is narrowly tuned to
the preferred orientation, reflecting the highly significant anisotropies of long-
range fibers in visual cortex [39,5] (see Fig. 5, top right). The size of the bipole
is about twice the size of the RF of a complex cell.

Essentially, excitatory input is provided by correlation of the feedforward
input with the bipole filter Bθ. A cross-orientation inhibition prevents the in-
tegration of cells responses at positions where orthogonal responses also exists.
The excitatory input is governed by

net+θ =
[
Vθ − Vθ⊥

]+
? Bθ , (7)

where ? denotes spatial correlation and [x]+ = max{x, 0} denotes half-wave
rectification.

The profile of the bipole filter is defined by a directional term Dϕ and a
proximity term generated by an isotropically blurred circle Cr ? Gσ where r = 25,
σ = 3. The detailed equations read

Bθ,α,r,σ(x, y) = Dϕ · Cr ? Gσ (8)

Dϕ =

{
cos(π/2

α ϕ) if ϕ < α

0 otherwise ,
(9)

where ϕ is defined as atan2 (|yθ|, |xθ|) and (xθ, yθ)T denotes the vector (x, y)T ro-
tated by θ. The parameter α = 10◦ defines the opening angle of 2α of the bipole.
The factor π/2

α maps the angle ϕ in the range [−α;α] to the domain [−π/2;π/2]
of the cosine function with positive range.

Responses which are not salient in the sense that nearby cells of similar ori-
entation preference also show strong activity should be diminished. Thus an in-
hibitory term is introduced which samples activity from both orientational g̃σo,θ,
σo = 0.5, and spatial neighborhood Gσsur , σsur = 8,

net−
θ = net+θ ?© g̃σo,θ ? Gσsur , (10)

where ?© denotes correlation in the orientation domain. The orientational
weighting function g̃σo,θ is implemented by a 1D Gaussian gσo

, discretized on
a zero-centered grid of size omax, normalized, and circularly shifted so that the
maximum value is at the position corresponding to θ. The parameterization of
the spatial inhibitory neighborhood results in an effective spatial extension of
about half the size of the bipole filter.

Excitatory and inhibitory term combine through shunting interaction

∂tWθ = −αW Wθ − η− Wθ net−
θ + βW Vθ

(
1 + η+ net+θ

)
. (11)

The equation is solved at equilibrium, resulting in a divisive interaction

Wθ = βW

Vθ

(
1 + η+ net+θ

)
αW + η− net−

θ

. (12)



150 T. Hansen and H. Neumann

where η+ = 5, η− = 2 and βW = 0.001 are scale factors and αW = 0.2 is a decay
parameter. The multiplicative contribution of Vθ ensures that long-range con-
nections have a modulating rather than generating effect on cell activities [23,
24]. The result of the long-range stage is fed back and combined with the feed-
forward complex cell responses, thus closing the recurrent loop. The shunting
interactions ensure a saturation of activities after a few recurrent cycles.

3.2 Simulation Results

In a first simulation a synthetic stimulus of a noisy square is employed. Figure 6
demonstrates the functionality of lateral long-range interaction for the enhance-
ment of coherent structure. Outline contrasts are detected and subsequently
enhanced such that the activities of salient contrast as well as orientation sig-
nificance is optimized. Figure 7 shows the results of processing an image of a
laboratory scene. Initial complex cell activations generated for localized high
contrast contours are further stabilized. Initially weak activations in coherent
spatial arrangements are enhanced. Spatial locations where high amplitude con-
trast responses exist in multiple orientation channels indicate the presence of
corners and junctions. The results demonstrate that noisy low contrast arrange-
ments can be significantly enhanced to form elementary items of smooth contour
segments. Beyond the enhancement of coherent contours, the proposed scheme is
able to enhance contour responses at corner and junction configurations. These
higher order features play a significant role in object recognition and depth seg-
regation (e.g., [3]).

4 Summary

We have presented a computational framework for the processing of discontinu-
ities and homogeneous surface properties.

Fig. 6. Processing of a square pattern with additive high amplitude noise. Left to right:
Input image and close-up of the upper left corner (white square inset in the input image)
for complex cell responses and long-range responses. In the close-ups, three important
properties of the long-range interaction can be seen: i) enhancement of the orientation
coaligned to the contour, ii) suppression of noisy activity in the background, and iii)
preservation of the significant orientations at corners
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Fig. 7. Enhancement of activity distribution and detection of corner and junction
features in a laboratory scene. Left to right: Input image, complex cell responses, and
long-range responses. Locations of corners and junctions are marked with circles and
indicate positions with significant responses in more than one orientation channel. At
the complex cell stage, many false responses are detected due to noisy variations of the
initial orientation measurement. Such variations have been reduced at the long-range
stage, and only the positions of significant variations at corners are signaled

Surface properties such as brightness can be computed from sparse contrast
data. Confidence signals are used to discriminate positions of reliable measure-
ments of contrast data from positions where no data is available. The sug-
gested mechanism of confidence-based filling-in allows to generate a size invariant
brightness representation even on the basis of sparse input data. Furthermore,
perceptual phenomena and real world applications are successfully processed.

For the filling-in process, the proper extraction of contours is important.
For the processing of discontinuities such as contours and junctions, we have
suggested a framework of recurrent interaction, using feature integration by
long-range connections to evaluate feedforward signals within a broader context.
Modulating feedback then selectively enhances those features which fit into the
context. The suggested circuit of long-range interactions is an instantiation in
the domain of early vision of this general scheme. We show that a single circuit
is sufficient to solve basic tasks in early vision, such as contour enhancement,
noise suppression and corner enhancement.

While the importance of contour signals for various tasks, such as object
recognition, is generally acknowledged, the need for an explicit and intrinsically
redundant representation of extended brightness regions is subject to intense
debate. Whether such a representation is crucially involved in conscious human
brightness perception or is helpful for behavioral tasks such as grasping or object
recognition of occluded objects [15,27] is a challenging question to be answered by
future research. Models of surface completion are helpful by integrating empirical
results into a precise computational and algorithmic description.
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