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Junctions provide important cues in various perceptual tasks, such as the
determination of occlusion relationships for figure-ground separation,
transparency perception, and object recognition, among others. In com-
puter vision, junctions are used in a number of tasks, like point matching
for image tracking or correspondence analysis. We propose a biologically
motivated approach to junction representation in which junctions are im-
plicitly characterized by high activity for multiple orientations within a
cortical hypercolumn. A local measure of circular variance is suggested to
extract junction points from this distributed representation. Initial orien-
tation measurements are often fragmented and noisy. A coherent contour
representation can be generated by a model of V1 utilizing mechanisms of
collinear long-range integration and recurrent interaction. In the model,
local oriented contrast estimates that are consistent within a more global
context are enhanced while inconsistent activities are suppressed. In a se-
ries of computational experiments, we compare junction detection based
on the new recurrent model with a feedforward model of complex cells.
We show that localization accuracy and positive correctness in the detec-
tion of generic junction configurations such as L- and T-junctions is im-
proved by the recurrent long-range interaction. Further, receiver operat-
ing characteristics analysis is used to evaluate the detection performance
on both synthetic and camera images, showing the superior performance
of the new approach. Overall, we propose that nonlocal interactions im-
plemented by known mechanisms within V1 play an important role in
detecting higher-order features such as corners and junctions.

1 Introduction and Motivation

Corners and junctions are points in the image where two or more edges join
or intersect. Whereas edges lead to variations of the image intensity along a
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single direction, corners and junctions are characterized by variations in at
least two directions. In other words, edges are intrinsically one-dimensional
signals, whereas corners and junctions are intrinsically two-dimensional sig-
nals. Compared to regions of homogeneous intensity, edges are rare events.
Likewise, compared to edges, corners and junctions are rare events of high
information content. Moreover, corners and junctions are invariant under
different viewing angles and viewing distances. Both the sparseness of the
signal and the invariance under affine transformations and scale variations
establish corners and junctions as important image features. Points of in-
trinsically two-dimensional signal variations such as corners and junctions
have also been termed keypoints (Heitger, Rosenthaler, von der Heydt, Pe-
terhans, & Kübler, 1992; Michaelis, 1997) or interest points (Schmid, Mohr, &
Bauckhage, 2000).

Corners and junctions are useful for various higher-level vision tasks
such as the determination of occlusion relationships, matching of stereo
images, object recognition, and scene analysis. The importance of corner
and junction points for human object recognition has been demonstrated in
a number of psychophysical experiments (Attneave, 1954; Biederman, 1985,
1987). Biederman showed that object perception of line drawings is severely
impaired when corners (i.e., contours of high curvature) are removed, but
largely preserved when contours of low curvature are deleted. Junctions
also seem to play an important role in the perception of brightness and
transparency (Adelson, 1993, 2000; Metelli, 1974; Todorović, 1997). Recently
Rubin (2001) proposed that local occlusion cues as signaled by junctions are
necessary to trigger modal and amodal surface completion. Rubin showed
that other cues, such as surface relatability and surface similarity, did not
lead to the perception of illusory contours or amodal completion when
junction cues are removed from otherwise unchanged stimuli.

In physiological studies in monkey visual cortex cells have been reported
that selectively respond to corners and line ends (Hubel & Wiesel, 1968). Das
and Gilbert (1999) showed that correlated activities of V1 cells can signal
the presence of smooth outline patterns as well as patterns of orientation
discontinuity as occurring at corners and junctions. Cells preferentially re-
sponding to curves and angles have been found in area V4 (Pasupathy &
Connor, 1999, 2001).

Recently McDermott (2001, 2002) studied the performance of human
observers for the detection of junctions in natural images. He found that the
ability to detect junctions is severely impaired if subjects view the location
of a possible junction through a small aperture. Detection performance and
observers’ confidence ratings decreased with decreasing size of the aperture.
The results suggest that a substantial number of junctions in natural images
cannot be detected by local mechanisms.

In this article, we propose a new mechanism for corner and junction de-
tection based on a distributed representation of contour responses within
a model hypercolumn (Zucker, Dobbins, & Iverson, 1989). Unlike local ap-
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proaches as proposed in computer vision (e.g., Harris, 1987; Mokhtarian
& Suomela, 1998; Parida & Geiger, 1998), the new scheme is based on a
more global, recurrent long-range interaction for the coherent computation
of contour responses. Such nonlocal interactions evaluate local responses
within a more global context and generate a robust contour representation.
A measure of circular variance is used to extract corner and junction points
at positions of large responses for more than one orientation.

The letter is organized as follows. In section 2, we present the model
of recurrent collinear long-range interactions and detail the new junction
detection scheme. Simulation results for a number of synthetic and real-
world camera images are presented in section 3. A discussion of the results
is given in section 4. Section 5 concludes the article. A short version reporting
this research has been published in Hansen and Neumann (2002).

2 A Neural Model for Corner and Junction Detection

Corner and junction configurations can be characterized by significantly
increased responses for two or more orientations at a particular location in
the visual space. A cortical hypercolumn is the neural representation for
oriented responses at a particular location. Corners and junctions are thus
characterized by significant activity of multiple neurons within a hypercol-
umn, as proposed by Zucker et al. (1989).

Multiple oriented activities as measured by a simple feedforward mecha-
nism are sensitive to noisy signal variations. In previous work, we have pro-
posed a model of recurrent collinear long-range interaction in the primary
visual cortex for contour enhancement (Hansen & Neumann, 1999, 2001).
During the recurrent long-range interactions, the initially noisy activities are
evaluated within a larger context. In this recurrent process, only coherent
orientation responses are preserved—responses supported by responses in
the spatial neighborhood—while other responses are suppressed. Besides
the enhancement of coherent contours, the proposed model also preserves
multiple activity at corners and junctions. Corners and junctions are thus
implicitly characterized by a distributed representation of high multiple
activity within a hypercolumn.

Such a distributed representation may suffice for subsequent neural com-
putations. However, at least for the purpose of visualization and comparison
to other junction detection schemes, an explicit representation is required.
Following the above considerations, corners and junctions can be marked
if multiple orientations are active and high overall activity exists within a
hypercolumn.

In the following, we first present the proposed model of collinear recur-
rent long-range interactions in V1 and then detail a mechanism to explicitly
mark corner and junction points. The analysis and experiments are restricted
to patterns consisting of straight or extremely low curvature boundaries.
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2.1 Coherent Contour Representation by a Model of Collinear Recur-
rent Long-Range Interaction in V1. The model of collinear long-range in-
teractions in V1 is motivated by biological mechanisms. The core mech-
anisms of the model include localized receptive fields (RFs) for oriented
contrast processing, interlaminar feedforward and feedback processing, co-
operative horizontal long-range integration, and lateral competitive inter-
actions.

The key properties of the model are motivated by empirical findings:

• Horizontal long-range connections. The grouping of aligned contours re-
quires a mechanism that links cells of proper orientation over larger
distances. Horizontal long-range connections found in the superficial
layers of V1 may provide such a mechanism. They span large dis-
tances (Gilbert & Wiesel, 1983; Rockland & Lund, 1983) and selectively
link cells with similar feature preference (Gilbert & Wiesel, 1989) and
collinear aligned RFs (Bosking, Zhang, Schofield, & Fitzpatrick,1997;
Schmidt, Goebel, Löwel, & Singer, 1997). Evidence for nonlocal in-
tegration also comes from psychophysical experiments for contrast
detection (Kapadia, Ito, Gilbert, & Westheimer, 1995; Kapadia, West-
heimer, & Gilbert, 2000; Polat & Sagi, 1993, 1994) and contour integra-
tion (Field, Hayes, & Hess, 1993; Yen & Finkel, 1998). Since it is known
that facilitation exists that is strong for collinear flankers, here we focus
on interactions between collinear, iso-oriented items. The more general
case of mutual facilitation for cocircular arrangements is considered
in Parent and Zucker (1989) and Zucker et al. (1989).

• Short-range connections. Short-range connections are rather unspecific
for a particular orientation (Amir, Harel, & Malach, 1993; Bosking et al.,
1997; DeAngelis, Freeman, & Ohzawa, 1994) and most likely belong to
an inhibitory system (Kisvarday, Kim, Eysel, & Bonhoeffer, 1994).

• Modulating feedback. Several physiological studies indicate that feed-
back projections have a modulating or gating rather than generating
effect on cell activities (Hirsch & Gilbert, 1991; Hupé et al., 1998; Salin
& Bullier, 1995). Feedback alone is not sufficient to drive cell responses
(Sandell & Schiller, 1982), and initial bottom-up activity is necessary
to generate activity.

The model architecture is defined by a sequence of preprocessing stages
and a recurrent loop of long-range interaction, realizing a simplified archi-
tecture of V1 (see Figure 1).

Processing within the recurrent loop defines a functional architecture of
two interacting regions, each with a distinctive purpose (Hansen, Sepp, &
Neumann, 2001; Neumann & Sepp, 1999): The lower region serves as a stage
of feature measurement and signal detection. The higher region represents
expectations about visual structural entities and context information to be
matched against the incoming data carried by the feedforward pathway.
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Figure 1: Overview of model stages together with a sketch of the sample re-
ceptive fields of cells at each stage for 0 degree orientation. For the long-range
stage, the spatial weighting function of the long-range filter is shown together
with the spatial extent of the inhibitory short-range interactions (sketched as
black disk).

Feedback from the higher region then selectively enhances those activities
of the lower region that are consistent with the top-level expectations or a
priori assumptions (Carpenter & Grossberg, 1988; Mumford, 1991).

2.1.1 Feedforward Preprocessing. In the feedforward path, the initial lu-
minance distribution I is processed by isotropic lateral geniculate nucleus
(LGN) cells Kon/off, followed by orientation-selective simple cells S and com-
plex cells C (see Figure 1). The interactions in the feedforward path are gov-
erned by basic linear equations to keep the processing in the feedforward
path relatively simple and to focus on the contribution of the recurrent
interaction. In our model, complex cell responses C provide an initial lo-
cal estimate of contour strength, position, and orientation, which is used
as bottom-up input for the recurrent loop. The equations that govern the
computations in the feedforward path are detailed in appendix A.

2.1.2 Recurrent Long-Range Interaction. The output of the feedforward
preprocessing defines the input to the recurrent loop. The recurrent loop has
two stages: a combination stage, where bottom-up and top-down inputs are
fused, and a stage of long-range interaction.

The equations that govern the interaction at both the combination stage
and the long-range stage employ nonlinear, multiplicative interactions. The
divisive inhibition resulting from this interaction is sometimes referred to as
shunting inhibition (Furman, 1965; Grossberg, 1970; Hodgkin, 1964; Levine,
2000). Shunting inhibition has been proposed as a possible mechanism
for divisive interactions in a number of studies (Borg-Graham, Monier, &
Frégnac, 1998; Carandini & Heeger, 1994). However, a number of results, in
particular from modeling studies, have challenged this view, proposing that
shunting inhibition has a subtractive rather than divisive effect on cell firing
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rates (Douglas & Martin, 1990; Holt & Koch, 1997). More recent studies have
shown that shunting inhibition can indeed divisibly modulate firing rates
in neurons with high-variability synaptic inputs and dendritic saturation
(Mitchell & Silver, 2003; Prescott & Koninck, 2003). Based on these results,
we propose that shunting inhibition is a physiological plausible candidate
mechanism for the divisive inhibition as used in the model.

Combination stage. At the combination stage, feedforward complex cell re-
sponses C and feedback long-range responses W are added and subject to
a nonlinear compression of high-amplitude activity following the Weber-
Fechner law (Fechner, 1889; Weber, 1905):

V = βV
netθ

αV + netθ
, where netθ = C + δVW. (2.1)

This equation is the steady-state response ∂tV = 0 of the differential equa-
tion

∂tV = −αVV + (βV − V) netθ . (2.2)

The divisive inhibition resulting from this interaction yields a bounded
activity in the range [0, βV]. More precisely, the activity V is described by

V = V(netθ ) = βV
netθ

αV + netθ

=




0 limnetθ →0
n

1+n βV netθ = nαV, n ∈ R
+

βV limnetθ →∞ .

(2.3)

Plots of the function defining V for different values of the decay parame-
ter αV and a unit-valued scaling parameter βV = 1 are depicted in Figure 2.

The weighting parameter δV = 2 in equation 2.1 is chosen so that dimen-
sions of C and W are approximately equal, the decay parameter αV = 0.2 is
chosen small compared to netθ , and the scaling parameter βV = 10 scales up
the activity to be sufficiently large for the subsequent long-range interaction.
In the first iteration step, feedback responses W are set to C.

Long-range interaction. At the long-range stage, the contextual influences
on cell responses are modeled. Orientation-specific, anisotropic long-range
connections provide the excitatory input. The inhibitory input is given by
isotropic interactions in both the spatial and orientational domains. Long-
range connections are modeled by a filter whose spatial layout is similar
to the bipole filter as first proposed by Grossberg and Mingolla (1985a).
The spatial weighting function of the long-range filter is narrowly tuned
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Figure 2: Compressive nonlinearity of the function y = x/(x + α) employed
in equation 2.1. (Left) Plot of the compression function for various values of
the decay parameter α = 0.1, 0.25, 0.5, and 1 (Right) The decay parameter α in
equation 2.1 can be viewed as defining the unit length of the input values x in the
compression function; input values x given as a multiple of α, that is, x = nα,
are mapped to n/(1 + n) independent of α. Scaling of the x-axis by 1/α thus
maps all y-values as obtained for different values of α on a single curve given
by y = n/(1 + n).

to the preferred orientation, reflecting the highly significant anisotropies of
long-range fibers in visual cortex (Bosking et al., 1997; Schmidt et al., 1997).
The size of the long-range filter is about four times the size of the RF of a
complex cell as sketched in Figure 1.

Essentially, excitatory input is provided by correlation of the feedforward
input with the long-range filter Bθ . A cross-orientation inhibition prevents
the integration of cell responses at positions where responses for the orthog-
onal orientation also exist. The excitatory input is governed by

Lθ = [Vθ − Vθ⊥ ]+ � Bθ , (2.4)

where � denotes spatial correlation and [x]+ = max{x, 0} denotes half-wave
rectification.

The long-range filter is defined as a polar-separable function:

Bθ (ϕ, r) = Bang(ϕ)Brad(r). (2.5)

The angular function Bang is maximal for the preferred direction θ and
smoothly rolls off in a cosine fashion, being zero for angles deviating more
than α/2 from the preferred orientation:

Bang(ϕ) =
{

cos(2π 1
2α

(θ − ϕ)) |ϕ − θ | ≤ α/2
0 |ϕ − θ | > α/2.

(2.6)

The parameter α, which defines the opening angle of the long-range filter,
is set to 20 degrees. The radial function Brad is constant for values smaller
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Figure 3: Spatial weighting function for the long-range interaction for a refer-
ence orientation of 0 degrees.

than rmax = 25 and smoothly decays to zero in a gaussian fashion for values
larger than rmax:

Brad(r) =
{

1 r ≤ rmax

exp(−r2

2σ
) r > rmax.

(2.7)

The standard deviation of the gaussian is set to σ = 3. The long-range
filter is finally normalized such that the filter integrates to one. A plot of
the long-range filter for a reference orientation of 0 degrees is depicted in
Figure 3.

Responses are not salient if nearby cells of similar orientation preference
also show a strong response. Therefore, an inhibitory term is introduced that
gathers activity from the spatio-orientational neighborhood of the target
cell. Gaussian weighting functions are used to sample activity in both space
(x, y) and orientation domain θ . The inhibitory input M to the long-range
interaction is thus provided by the three-dimensional (3D) correlation of the
input L with a 3D gaussian Gσ:

M(x) = Gσ(x) � L(x). (2.8)

Since the 3D gaussian Gσ(x) is separable in each dimension, the 3D correla-
tion can be efficiently implemented as the successive correlation with three
one-dimensional (1D) gaussians gσsur(x), gσsur(y) and gσθ

(θ). Since correlation
is associative, the correlation can also be conceptualized as two successive
correlations: a two-dimensional (2D) correlation in the spatial domain with
an isotropic 2D gaussian Gσsur followed by a correlation in the orientational
domain with a 1D gaussian gσo :

M(x) ≡ M(x, y, θ) = L(x, y, θ) � Gσsur(x, y) � gσo(θ). (2.9)

The standard deviation of the gaussian in the spatial domain is set to σsur
= 8 to model the smaller extent of the inhibitory short-range connections.
This parameterization results in an effective spatial extension of about half
the size of the excitatory long-range interaction modeled by the long-range
filter. The standard deviation in the orientational domain is set to σo = 0.5 to
give near-zero input for the orthogonal orientation. The 3D gaussian kernel
is visualized in Figure 4.
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Figure 4: 3D gaussian in (x, y, θ)-space visualized as Omax = 4 gaussians in
(x, y) space. (Left to right) Gaussians for θ − �θ , θ , θ + �θ , and θ + 2�θ . Note
that the gaussian for the orientation θ⊥ = θ + 2�θ orthogonal to θ is near zero
at all positions.

The final activity of the long-range stage results from interactions be-
tween the excitatory long-range input L and the inhibitory input M. The
excitatory long-range input L is gated by the activity V to implement a
modulating rather than generating effect of lateral interaction on cell activ-
ities (Hirsch & Gilbert, 1991; Hupé et al., 1998). Similar to equation 2.1, the
inhibition from M is divisive. The final activity of the long-range stage thus
reads

W = βW
V(1 + η+ L)

αW + η− M
, (2.10)

where αW = 0.2 is the decay parameter and η+ = 5, η− = 2, and βW = 0.001
are scale factors. This equation is the steady-state response ∂tW = 0 of the
differential equation

∂tW = −αWW + βWV(1 + η+ L) − η− W M.

The result of the long-range stage is fed back and combined with the feedfor-
ward complex cell responses in equation 2.1, thus closing the recurrent loop.
The multiplicative interactions governing both the long-range interactions
and the combination of feedback and feedforward input ensure rapid equi-
libration of the dynamics after a few recurrent cycles and result in graded
responses within a bounded range of activations.

The model is robust against parameter changes mainly caused by the
compressive transformation equations employed. For the combination of
responses (see equation 2.1), however, it is crucial to have activities in both
streams of similar order of magnitude. Also, the relative RF sizes must not
be substantially altered. The current parameter setting results in relative
RF sizes of complex cells: isotropic inhibitory short-range filter: long-range
interaction of about 1:2.5:4, assuming a cut-off of the gaussians at 2σ (or
95% of the total energy).
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2.2 Junction Detection by Readout of Distributed Information Using a
Measure of Circular Variance. As stated above, corners and junctions are
characterized by points in the visual space where responses for multiple
orientations are present and high overall activity exists within a hypercol-
umn. For the readout of this distributed information, a measure of circular
variance is used to signal multiple orientations. The overall activity is given
by the sum across all orientations within a hypercolumn. Thus, the junction
map J for a distributed hypercolumnar representation such as the activity
of the long-range stage W (see equation 2.10) is given by

J = circvar(Wθ )
2
∑

θ

Wθ . (2.11)

The junction map J thus receives high values from a combined measure of
high activations in multiple orientation channels and high overall activity.
The function “circvar” is a measure of the circular variance within a hyper-
column. The squaring operation enhances the ratio between high and low
circular variances. Circular variance is defined as one minus the normalized
population vector

circvar(Wθ ) = 1 − |∑θ Wθ exp(2iθ)|∑
θ Wθ

. (2.12)

Circular variance takes values in the range [0; 1]. A value of 0 denotes
a single response, whereas a value of 1 occurs if all orientations have the
same activity. Circular variance has been used in a number of physiological
studies to characterize the response properties of cells in V1 (McLaughlin,
Shapley, Shelley, & Wielaard, 2000; Pugh, Ringach, Shapley, & Shelley, 2000;
Ringach, Hawken, & Shapley, 1997).

To visualize the data, single junction points are marked as local maxima
in the junction map. First, the junction map is smoothed with a gaussian
(σ = 3) to regularize the junction map and improve the localization accuracy.
Corner points are then marked as local maxima whose strength must exceed
a fraction of the maximum response in the smoothed junction map. Local
maxima are computed within a 3×3 neighborhood. These operations help to
visualize the junction data and are not meant to have a direct physiological
counterpart.

The corner detection scheme detailed in this section reads out a scalar
value of junction activity from the population vector of orientation re-
sponses within a hypercolumn. The readout operation does not rely on any
specific properties of the long-range stage and thus can be applied to any
input where multiple orientations are locally represented within a hypercol-
umn. To demonstrate the advantages of the recurrent long-range interaction
as opposed to a purely feedforward processing, it is instructive to compare
the detection results obtained for two different kinds of distributed input:
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the long-range activity W and the complex cell activity C. Results of this
comparison are presented in the next section.

3 Simulations

In this section, we show the competencies of the proposed junction de-
tection scheme for a variety of synthetic and real-world camera images. In
particular, the robustness to noise and the localization properties of the new
scheme are evaluated. In order to focus on the relative merits of the recur-
rent long-range interactions for the task of corner and junction detection,
the proposed scheme is evaluated using two different kinds of input: the
activity W of the long-range stage and the purely feedforward activity C of
the complex cell stage. Model parameters as specified in section 2 are used
in all simulations.

The multiplicative interactions that govern the computations at the long-
range stage and the combination stage ensure an equilibration of the model
dynamics after a small number of recurrent cycles. For all input images,
model dynamics have saturated after 12 recurrent cycles. The model re-
sponses continuously improve with each iteration, with the largest improve-
ment achieved in the first interactions (Hansen, 2003). A fixed number of
recurrent cycles is therefore not crucial for the model performance. This is
of particular relevance for real biological networks, where the number of
recurrent interactions is limited by the time available to process a stimulus.

3.1 Localization of Generic Junction Configurations. From the outset
of corner and junction detection in computer vision, the junction types have
been partitioned into distinct classes like T-, L-, and W-junctions (Huffman,
1971). This catalog of junction configurations has been extended by other
junction types such as �-junctions, which have been suggested to provide
strong cues for inferring surface shading and reflectance (Adelson, 2000;
Sinha & Adelson, 1993).

In the first simulation, we compare the localization accuracy of junction
responses based on feedforward versus recurrent long-range responses for
L-, T-, Y-, W- and �-junctions (see Figure 5). To evaluate the localization
accuracy, the Euclidean distance between the ground-truth location and the
location as measured by either method is computed. For all junction types,
the localization is considerably better for the method based on the recurrent
long-range interaction.

3.2 Processing of Synthetic and Camera Images. In the second set of
simulations, we evaluate the detection performance of the model for a va-
riety of synthetic and real-world camera images. Receiver operator charac-
teristic (ROC) analysis (Dayan & Abbott, 2001; Green & Swets, 1974) is used
for a threshold-free evaluation of the different approaches. Details of the
application of ROC analysis to junction detection are given in appendix B.
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Figure 5: Distance in pixels from ground-truth location (ordinate) for L-, T-, Y-,
W- and �-junctions (abscissa). The deviation from ground-truth position is con-
siderably smaller for the recurrent long-range interaction (open bars) compared
to the complex cell responses (solid bars).

3.2.1 Synthetic Images. In the first simulation we employ a synthetic
corner test image from Smith and Brady (1997). The ROC curve for the new
method based on recurrent long-range interaction is well above the ROC
curve obtained for the complex cell responses, indicating a higher accuracy
of the new method (see Figure 6).

Next, we address the processing of junctions made of lines meeting at
small angles. We study junctions with different numbers of lines (two, three,
and four) joining at different small angles (5, 10, and 15 degrees). Input
images together with the corresponding ROC curves are shown in Figure 7.
For all input images, the ROC curves indicate a better performance of the
junction detection based on the recurrent long-range processing.

Figure 6: (Left) Synthetic test image from Smith and Brady (1997) used for the
evaluation of corner detection schemes. (Middle) Overlay of ground-truth junc-
tion points. (Right) ROC curves (long-range stage, solid lines; complex cells,
dashed lines). The abscissa denotes the false alarm rate, and the ordinate de-
notes the hit rate.
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Figure 7: ROC curves for synthetic junctions of small angles. (Left panel) 3 × 3
arrangement of input images, each with junctions made of lines meeting at 5,
10, and 15 degrees (top to bottom row). (Right panel) ROC curves (long-range
stage, solid lines; complex cells, dashed lines). The abscissa denotes the false
alarm rate between zero and one, the ordinate denotes the hit rate. For better
visualization, cut-outs of the left part (0 to 0.15) of the ROC curves are shown.
The ROC curves indicate a higher accuracy for the results based on the recurrent
long-range interaction. Note that for a single junction, the hit rate can take only
two values, 0 and 1.

3.2.2 Camera Images. In this section, the junction detection performance
is evaluated for various camera images. For each image, the ground-truth
data are obtained by manually marking the junction points. Detection per-
formance is evaluated for a cube image within a laboratory environment,
a staircase image, a laboratory scene (Mokhtarian & Suomela, 1998), and a
subimage of a plant taken from a database of natural images (van Hateren
& van der Schaaf, 1998). For each image sample detection results for a fixed
threshold and the full ROC curves are shown (see Figure 8).

For all images, the ROC curves obtained from the junction detection
based on recurrent long-range interaction lie above the curves obtained
for the feedforward complex cell responses. Thus, detection accuracy is in-
creased by the recurrent long-range processing. The sample plots reveal two
main factors that contribute to the increased detection performance. First,
many false-positive responses occur based on the complex cell responses
due to noisy variations of the initial orientation measurement (e.g., at the
long vertical edges of the cube or at the top and bottom edges of the stair-
case). These variations are reduced at the long-range stage by the recurrent
interaction, such that only the positions of significant orientation variations
remain. Second, false-negative responses occur at the complex cell stage be-
cause localized measurements within a small aperture fail to detect junctions
of locally low contrast (McDermott, 2001, 2002). Such missing responses oc-
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Figure 8: Simulation of the corner detection scheme for camera images. (Left
to right) Input image with an overlay of manually marked ground-truth junc-
tion points; detected corners and junctions based on the complex cell responses;
detected corners and junctions based on the long-range responses; and the cor-
responding ROC curves (long-range stage, solid lines; complex cells, dashed
lines). The two gray-scale images in the second and third columns depict the
edge maps based on the complex and long-range responses, respectively. These
edge maps show the overall activity given by the sum across all orientations
within each hypercolumn. In the edge maps, high activity is coded black, and
low activity is coded white. In the ROC curves, the abscissa denotes the false
alarm rate, and the ordinate denotes the hit rate. For better visualization, cut-
outs of the left part of the ROC curves are shown. The recurrent long-range
interaction results in a decrease of false-positive and false-negative responses,
leading to an increase in overall accuracy.
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cur, for example, at the bottom right corner of the staircase or for the plant
image. The recurrent long-range interaction enhances those small activities
supported by aligned responses within a more global context, such that
even junctions of low contrast can be detected.

Overall, the results obtained based on the long-range responses are supe-
rior to the results based on the purely feedforward complex cells responses.
However, the results are not perfect in the sense that every corner is de-
tected by the new method. The focus of this article is not to propose an ideal
junction detector, but to show how mechanisms of recurrent long-range pro-
cessing in V1 lead to a coherent representation of contours and junctions.

4 Discussion

4.1 Models of Recurrent Long-Range Interaction. A number of models
have been proposed in the context of contour grouping and texture seg-
mentation that incorporate principles of nonlocal, long-range interactions,
or recurrent processing, or both (Grossberg & Mingolla, 1985b; Grossberg
& Raizada, 2000; Heitger, von der Heydt, Peterhans, Rosenthaler, & Kübler,
1998; Li, 1998, 1999, 2001; Neumann & Sepp, 1999; Yen & Finkel, 1998).
A comprehensive overview of these different approaches can be found in
Neumann and Mingolla (2001) and Hansen (2003). These models have fo-
cused on the role of recurrent long-range processing for contour enhance-
ment (Grossberg & Mingolla, 1985b; Li, 1998), preattentive segmentation
and pop-out (Li, 1999; Yen & Finkel, 1998), recurrent interaction between
two reciprocally connected cortical areas V1 and V2 (Neumann & Sepp,
1999), or the role of the laminar architecture in V1 for contrast-sensitive
perceptual grouping (Grossberg & Raizada, 2000). With the exception of
Heitger et al. (1998), none of these models has addressed the computation
and representation of corners and junctions. The model of Heitger et al.,
however, relies on the explicit computation of corners and line end points
by specific end-stopped filters and is purely feedforward. The idea of an
explicit end-stopped filter has been challenged by physiological studies
suggesting that end-stopped properties emerge from surround inhibition
within a recurrent interlaminar loop (Bolz & Gilbert, 1986; Bolz, Gilbert, &
Wiesel, 1989). Further, the use of a purely feedforward computation scheme
neglects the role of feedback and recurrent interactions, which presumably
play an important role in visual processing for figure-ground segregation
(Hupé et al., 1998; Lamme, 1995; Zipser, Lamme, & Schiller, 1996).

Zucker and coworkers have investigated the process of line finding based
on a relaxation labeling mechanism followed by a stage of spline approxima-
tion to minimize a global energy functional (Parent & Zucker, 1989; Zucker
et al., 1989). The representation of junction configurations is only implic-
itly addressed there. For example, the inference of smooth contours from
responses of oriented line detectors necessitates stable endings that nei-
ther shrink nor grow at discontinuities in the orientation field. By explicitly
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coloring nodes of a relaxation grid and thus splitting activations into sepa-
rate layers, multiple orientations can be represented at one spatial location
(David & Zucker, 1990). These approaches, however, have not investigated
the capability to read out junction configurations from orientation fields
or analyzed the robustness of junction representation for varying opening
angles. Our approach is computationally simple, requiring no explicit class
labeling operation. Investigating the issue of detecting and representing
corners and junctions demonstrates that our network model gives robust
results for varying scene parameters. This demonstrates that such meaning-
ful visual structure information is already available at the stage of V1.

4.2 Decoding Population Codes. In population coding, a single quan-
tity is represented by a number or population of neurons with overlap-
ping sensitivity or tuning curves (Oram, Földiàk, Perret, & Sengpiel, 1998;
Pouget, Dayan, & Zemel, 2000). Population coding is a general principle in
neural systems. Population coding is advantageous because of its robust-
ness to both single cell damage and noisy response fluctuations (Pouget et
al., 2000). The benefits of population coding of stimulus orientation within a
cortical hypercolumn have been studied in a model by Vogels (1990). It has
been shown that stimulus orientation can be achieved with high accuracy
based on cells that have broad orientation tuning curves. Population codes
also allow representing the certainty of a signal by the summed overall ac-
tivity (Hinton, 1992). Further, the presence of more than one signal can be
represented by a multimodal activity distribution.

Corners and junctions can be signaled if multiple activity of high am-
plitude occurs within a cortical hypercolumn (Zucker et al., 1989). Most
schemes of decoding population codes are based on the underlying assump-
tion that a single value is encoded (Oram et al., 1998; Seung & Sompolinsky,
1993), with a few exceptions (see Zemel, Dayan, & Pouget, 1998). To ex-
tract a single value of junction activity from the distributed, multimodal
representation of orientation responses within a hypercolumn, we suggest
a simple mechanism that combines two measures in a multiplicative way.
The summed overall activity signals the presence or certainty of a signal
(Hinton, 1992), and high circular variance signals the presence of multiple
orientations. A single measurement of the sum total activity does not al-
low distinguishing between high activity as generated by a strong response
for a single orientation or by medium responses for multiple orientations.
Likewise, a single measurement of circular variance does not allow distin-
guishing between high activity as generated by small responses in the pres-
ence of noise or strong responses in the presence of multiple orientations.
The combination of both measurements naturally allows for extracting the
desired information.

4.3 Circular Variance Function. The proposed junction detection mech-
anism uses a measure of circular variance for the explicit representation of
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distributed orientation responses within a hypercolumn. While this mea-
sure is motivated mainly computationally, circular variance is essentially a
weighted sum of information locally available within a hypercolumn. We
hypothesize that a related measure of junction responses can be realized by
neurons in the visual cortex. First evidence comes from a study by Das and
Gilbert (1999), indicating a graded specialization of neurons for the pro-
cessing of corners and T-junctions. The degree of selectivity for processing
corners was shown to increase with the overlap of the neuron’s dendritic
arborization with neighboring orientation columns. The circular variance
function used in the model is invariant against rotations of the junction and
increases for different numbers of lines meeting at one point. A neural cir-
cuit based on a measure of circular variance is predicted to realize a general
junction detector in contrast to detectors specialized for a particular junction
type such as T-junctions.

4.4 Multiscale Processing for Junction Detection. A number of studies
have stressed the importance of multiple scales for the proper extraction of
corner and junction information (Lindeberg, 1998; Mokhtarian & Suomela,
1998; Würtz & Lourens, 2000). The present model operates on only a single
scale. However, in the recurrent interaction, the model neurons integrate
information over successively increasing regions of the visual space. Thus,
information of different scales is available during the temporal evolution
of orientation responses. We have shown for a number of generic junction
configurations that accurate, precise localization can be achieved by the
proposed model without the need of tracking responses along multiple
scales from coarse to fine, as suggested by Mokhtarian and Suomela (1998).

4.5 Evaluation of Junction Detection Schemes. A number of different
methods have been proposed to evaluate the various approaches to corner
detection. The different methods can be classified into methods based on
visual inspection, localization accuracy, and theoretical analysis (Schmid et
al., 2000). A simple and popular method relies on visual inspection of the
detection results: A number of different detectors are applied to a set of
images, and the results are presented. This method suffers from a number
of drawbacks since the number of false alarms and misses as well as the
precise localization may not be judged correctly. More important, results
are shown only for a particular choice of the threshold separating corner
from noncorner points. Such a threshold is involved in virtually every cor-
ner detection scheme, and detection results crucially depend on the proper
choice of the threshold. Localization accuracy is another evaluation method
and can be measured based on the correct projection of 3D scene points
to 2D image points (Coelho, Heller, Mundy, Forsyth, & Zisserman, 1991;
Heyden & Rohr, 1996). Since this method requires the precise knowledge
of 3D points, the evaluation is restricted to simple scenes of, for example,
polyhedral objects. The performance of various corner detectors can also be
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assessed by theoretical analysis (Deriche & Giraudon, 1990; Rohr, 1994). An-
alytical studies are limited to particular configurations such as L-corners.
Here we have introduced the method of ROC analysis in the context of
junction detection. ROC analysis allows assessment of the capabilities of
the detectors over the full range of possible thresholds for every test image.
Consequently, ROC-based evaluation results are not flawed by choice of a
particular threshold, which can strongly bias the obtained results.

5 Conclusions

We have proposed a novel method for corner and junction detection based
on a distributed representation of orientation information within a hyper-
column (Zucker et al., 1989). The explicit representation of a number of
orientations in a cortical hypercolumn is shown to constitute a powerful
and flexible multipurpose scheme that can be used to code intrinsically
1D signal variations like edges as well as 2D variations like corners and
junctions.

Orientation responses within a hypercolumn can be robustly and reliably
computed by using contextual information. We have proposed a model of
recurrent long-range interactions to compute coherent orientation responses
(Hansen & Neumann, 2001). In the context of corner and junction detection,
we have shown the benefits of using contextual information and recurrent
interactions, leading to a considerable increase in localization accuracy and
detection performance compared to a simple feedforward scheme. We have
used ROC analysis for the evaluation of the different junction detection
schemes. The results of ROC analysis for both synthetic and real-world
camera images show that the detection performance of the new scheme
is superior compared to the basic feedforward scheme. The results have
been gained with a scheme that focuses on the interaction between collinear
items. One might expect results to be even more impressive for a scheme
that includes curves and textures. Overall, we have shown how robust and
accurate junction detection can be realized based on biologically plausible
mechanisms.

Appendix A: Feedforward Processing

A.1 LGN On- and Off-Cells. Responses of isotropic LGN-cells are mod-
eled by correlation of the initial input stimulus I with a difference-of-gauss-
ians (DoG) operator. Two types of LGN cells are modeled, on and off, which
generate rectified output responses Kon/off,

K = DoGσc,σs � I

Kon = [K]+

Koff = [−K]+, (A.1)
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where � is the spatial correlation operator and [x]+ := max{x, 0} denotes
half-wave rectification. The DoG is parameterized by the standard deviation
of the center and surround gaussian (σc = 1, σs = 3), respectively.

A.2 Simple Cells. Simple cells in V1 have elongated subfields (on and
off) that sample the input of appropriately aligned LGN responses. Input
sampling is modeled by correlation with rotated, anisotropic gaussians. The
gaussians are shifted perpendicular to their main axis by ±τ = 3 to model
left and right subfields of an odd-symmetric simple cell. Thus, for example,
for the on-channel, the equations read

Ron,left,θ = Kon � Gσx,σy,0,−τ,θ

Ron,right,θ = Kon � Gσx,σy,0,τ,θ . (A.2)

The activations of the off-channel are computed analogously.
Simple cells are modeled for two polarities (dark-light and light dark) in

Omax = 4 orientations (θ = 0, π/Omax, . . . , (Omax−1) π/Omax). The standard
deviations of the anisotropic gaussians are set to σy = 1, σx = 3 σy. For each
orientation, the simple cell activity is computed by pooling the two subfield
responses. The equations for light-dark (ld) and dark-light (dl) simple cells
read

Sld,θ = Ron,left,θ + Roff,right,θ

Sdl,θ = Roff,left,θ + Ron,right,θ . (A.3)

A.3 Complex Cells. Cortical complex cells are polarity insensitive. Their
response is generated by pooling simple cells of opposite polarities. Be-
fore pooling, simple cells of opposite polarities compete and are spatially
blurred. The corresponding equations read

S̃ld,θ = [(Sld,θ − Sdl,θ ) � Gσx,σy,0,0,θ ]+

C = S̃ld,θ + S̃dl,θ . (A.4)

Appendix B: Applying ROC for the Evaluation of Different Junction
Detectors

ROC analysis allows characterizing different detectors over the full range
of possible biases or thresholds. In virtually all junction detection schemes,
some kind of thresholding is involved, and the detection performance cru-
cially depends on the determination of the “optimal” threshold value. A
threshold-free evaluation of different detectors as provided by ROC analysis
allows separating the sensitivity of the detector from its threshold selection
strategy.
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ROC analysis in general is based on ground-truth verification, that is,
the comparison of a detection result with ground truth. Thus, the first step
to apply ROC analysis for junction detection is the specification of ground-
truth junction points for each test image. For synthetic images, the ground-
truth position of junction points is known from the definition of the image
or can be rather easily inferred from the gray-level variations. For real-
world camera images, no such ground truth exists. In this case, junction
points are marked by visible inspection of an enlarged version of the image.
The list of these junction points serves as an approximation of an objective
ground-truth image. The next step is the estimation of junction points using
a particular junction detection scheme. We include two different methods
in the comparison, based on long-range responses and feedforward com-
plex cell responses. The resulting junction responses are normalized to the
range [0; 1] to compensate for variations of the response amplitude across
different methods. ROC curves are then computed based on the ground-
truth image and the normalized junction response as follows. A threshold
is varied in N steps over the full range [0; 1] of junction responses, and
for each value of the threshold, the proportion of true-positive (hits) and
false-positive (false alarms) responses is computed. To obtain true-positive
responses despite localization errors of the methods, responses are accepted
within a certain error radius rerr around each ground-truth location. Finally,
the ROC curve characterizing the detection performance of the particular
method is obtained by plotting the true-positive rates against the false-
positive rates.

To sum up, ROC analysis of the performance of junction detection
schemes involves the following five steps:

1. Selection of an input image and determination of the ground truth-
position of junction points

2. Application of a particular junction detection scheme to the image

3. Normalization of the junction responses to the range [0; 1]

4. Variation of a threshold in N steps from 1 to 0 and computation of the
respective true-positive tp and false-positive fp rate

5. Plot of the ROC curve, that is, plotting tp against fp

The free parameters of the approach are the number of thresholds N and
the error radius rerr. We use N = 40, which allows for a sufficiently fine
resolution of the ROC curves. The error radius is set to rerr = 3 pixels.
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