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Abstract

The extraction of oriented contrast information by cortical simple cells is a fundamental step in early visual processing. The orientation
selectivity originates at least partly from the input of lateral geniculate nuclei neurons with properly aligned receptive fields. In the present
article, we investigate the feedforward interactions between on- and off-pathways. Based on physiological evidence we propose a push—pull
model with dominating opponent inhibition (DOI). We show that the model can account for empirical data on simple cells, such as contrast-
invariant orientation tuning, sharpening of orientation tuning with increasing inhibition, and strong response decrements to stimuli with
luminance gradient reversal. With identical parameter settings, we apply the model for the processing of synthetic and real world images. We
show that the model with DOI can robustly extract oriented contrast information from noisy input. More important, noise is adaptively
suppressed, i.e. the model simple cells do not respond to homogeneous regions of different noise levels, while remaining sensitive to small
contrast changes. The image processing results reveal a possible functional role of the strong inhibition as observed empirically, namely to

adaptively suppress responses to noisy input.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

At the early stages of visual processing, unoriented
contrast signals are extracted by retinal ganglion cells with
concentric receptive fields (RFs) and transmitted via the
lateral geniculate nuclei (LGN) to the primary visual cortex
V1.In V1, simple cells exist which have elongated RFs and a
distinct orientation preference. The origin of this orientation
selectivity is a field of intense research and controversy
debate (see Shapley, Hawken, & Ringach, 2003 for a recent
review). It is now widely agreed that tuned feedforward
input from LGN neurons with properly aligned RFs (Reid &
Alonso, 1995) and cortical inhibition (Borg-Graham,
Monier, & Frégnac, 1998; Monier, Chavane, Baudot,
Graham, & Fregnac, 2003) are important factors.

The classical proposal by Hubel and Wiesel (1968) was
based on feedforward input alone. In their model, simple
cell on-subfields receive excitatory input from LGN
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on-cells, and off-subfields receive excitatory input from
LGN off-cells. Based on physiological studies (Ferster,
1988) this basic model has been extended such that each
subfield also receives inhibitory input from the opponent
pathway. This push—pull model of direct excitation and
opponent inhibition assumes an equal weighting of
excitatory and inhibitory input. However, a number of
empirical studies show that simple cells receive strong
inhibitory input which can overwhelm excitatory input.
Evidence comes from both extracellular (Heggelund, 1981;
Palmer & Davis, 1981) and intracellular recordings
(Borg-Graham et al.,, 1998; Hirsch, Alonso, Reid, &
Martinez, 1998). Based on this evidence we propose a
scheme of dominating opponent inhibition (DOI) using a
stronger weighting of the inhibitory input from the opponent
pathway. To generate the final simple cell responses, a non-
linear simple cell model using a multiplicative combination
of simple cell subfields (MCSCS) is employed (Neumann,
Pessoa, & Hansen, 1999).

The model is evaluated in two different respects:
simulation of empirical data and processing of images.
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In a first set of simulations we show that the proposed model
is consistent with a number of physiological findings on
simple cells. In particular, the model can reproduce the
physiological data of simple cell responses to luminance
gradient reversal (Hammond & MacKay, 1983), where a
large decrease of activity occurs if small patches of opposite
contrast polarity are added to an optimal bar stimulus. The
model also exhibits contrast-invariant orientation tuning
(Sclar & Freeman, 1982), where DOI leads to a sharpening
of the tuning curves. Having verified the biological
relevance of the model by simulating a number of empirical
data, we next use the model with identical parameter
settings for the processing of noisy synthetic and real world
images. The results show that the robustness of the simple
cell responses increases for the model with DOI. More
important, noise is adaptively suppressed, i.e. the model
simple cells do not respond to noisy homogeneous regions,
irrespectively of the amount of noise. We have further
shown by numerical evaluation that the simple cells with
DOI remain sensitive even to small contrasts at edge
locations.

This article is organized as follows. In Section 2, the
simple cell model together with the proposed mechanism of
DOI is formally introduced. Simulation results of physio-
logical data are presented in Section 3. In Section 4, the
model is applied for the processing of images, and in
Section 5, its response properties to different noise levels
and small contrast changes are numerically evaluated.
Section 6 concludes the article.

2. The model

In this section a formal description of the model is given.
The model consists of a hierarchical organization of two
main processing stages, namely the extraction of contrast
signals, followed by a simple cell circuit. In all equations,
capital Roman letters denote the 2D maps of activity
distributions at the various stages and Greek letters denote
positively valued model parameters.

2.1. Contrast signals

Contrast signals are generated from the initial luminance
distribution of the input stimulus. Contrast signals occur at
luminance differences and are intended to model responses
of LGN cells. The model equations defining the first
processing stage, as detailed in the following, summarize
the initial visual processing by the retina and the LGN.

To model contrast signals, the initial luminance distri-
bution is first processed by a center—surround mechanism
similar to retinal ganglion cells. Center and surround
responses are modeled separately by filtering the initial
luminance distribution I with isotropic Gaussians of

different standard deviations (SDs) o, = 1 and o, = 3

I.=1%G,, I, =1%G,,

where * is the spatial convolution operator. The Gaussians
are sampled within a 3¢ interval, resulting in a filter mask of
size 7 X 7 for the center and 19 X 19 for the surround (30X
2 + 1). Input stimuli are normalized to the range [0,1], and
the Gaussian filters are normalized such that they integrate
to unity.

Center and surround responses provide the input to a
shunting mechanism (Furman, 1965; Grossberg, 1970;
Hodgkin, 1964). Shunting mechanisms yield a bounded
activity and cause a compression of high amplitude activity
following the Weber—Fechner law (Fechner, 1889; Weber,
1846):

9,X =—aX+ (B — X)net" — (y+ X)net .

In the above equation, a = 0.5 is the activity decay rate and
B =1, y=0.1 denote the upper and lower bound of the
activity, which is bounded in the interval [—1, B].

The shunting equation is assumed to quickly reach
steady-state and is solved at equilibrium. The equilibrium
solution is given for 9,X =0 and can be written as a
function X of two input variables, an excitatory contribution
net™ and an inhibitory contribution net” :

Bnet™ — ynet”

X(nett,net )= ——
( ) o+ net™ + net™

(D
The shunting interaction is modeled for two domains,
namely on and off contrast signals. For the on domain, the
excitatory input net™ is provided by the center filtered input
I., whereas the inhibitory input net™ is provided by the
surround filtered input ;. The reverse holds true for the off
domain. Using the equilibrium function X(net™, net™), on
and off contrast signals X, and X are thus modeled as

Xon = X(Ic’ Is)’ Xoff = X(Is’lc)' (2)
These shunting contrast signals exhibit non-zero response to
homogeneous regions. As detailed by Neumann (1996),
shunting contrast signals can be segregated into a pure
contrast signal without any activity to homogeneous regions
(i.e. a signal with ‘zero DC level’) and a luminance signal
given by a low-pass filtered copy of the input activity.
Following Neumann (1996), zero DC level contrast signals
K,, and K result from mutual inhibition of opposite
domains
Koo = Xon = Xorr]". Kot = [Xorr = Xoul ™ 3)
where [x]T = max{x,0} denotes half-wave-rectification.
The contrast signals K, and K model LGN responses and
provide the input to the next processing stage. To sum up,
LGN responses are modeled as rectified non-linear filtering
of the input luminance distribution.



T. Hansen, H. Neumann / Neural Networks 17 (2004) 647—-662 649

10

13

1 5 10 15 20 25 29

0.015

0.005F

0.01

0 . . . . .
1 5 10 15 20 25 29

Fig. 1. Left: Filter mask for a simple cell subfield of orientation 0°. Right: The corresponding horizontal cross-section taken at the center of the mask.

2.2. Simple cells

The next processing stage deals with simple cells, which
are modeled for O,,,, = 8 discrete orientations 6 = 0, 22.5,
45,...,157.5° and for two opposite contrast polarities,
namely light—dark and dark-light. Light—dark and dark—
light simple cells are obtained by sampling the subfield
activity with an offset of three pixels orthogonal to the axis
of orientation of the simple cell: A light—dark cell has an
on-subfield with an offset to the left and an off-subfield with
an offset to the right. For a dark-light simple cell, left
and right offsets are interchanged. In Section 2.2.1 we
detail the modeling of simple cell subfield by the new
mechanism of DOIL.

2.2.1. Simple cell subfields with dominating opponent
inhibition

A simple cell has two adjacent subfields, an on-subfield
sensitive to light increments and an off-subfield sensitive to
light decrements. Simple cell subfields are defined by
elongated, oriented weighting functions G4. The weighting
function G, is modeled with five isotropic Gaussians with
SD o = 2, which are properly aligned along the preferred
axis of orientation 6 and spaced within a distance of 2 SDs.
A sample weighting function for # = 0° is depicted in Fig. 1.
The modeling of the weighting function for the simple cell
subfields results in a plateau-like RF which is 29/19 = 1.5
times larger than the RF of the on and off cells. Generally,
for N Gaussians with a SD o, spaced within a distance of 2
SD’s, the width of the filter mask is given by 2 X 30+ 1 and
the length of the filter mask is given by (N — )20+ 2 X
30+ 1. For the parameters chosen (N =5,0 =2) this
results in an aspect ratio (length/width) for the simple cell
subfield of 29/13 = 2.23 (see Fig. 1, left). Alternatively,
measuring the subfield aspect ratio by fitting an anisotropic
Gaussian results in a larger aspect ratio of 7.5/2 = 3.75.
Physiological studies differ in the aspect ratio measured for
simple cells. Aspect ratios of 5 and larger have been
reported (Gardner, Anzai, Ohzawa, & Freeman, 1999; Jones
& Palmer, 1987a,b), while others have found considerably
smaller aspect ratios with a mean of 1.7 (Pei, Vidyasagar,
Volgushev, & Creutzfeldt, 1994). Recently, Alonso, Usrey,
and Reid (2001) found aspect ratios ranging from 1.17 to
5.45, with a mean of 2.5 £ 0.8 (mean *£ SD). Similar
values have been obtained by Kara, Pezaris, Yurgenson,

and Reid (2002), who found a mean aspect ratio of
2.7 = 0.8. We conclude that the aspect ratio of our filter
is in reasonable agreement with the physiological data.

Before integration, contrast activity of different polarity
competes at each spatial location. Input activation for both
on and off subfields R, and R ¢ with a preferred orientation
0 is computed by convolution of the weighted difference of
unoriented LGN responses K, and K, with the subfield
mask G, of the same orientation preference:

Ron,H = [(Kon — gKoff) * G6]+,
4
Rogr g = [(Kor — EKon) * Gyl

A sketch of the interaction scheme which defines the
subfields is given in Fig. 2. The case of equally weighted on
and off inputs occurs for ¢ = 1. The newly proposed scheme
of dominating opponent inhibition (DOI) introduces a
weighting parameter ¢ > 1 which scales up the opponent
contribution. This introduces a ‘one against many’ situation,
where, e.g. an on-subfield only receives input if the
contribution of the on-channel K, is ¢ times larger than
the contribution of the opponent off-channel K. ;. The
subfield interaction with DOI is a special case of the push—
pull models (Ferster, 1988; Palmer & Davis, 1981; Tolhurst

-
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Fig. 2. Simple cell model with DOI. An on-subfield R, receives excitatory
input from properly aligned LGN on-cells K, and inhibitory input from
LGN off cells K. The scheme of dominating opponent inhibition proposes
a stronger weighting of the inhibitory input with ¢ > 1, as indicated by the
thicker lines. The reverse wiring pattern exists for the off subfields R.
Arrows denote excitatory input, circles at the end of lines denote inhibitory
input. For clearness of display, subfields are drawn separated.
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& Dean, 1990). Conventionally, the pull is provided by
simple cells with RFs of opposite contrast polarity (Ferster
& Miller, 2000; Troyer, Krukowski, Priebe, & Miller,
1998). The new scheme of DOI, on the other hand, assumes
that inhibitory input is provided by cells which are not
orientation selective and have a circular RF organization.
Recently, a possible neural substrate of DOI has been
reported, namely complex smooth cells in layer 4 which are
inhibitory and untuned for orientation (Hirsch, Martinez,
Pillai, Alonso, Wang, & Sommer, 2003).

The mechanism may also be interpreted in terms of
voting, where excitatory and inhibitory inputs represent
voting in favor or against a decision, i.e. whether the
subfield responds or not. For balanced inhibition, a simple
majority of 50% votes in favor results in a subfield response.
For dominating inhibition, a majority greater than 50% of
votes in favor are required to cause a response. More
precisely, for a weighting of the opponent inhibition with
&> 1, the excitatory drive has to comprise a fraction of
&(€+ 1) of the total input to drive the cell. In terms of
voting, this means that for setting, say, & = 2, a 2/3 majority
is required to result in a response of the subfield.

DOI processing has important effects on the behavior of
the model. It is the key feature for simulating data in a
physiological study on luminance gradient reversal (Section
3.1), and it makes the model more robust to noise (Sections
4 and 5). As stated above, DOI relies on strong inhibition.
The assumption of strong inhibitory input to a simple cell
that can overwhelm excitatory contributions is supported by
many physiological studies. Evidence comes from both
extracellular (Heggelund, 1981; Palmer & Davis, 1981) and
intracellular recordings (Borg-Graham et al., 1998; Ferster,
1988; Hirsch et al., 1998).

2.2.2. Non-linear simple cell circuit

On and off subfields interact via a disinhibition circuit
that boosts activities for spatially juxtaposed on and off
contrast configurations (Neumann et al., 1999). Such
juxtaposed on and off contrasts occur at step edges, thus
the simple cell model exhibits significantly higher responses
for this configuration than for shallow luminance gradients,
for example.

The resulting simple cell activity consists of a linear and
a non-linear, i.e. multiplicative, term

aS(Ron + Roff) + 2BS(RonRoff)
asYs + Bsys(Ron + Ror)

The parameters are set to ag = 1.0, 85 = 10,000.0, and
vs = 0.01. Their specific choice is not critical as long as the
linear components scaled by ag and g are small compared
to the non-linear component scaled by SBs. For the normal-
ized input image with values in the range [0,1], the
parameterization of the model results in values of the
subfield activity R, and R.; which are considerably below
one. To guarantee that multiplication of these values
actually leads to an increase of activity compared to

5= ®)

the linear addition result in the strong weighting of the
non-linear part in Eq. (5). Further details of the non-linear
simple cell circuit can be found in Appendix A.

In some of the simulations, the proposed non-linear
integration of simple cell subfields is compared to a basic
linear integration where subfield responses R, and R are
simply added. For the linear subfield interaction, Eq. (5) is
replaced by

Siin = Ron + Ro. (6)

Here and in the following we refer to the model with a linear
combination of simple cell subfields as ‘quasi-linear’, since
this model contains non-linearities at the pre-processing
stages.

To sum up, the present simple cell model comprises two
mechanisms with complementary functionality. DOI serves
to suppress undesired spurious activity to noisy inputs,
while the non-linear simple cell circuit sharpens and
amplifies desired responses to edges.

2.3. Complex cells

Complex cell responses are insensitive to contrast
polarity and are modeled by pooling responses of simple
cells with opposite contrast polarity

Co = Sig.0 + Sare- @)

Pooled complex cell responses Cpq result from summing
complex cell responses for all orientations

Cpool = Z Cy. ®)
6

Pooled complex cells responses are used in Sections 4 and 5
to visualize the responses of the whole model within a single
image.

3. Simulations of physiological data

In order to demonstrate the physiological plausibility and
relevance of the proposed model, basic properties of simple
cells found in vivo are simulated. In particular, we simulate
a study of Hammond and MacKay (1983), to show that DOI
processing can account for both classical linear response up
to saturation as well as strong depression effects as
measured by Hammond and MacKay. Further, we deter-
mined orientation tuning curves for the model simple cells
to study the effect of DOI on the tuning widths. The
simulations show a sharpening of orientation tuning with
increasing inhibition, in accordance with physiological
findings (Shapley et al., 2003). The values of the model
parameters are as described in Section 2 and are the same in
all simulations, except for the orientation tuning simulations
in Section 3.2 where 16 orientations are used to allow for a
sufficiently fine resolution of orientation space.
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Fig. 3. Left: Example of stimulus used. Right: A set of stimuli for a fixed
length of the dark bar.

3.1. Hammond and Mackay study

In this section we simulate a study of Hammond and
MacKay (1983), who investigated the response of simple
cells in cat to optimally oriented bars. This study is
challenging for any model of simple cells because it
shows classical effects like linear contrast summation up to
saturation and strong, possibly non-linear, suppressive
effects.

In their study, Hammond and MacKay recorded simple
cell responses to three types of bar stimuli: dark bars, dark
bars with light segments added in the middle (DLD) and
dark bars with light segments added at both ends (LDL).

Fig. 3 depicts the single stimulus used and a sample of
the whole stimulus set. A main result of their work is shown
in Fig. 4. Probing a simple cells without end-inhibition with
bars of different lengths results in a linear response up to
saturation (‘length-summation curve’).

When light segments are added to the dark bars (DLD
and LDL), the average response decrement is much larger

VC-178-11: Simple

than predicted from linear contrast summation. Linear
summation would suggest that the slopes of the length-
summation curve and of the LDL and DLD curves are the
same.

Our model predicts that simple cell responses as observed
by Hammond and MacKay can be generated on the basis of
the proposed DOI scheme. Results are shown in Fig. 4
(right). The same model parameters as for the processing of
images in Section 4 are employed. The declining slopes of
the curves for both DLD and LDL stimuli are much steeper
than the ascending slope of the length-summation curve, as
reported by Hammond and MacKay. In summary, a good
qualitative fit with the physiological data is obtained. Note
that for the non-dominant case, i.e. setting the DOI
parameter ¢ = 1, no strong suppression occurs, but the
responses for LDL and DLD bar stimuli lie on the dotted line
as predicted by linear contrast summation. To rule out effects
of the non-linear simple cell circuit, the circuit is replaced by
a linear combination of simple cell subfields, where subfield
responses are simply added (Eq. (6)). For this model variant
with DOI, the results obtained are qualitatively the same.

3.2. Orientation tuning

The most prominent RF property of simple cells is their
orientation selectivity. One can plot orientation tuning
curves of simple cells by measuring the mean firing rate of a
simple cell for stimulus items of different orientations.
Orientation tuning curves of simple cells have a Gaussian
shape which peaks at the preferred orientation. The half-
width at half-height (HWHH) of the orientation tuning
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75 x = dark bar (xdeg) + central light segment
= L
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Fig. 4. Physiological recording and simulation results of simple cell responses to a dark bar alone (Iength-summation curve, dashed) and a dark bar with added
segments of opposite contrast polarity. Segments of opposite contrast polarity are added either at the ends (LDL bars, data points marked ‘o’, solid line) or
centrally (DLD bars, data points marked ‘x’, dashed line). The abscissae denote total bar length (dark bar plus light segments). Left: Results of physiological
recordings by Hammond and MacKay (1983). Response curves to LDL and DLD bars are extrapolated to the response for the dark bar alone (as indicated by
arrows pointing to the length-summation curve). Curves are free-hand approximations to the data points. Data reprinted with permission of the publisher. Right:
Simulation result. For comparison, predictions by linear contrast summation (dotted) are shown in the plot of the simulated data. Both the physiological study
and the simulations show a strong response decrement when a light segment is added to the dark bar. The decrement for segments of opposite contrast polarity
is much stronger than the corresponding response increment for a segment of the same contrast polarity (compare slopes of length-summation curves with

slopes of curves for LDL and DLD bars).
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curves is used as a measure which characterizes the
sharpness of orientation tuning.

In this section we simulate orientation tuning curves to
study the effects of DOI and the subsequent linear vs. non-
linear combination of simple cell subfields on the orien-
tation selectivity of model simple cells. To determine
orientation tuning curves, we probe the circuit with
sinusoidal grating stimuli of different contrasts. For
computational convenience, rather than using grating
stimuli of different orientations, we determined orientation
tuning curves from simple cells responses with a number of
Op.x = 16 different orientations at the same fixed location
(Troyer et al., 1998). The location is chosen which results in
maximal response for a linear light—dark simple cell and is
kept fixed for all model variants studied. We parameterize
the simple cell model with O,,, = 16 different orientation
instead of O, = 8 (Section 2) to allow for a sufficiently
fine resolution of orientation space. The number of O, =
16 orientations results in sampling of orientation space of
180°/16 = 11.25°. To rule out that the tuning curves depend
on the sampling of stimulus orientations we have rerun the
simulations with O, = 32 orientations. For all cases
shown in the following, the HWHHs differed by less than 1°.

In a first study, we compare the effect of DOI on
orientation tuning curves for the linear and the combination
of simple cell subfields (Fig. 5). As a basic result, for both
the linear and the non-linear combination of simple cell
subfields, DOI, i.e. increasing the inhibition at the level of
LGN cells, results in a sharper orientation tuning. Note that
DOI has only small effects on the response magnitude of

quasi-linear quasi-linear with DOI
0.4 0.4
22.2° 17.7°
0.3 0.3
0.2 0.2
0.1 0.1
0 —45 0 45 0 —45 0 45
nonlinear nonlinear with DOI
15 15
19.8° 14.7°
10 10
5 5
0 —45 0 45 0 —-45 0 45

Fig. 5. Orientation tuning curves for models with linear and non-linear
combination of subfields, both with and without DOI. The abscissa denotes
orientation in degree, the ordinate denotes the simple cell response at a
fixed spatial location. The three curves in each plot correspond to different
contrast levels, namely 0.8, 0.5 and 0.25 (top to bottom). Top right inset
denotes mean HWHH. The orientation tuning curves show contrast-
invariant orientation tuning for all four models and a sharpening of
orientation tuning by DOIL.

the optimally tuned cell. Further, the orientation tuning
curves of the linear and the non-linear combination of
subfields exhibit two general differences. First, the orien-
tation tuning curves sharply fall off for the non-linear
combination and more smoothly roll off for the linear
combination. Second, the width of the curves is smaller for
the non-linear than for the linear combination. To sum up,
both DOI and non-linear processing have the effect of
decreasing the width of the tuning curves, with non-linear
processing additionally sharpens the shape of the curves.
Consequently, the highest selectivity is obtained for the
model with the, MCSCS together with DOIL.

Physiological recordings of simple cells tuning curves
show that the tuning curves remains constant, even when the
contrast of the stimulus is changed (Sclar & Freeman, 1982;
Skottun, Bradley, Sclar, Ohzawa, & Freeman, 1987). All
model variants show this contrast-invariant orientation tuning.
As pointed out by Ferster and Miller (2000), this property is
difficult to explain in a simple feedforward model, because the
responses of both retinal ganglion cells and LGN cells strongly
depend on stimulus contrast (Cheng, Chino, Smith, Hama-
moto, & Yoshida, 1995; Troy & Enroth-Cugell, 1993).

The width of orientation tuning of simple cells in vivo
exhibits a certain variation. The HWHH between orientation
tuning curves in monkey varies between 5 and 50°, with a
most frequent tuning of 20° (Schiller, Finlay, & Volman,
1976). More recently, Carandini and Ferster (2000) have
found an average HWHH for the spike responses of simple
cells of 23°. The values obtained for the models are thus in
good agreement with the physiological experiments.
Because of the high aspect ratio of the filter used to model
the simple cell subfield, the HWHH of the quasi-linear
model also falls within the physiological range.

Shapley et al. (2003) summarize physiological data
which show a direct correlation between the amount of

40

35t

30

25 1

HWHH

20

15+

10

&

Fig. 6. Sharpening or orientation tuning with increasing inhibition. Both
models with either a linear (upper curve, dashed) or a non-linear
combination of simple cell subfields (lower curve, solid), show a
sharpening of orientation tuning, i.e. a monotonically decrease in HWHH
with increasing amount of inhibition by increasing the DOI parameter &.
Simulated data points are marked with dots.
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Fig. 7. Noisy ellipse (left) and corresponding horizontal cross-section
(right) taken at the center of the image. The size of the ellipse image is
253 X 189 pixels.

inhibition a neuron receives and its orientation selectivity.
In a second study, we determine HWHHs of orientation
tuning curves for different amounts of inhibition by varying
the DOI parameter ¢ in the range [0,4]. As above,
simulations are carried out for two model variants with a
linear or non-linear combination of simple cell subfields.
The results are shown in Fig. 6. For both models, increasing
the amount of inhibition results in an increasingly sharper
orientation tuning. Compared to the linear combination of
simple cell subfields, the non-linear combination has an
overall higher orientation selectivity. To sum up, the model
shows the direct correlation between the amount of
inhibition a neuron receives and its orientation selectivity,
as observed physiologically (Shapley et al., 2003).

4. Processing of images

In this section, we show the performance of the model on
synthetic and on natural images. The values of the model
parameters are as described in Section 2 and are the same in
all simulations. In the simulations we compare the new
mechanism of DOI (setting & = 2) to a model with a linear
combination of subfields and to the non-linear model
without DOI (£ = 1). Recall that for the linear combination
of subfields the subfield responses are simply added to
replace the non-linear interactions of Eq. (5). As noted

quasi-linear quasi-linear with DOI

above, we refer to this model as ‘quasi-linear’, since it
contains non-linearities at the pre-processing stages. The
model with the linear combination of subfields approxi-
mates filtering with a first order Gaussian derivative
(Neumann et al., 1999). The edge images show pooled
complex cell response (Eq. (8)), dark values indicate high
responses.

4.1. Synthetic images

In the first study we employ a synthetic image of a dark
ellipse on a lighter background, corrupted with 50%
additive Gaussian noise. Fig. 7 shows the input image
together with a horizontal cross-section taken at the center
of the image.

For this image, four results are generated by combining
two interactions at the subfield level (standard and DOI)
with two combinations of the subfields (linear and non-
linear). The simulation results are shown in Fig. 8. All
models show pronounced responses at the edge locations,
but only the non-linear models have a unimodal response to
an edge. Moreover, the results show that the models with
DOI are considerably less sensitive to noise. The simulation
results for this image exemplify the complementary proper-
ties of DOI and of the non-linear simple cell circuit: DOI
serves to suppress noisy inputs, while the non-linear
interaction of MCSCS sharpens the responses to edges.

The edge doubling observed for the quasi-linear model
occurs when the half-wave rectified input from LGN on and
off cells is processed by model simple cells with adjacent on
and off subfields. More precisely, the edge doubling results
from simple cells which have the same orientation as the
edge, but reversed contrast-polarity. Consider a light—dark
edge which generates adjacent on and off contrast responses.
The light—dark simple cell with matching RF subfields
responds strongest at the edge location. However, also the
dark—light simple cell with reversed RF subfields responds at

nonlinear nonlinear with DOI

s e

/’

A T AT TP

v

Fig. 8. Top row: Simulation results for the image of a noisy ellipse. Bottom row: The corresponding horizontal cross-sections taken at the center of the images.

The size of the images is 253 X 189 pixels.
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Fig. 9. Natural image of a tree and simulation results. The size of the images is 255 X 256 pixels.

a location left to edge, due to the integration of on responses
by the on-subfield, and also right to the edge, due to the
integration of off responses by the off-subfield. Lateral
inhibition cannot remove these double responses: while the
undesired side responses are inhibited by the stronger central
response, at the same time the central desired responses
would be inhibited by the two side responses. Also, inhibition
between simple cell of opposite contrast-polarity, as has been
used in a previous version of our model, still results in double
responses for the linear model. Note that a linear filtering of
the raw input luminances without the intermediate stage of
half-wave-rectified LGN responses would not result in edge
doubling. The edge-doubling is thus a property of our
particular model, not a fundamental problem confronting
linear processing schemes.

4.2. Natural images

A further challenge to the model is posed by processing
of natural images. In the first simulation we use an image of
a tree which is shown together with the simulation results in
Fig. 9. For the DOI processing, responses to the lawn are
largely suppressed, while responses to the contour of the
tree and to the shadow are enhanced. We also employ an
image of a 3D laboratory scene as input image (Fig. 10).
Here, the contours of the cube are sharper and the spurious
responses at the floor vanish for DOI processing.

In two further simulations, we employ images from a set
used in an evaluation study of edge detection algorithms

quasi-linear

input image

(Heath, Sarkar, Sanocki, & Bowyer, 1997). We use a larger
scale to show the simulation results to compensate for the
approximately doubled image size compared to the
previously shown images.

For the traffic cone, the DOI processing results in sharp,
pronounced responses to the shape outline of the cone and
the car, while spurious responses to the leaves are
successfully suppressed. Similar results are obtained for
the image of a golf cart, where the edges of the cart are
reliably detected, while responses to small noisy structures
such as the lawn and the leaves are suppressed by DOI
(Figs. 11 and 12).

In some of the simulation results, the DOI processing
seems to suppress also responses to low contrast edges. This
effect is studied in detail in Section 5.1. It turns out that the
small responses are also retained for DOI processing, but
their visibility is reduced due to the rendering of the
simulation results.

5. Evaluation of DOI properties

In Section 4 we have qualitatively shown that DOI allows
for the robust processing of images. In this section we
further clarify the properties of DOI in a series of numerical
evaluations.

To motivate the simulations in this section it is
instructive to consider the DOI equation, Eq. (4), in more
detail. Using Eq. (3) and the equality [x]* — [—x]T = x, we

nonlinear nonlinear with DOI

N

=

Fig. 10. Image of a laboratory scene and simulation results. The size of the images is 230 X 246 pixels.
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Fig. 11. Golf cart image and simulation results. The edge images are gamma
corrected with y = 0.6 because of the high contrast variations in the image.
The size of the images is 548 X 509 pixels.
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Fig. 12. Traffic cone image and simulation results. The edge images are
gamma corrected with y = 0.6 because of the high contrast variations in the
image. The size of the images is 437 X 604 pixels.

can rewrite Eq. (4) as follows:
Ron,O = [(Kon — &Ko) * G9]+

= [(Kon - Koff) * G0 - (§ - 1)I(off * GO]+
= [(Xon = Xoip) * Gy — (€ = DKoy # Gy 1T 9)
N e

dynamic threshold

This shows that DOI interaction introduces a dynamic
threshold that is proportional to ¢ and depends on the
strength of the signal in the opponent pathway.

With respect to this adaptive threshold it needs to be
clarified to what extent desired responses to contrast
changes might be suppressed by DOI interaction. This
question is addressed in a first set of simulations where we
evaluate the response of DOI to small contrast changes. We
show that the model with DOI remains sensitive even to
small contrast changes in the presence of noise. In a second
set of simulations we investigate the choice of the DOI
parameter £ to meet two conflicting demands as goods as
possible, namely the suppression of noise and the respon-
siveness to contrast changes. The response to different noise
levels further shows an important feature of DOI, namely
the adaptive suppression of noise.

5.1. Response to small contrasts

In this section, the effect of DOI on the processing of
small contrast changes is addressed, to examine whether
DOI has an undesired suppressive effect on contrast
responses. To study this question the response to small
contrast changes in the presence of high level noise is
evaluated for three simple cells models, namely a model
with a linear combination of subfields, and a non-linear
combination of subfields without and with DOI.

For the simulations a synthetic test image of alternating
on-off and off—on vertical step edges of increasing contrast
is employed. The on—off contrasts vary from 0.01 to 0.1 in
steps of 0.01 and are centered around a mean luminance
level of 0.5. For each on—off contrast, the image contains an
individual subimage of size 128 X 256 pixels, resulting in a
total stimulus size of 1280 X 256 pixels. The image together
with a horizontal cross-section is depicted in Fig. 13.
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Fig. 13. Top row: Test image for small contrast responses. Bottom row: The
corresponding horizontal cross-sections. The values at the abscissa denote
the contrast of the step edge at this position.
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Fig. 14. Test image corrupted with noise of SD 0.05 and corresponding
simulation results.

In a pioneering study, the test image is corrupted with
Gaussian noise of SD 0.05 which is equivalent to 500%
noise for the smallest contrast and 50% for the largest
contrast. The input image and the simulation results
showing pooled complex cell responses for each of the
three simple cell models are depicted in Fig. 14. Most
obviously, the result produced by the model with DOI
differs from the results produced by the models without DOI
in the response to noise. With DOI, responses to noise are
absent or at least largely suppressed. At the same time, upon
first visual inspection, the model with DOI indeed seems to
suppress responses to small contrast. For example, compare
the response to the contrasts of 0.04 for the three models.
While both models using either a linear or a non-linear

combination of simple cell subfields but yield a visible
response without DOI, using DOI the response appears
fragmented and faint.

To further analyze this behavior, the mean response
along each column is computed for the three models
(Fig. 15). The plots show that all models yield a mean
response above the mean noise level for contrast values of
about 0.03 and higher. The reasons why these responses are
visible for the two models without DOI but seem to fade for
the model with DOI are caused by the properties of the
visual display. For each model the resulting image as shown
in Fig. 14 is scaled individually, mapping the lowest value
to white and the highest to black. Without DOI, the
responses to the edges add on a significant noise level, such
that, e.g. the mean response to 0.4 contrast has a strength of
about 30% of the maximum response, making it fairly
visible. For DOI, on the other hand, the noise level is
virtually zero, and the mean response to 0.4 contrast is only
at about 5% of the maximum response, making it virtually
invisible. Thus, the almost vanishing response to noise for
the model with DOI renders the response to small contrast
less visible, though this response is still present.

Next we determine for each model the contrast level at
which the response differs significantly from the response to
the noisy background. Therefore, the mean responses and
SDs at each dark—light contrast step (signal) are computed
and compared to the mean response and SD at the
background (noise). Results for the three simple cells
models are shown in Fig. 16.

The plots allow to determine the contrast which yields a
significant response. A significant response is to be found at
contrast locations where the error bars of signal and noise do
not overlap. The results show that the amount of contrast,
which is necessary to yield a significant response, is the
same for all models, in this case 0.05 contrast. Similar
results have been obtained for different noise levels. We
conclude that the simple cell model with DOI remains
sensitive even to small contrast changes, and that any
apparent loss of sensitivity can be attributed to the
properties of the visual display.

quasi-linear nonlinear nonlinear with DOI
) |
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0.01 0.50 0.10 0.01 0.50 0.10 0.01 0.50 0.10

Fig. 15. Column sum of simulation results shown in Fig. 14, using a test image which is corrupted with noise of SD 0.05. The abscissa denotes the contrast of

the step edges.
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Fig. 16. Mean response at dark—light contrast edges (upper line) compared to mean response at the background (lower horizontal line) for the three models.
Error bars denote * SD. The abscissa denotes the contrast of the step edges. For all three models, a significant response occurs at 0.05 contrast.

5.2. Determination of the DOI parameter and adaptive
noise suppression

In this section we investigate the choice of the DOI
parameter ¢ to meet two conflicting demands as goods as
possible, namely the suppression of noise and the respon-
siveness to contrast changes. We use a step edge which is
corrupted with Gaussian noise of different noise levels.
Both the response of an optimally oriented subfield and a
non-optimally, i.e. orthogonally oriented subfield are
simulated for three different noise levels (25, 50 and
80%), and different values of the DOI parameter &
Responses are averaged over 100 different realizations for
each noise level.

Simulation results are shown in Fig. 17. For the optimal
orientation (Fig. 17, left), responses are a lineary decreasing
function of ¢, indicating that £ cannot be chosen arbitrarily
large. For the non-optimal orientation (Fig. 17, right),
responses decrease non-linearly and are almost zero for & >
2. Interestingly, this is true for different noise levels,
showing that DOI can adaptively suppress noise. ‘Adaptive’
here refers to the fact that different noise levels (25, 50, and
80%) result in virtually zero response at the non-optimal
orientation for ¢ = 2, i.e. with DOI. Using DOI, the amount

optimal response

Ron,90

0.8

25%
0.6
50%
0.4r

0,
02t 80%

1 1.5 2 2.5 3

of suppression thus adapts to the noise level: the larger the
noise, the larger the suppression.

These results provide criteria for the choice of & For a
value of £ = 2, the non-optimal responses are almost zero,
while the optimal responses are still considerably large.
Increasing ¢ beyond 2 would mostly decrease the optimal
responses but not the non-optimal responses, which have
already smoothly approached zero. Thus, a value of £ = 2 is
chosen for all the simulations of the non-linear model with
DOI as presented in Section 3.

6. Discussion and conclusion
6.1. Principle findings

In this article we have proposed a simple cell model with
DOI. DOI is integrated into a push—pull interaction defining
the simple cell subfield responses. In push—pull interaction,
a subfield (e.g. on) receives both excitatory input from the
like domain (i.e. on) and inhibitory input from the opposite
domain (i.e. off). DOI proposes a stronger weighting of
the opponent input, resulting in a more selective response.

— nonoptimal response

Ron,O

0.1r¢

0.05

s

1 1.5 2 25 3

Fig. 17. The mean subfield responses to a noisy step edge, corrupted with 25, 50, and 80% additive Gaussian noise for various values of the DOI parameter &.
Responses are averaged over 100 different realizations of the respective noise level; error bars denote = 1 SD. Responses are normalized to allow for better
comparison. Left: The mean response of an optimally oriented subfield decreases linearly with & Right: The mean response of non-optimally oriented subfield
decreases non-linearly with ¢ and is almost zero for ¢ = 2, irrespectively of the amount of noise added. For the non-optimal response (left), we have rescale

y-axis to increase the visibility of the plot.
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The subfields are combined using a non-linear simple cell
model (Neumann et al., 1999).

The proposed model can account for a number of empirical
findings. The model reproduces the physiological data of
simple cell responses to luminance gradient reversal (Ham-
mond & MacKay, 1983), showing a large decrease of activity
if small patches of opposite contrast polarity are added to
an optimal bar stimulus. We have further investigated
the orientation tuning of model simple cells. The results
show that both DOI and MCSCS lead to a sharpening of the
orientation tuning. We show that the newly proposed model of
simple cells with DOI and MCSCS can generate sharp
orientation tuning from simple cell subfields with a physio-
logically plausible aspect ratio. The model further shows
contrast-invariant orientation tuning, an important feature of
simple cells in vivo (Ohzawa, Sclar, & Freeman, 1985; Sclar
& Freeman, 1982). Next we investigated the correlation
between inhibition and the sharpness of orientation tuning.
We show that the orientation tuning monotonically increases
(i.e. the HWHH decreases) with increasing weighting of the
inhibitory input to the simple cell subfield, in accordance with
physiological findings (Shapley et al., 2003).

After simulating empirical findings from physiology, the
model is used with identical parameter settings to process
noisy synthetic and natural images. The results show that the
robustness of the response increases for the model with DOI.
The model with DOI has a lower probability of responding to
noise, while the sensitivity to salient edges is preserved.
Finally, we conduct a detailed numerical evaluation to clarify
the role of DOI. We particularly focus on the strength of the
DOI parameter and the response to small contrasts. We
determine an optimal parameter value of £ = 2 which is used
in all simulations, and show that the DOI mechanism remains
sensitive to small contrasts. The numerical evaluation further
shows a unique property of DOI, namely the adaptive
suppression of noise. The adaptive suppression results in
equally good suppression for noise of different levels, as
shown in Fig. 17. Adaptive suppression is generated in our
model since the amount of suppression, i.e. the activity in the
opponent channel, scales with the noise level.

Finally, we presented a numerical evaluation of the DOI
properties to address two important questions. First, one
might ask whether the good suppression of noise for the DOI
model might be accompanied by the undesired feature of
suppressing responses to small contrast changes. Here it is
shown that a model with DOI does not lead to a gross
suppression of small contrast changes, but instead remains
sensitive to small contrast variations. However, the results
also show that the model with DOI does not outperform the
other models with respect to contrast sensitivity, i.e. the
lower response to noise does not cause a significantly better
response at lower contrast compared to the other models.
Second, one might ask what are the advantages of DOI
compared to a simple threshold. The advantages can be seen
when the model is probed with images of different noise
levels. Without DOI, different noise levels lead to an increase

of undesired responses to homogeneous regions and at
orientations orthogonal to the edge. Most important, this
increase is proportional to the noise level: the larger the
noise, the stronger are the undesired responses. A threshold
then has to be carefully determined by an additional
mechanism, depending on the noise level. Further, consider
an image with regions of different noise levels. Here, a global
threshold cannot distinguish between signal and noise, and
elaborated methods of local threshold determination needs to
be applied. With DOI, on the other hand, undesired responses
to homogeneous regions or at non-optimal orientations
orthogonal to an edge are strongly suppressed. Most
important, suppression is equally effective irrespectively of
the noise level. This is the adaptive noise suppression
property of DOI: as noise increases, the amount of
suppression adapts to the noise level, such that for different
noise levels undesired responses are virtually zero. With
DOI, the adaptive thresholding necessary to handle noise of
different levels does not require an extra mechanism, but
instead is achieved implicitly by an elegant, biologically
motivated interaction.

6.2. Use of shunting inhibition vs. linear DoG

The present model uses non-linear shunting interactions
for the first processing stage. Shunting interaction has a
number of useful properties such as automatic gain-control
and response normalization which results in bounded activity
and contrast-sensitivity depending on the overall luminance
level, following the Weber—Fechner law (Grossberg, 1970).
In contrast to the non-linear shunting interaction, a linear
interaction using a difference of Gaussians (DoG) model is
frequently used. The shunting equations result in a scaled
DoG normalized by a sum of Gaussians and comprises of
more general form of the basic DoG model (Mingolla, Ross,
& Grossberg, 1999; Neumann, 1996). We have rerun a
number of simulations with a basic DoG filter instead of the
shunting interactions. Replacing the shunting interactions
with a similar DoG filter essentially preserves all basic
properties of the proposed simple cell model. The proposed
mechanisms of DOI and MCSCS are thus robust against
changes in the pre-processing stage.

6.3. Comparison with dominating inhibition as used
in the model by Troyer et al. (1998)

Dominating inhibition is also used in a detailed
physiological model by Troyer et al. (1998) to explain
contrast-invariant orientation tuning of simple cells. In
contrast to our non-linear model, Troyer et al. (1998) use
linear Gabor filters to model simple cells. Strong ‘anti-
phase’ inhibition occurs between Gabor filters of phase shift
180°, i.e. opposite contrast polarity, while we employ
inhibition between isotropic on and off responses.

One crucial difference between the model by Troyer et al.
(1998) and our model is thus the generation of contrast-
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invariant orientation tuning. In our model, contrast-invariant
orientation tuning arises also with a basic linear model using
balanced inhibition, whether Troyer et al. (1998) proposes
stronger inhibition than excitation. Thus, contrary to Troyer
et al. (1998), our model predicts that simple cells which
receive balanced excitation and inhibition also show
contrast-invariant orientation tuning. Provided that intra-
cortical recurrent interaction may also play a significant role
in generating contrast-invariant orientation tuning, we
suggest a different functional role of DOI. On the basis of
our findings we suggest that the visual system mainly uses
DOI to robustly extract oriented contrast features in noisy
environments.

Another important difference between the model by
Troyer et al. (1998) and our model is the orientation
selectivity of the inhibition. Whereas the model by Troyer
et al. (1998) proposes orientation selective inhibition from
cells with respond in a contrast-dependent manner, DOI in
our model is untuned for orientation. Recently, two
populations of inhibitory cells have been found in layer 4,
namely orientation selective simple cells and unoriented
smooth complex cells (Hirsch et al., 2003). Thus, both kinds
of inhibition are supported by biological data. The first
version of our model included a stage of oriented inhibition
following the non-linear combination of simple cell
subfields. At this stage of opposite contrast polarity
inhibition, a simple cells receives inhibitory input from a
simple cell of same orientation, but opposite contrast
polarity. Eliminating this stage did not influence the
proposed model in a significant way. Recent work suggests
that orientation selective suppression accounts for the
dynamical reduction of orientation bandwidth (Ringach,
Hawken, & Shapley, 2003). The precise functional roles of
the two kinds of inhibition remains to be clarified by future
research.

6.4. Relation of the findings by Hammond and MacKay
(1983) to studies showing excitatory influence
of flanking bars

A number of physiological studies have found excitatory
influences of flanking bars on-cell responses (Gilbert, 1992;
Gilbert & Wiesel, 1990; Kapadia, Ito, Gilbert, & Westhei-
mer, 1995). The bar stimuli used in these experiments are
reminiscent of the DLD and LDL stimuli used by Hammond
and MacKay (1983), who found strong inhibitory rather
than excitatory influences. However, the stimuli used in
both kinds of experiments differ in two important aspects.
First, the stimuli used by, e.g. Kapadia, Westheimer, and
Gilbert (2000), extend well beyond the classical RF and
reveal excitatory long-range influences. On the contrary,
Hammond and MacKay (1983) reported strong suppression
even when small segments are added and the whole stimulus
is confined to the classical RF. Second, the stimuli used in
the long-range experiments consist of bars split into a
central part and two adjacent flankers, where the gap

between the individual parts of the bar has the same contrast
as the background. On the contrary, Hammond and MacKay
(1983) added segments of opposite contrast polarity to the
bars, which was crucial to generate strong suppression.
Merely breaking a bar into segments and filling the gaps
with the background luminance caused no more reduction
than predictable from the effective reduction in bar length
(Hammond & MacKay, 1983). Contextual long-range
interactions have motivated numerous models for contour
and feature linking (Grossberg & Mingolla, 1985; Li, 1998),
cortico-cortical interactions for boundary processing (Neu-
mann & Sepp, 1999), pre-attentive texture segmentation (Li,
1999), perceptual grouping and object-based attention
(Grossberg & Raizada, 2000), or junction detection (Hansen
& Neumann, 2004). A review of computational models can
be found in Neumann and Mingolla (2004) or Hansen
(2003). In contrast to these models, the present article
focuses on suppressive and facilitatory feed-forward
interactions within the classical RF.

6.5. Response of white noise stimuli

A number of physiological studies use white noise
variations as stimuli and then determine the response
properties and RF profiles of cells by reverse correlation
techniques (Marmarelis & Marmarelis, 1978; Marmarelis &
Naka, 1972). This method has been applied in various
studies to determine the spatio-temporal response properties
of cells (Cottaris & Valois, 1998; Ringach, 2002; Ringach,
Hawken, & Shapley, 1997). The reverse correlation method
using white noise stimuli would also work with DOI
occurring in vivo, since as the noise pattern resembles the
signal, DOI has been shown to be as selective as a
mechanisms without DOI (Section 5.1).

6.6. Model extensions: grouping, multiple scales,
complementary processing streams

The edge maps produced by the proposed model are
clean and sharp, but occasionally contain some gaps. These
gaps can be successfully handled by later stages involving
contextual grouping mechanisms. Without DOI, the non-
zero input to later stages might be caused by a contrast
change or, alternatively, by noisy fluctuations within the
signal. With DOI, on the other hand, a non-zero response is
a strong indication of a contrast change in the original
signal. Consequently, with DOI, grouping of local edge
information is not plagued by noisy responses but instead
integrates only the signal responses. A full evaluation of the
benefits of DOI for subsequent stages of grouping
mechanisms is an interesting question for future research.

The need to extract image structures such as edges at
multiple scales has a long tradition in computer vision and
biological modeling (Marr, 1982; Marr & Hildreth, 1980;
Witkin, 1983). A more recent discussion can be found in
Lindeberg (1994). The present model operates on single
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scale but can be naturally extended to the processing at
multiple scales by increasing the SDs of the Gaussians that
define the model RFs. We have shown in earlier work that
the non-linear simple cell circuit has a scale selective
property by boosting activity at the appropriate scale that
corresponds to the underlying image structure (Neumann
et al., 1999). In the present paper, we use a single scale to
focus on the contributions of the new mechanism of DOI.

The present model deals with the processing of boundary
information. Surface information such as shading and
textures can be processed by a parallel surface system,
which interacts by filling-in processes with the boundary
system (Cohen & Grossberg, 1984; Grossberg, Mingolla, &
Ross, 1997). A review can be found in Neumann and
Mingolla (2003).

7. Conclusion

Overall, we have presented a biologically motivated
simple cell model which incorporates two mechanisms:
DOI in a push—pull network, and MCSCS. The model can
account for a number of basic empirical findings, such as
linear contrast-summation up to saturation and contrast-
invariant orientation tuning, as well as for more challenging
data such as strong suppression by segments of opposite
contrast polarity, sharp orientation tuning using simple cell
subfields with a moderate aspect ratio of 2.23, and
increasing orientation selectivity with increasing inhibition.
Application of this model for the processing of images leads
to robust extraction of contrast information by adaptive
suppression of noise. This in turn allows to hypothesize a
functional role for the dominant inhibition as observed
experimentally, showing the fruitful cross-fertilization
between biological modeling and more technically oriented
applications.
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Appendix A. Details of the non-linear simple cell circuit

The purpose of the non-linear simple cell circuit is to
generate sharp responses at edges. Edges are characterized
by spatially juxtaposed on and off contrast responses. To
generate a sharp response, the desired circuitry thus has to
amplify responses if both subfields are simultaneously
active, similar to a soft AND gate. The circuit that
realizes this property is motivated computationally and is
not supposed to have a direct neurophysiological
counterpart.

The various parts of the non-linear simple cell circuitry
and their different computational roles are explained below.
A more detailed description and motivation of the non-
linear simple cell circuit is given in Neumann et al. (1999).

The circuit which defines the multiplicative combination
of simple cell subfields (MCSCS) comprises three inter-
mediate steps, namely S, S®, and § (Fig. A1). The basic
circuitry is given by the excitatory Ry.;— Sf,?,off )
connections, which define the excitatory input to the simple
cell from its two subfields R, and R.;. A circuit having
only this basic connection would results in a simple cell that
linearly sums its input. To make the circuit more selective
for juxtaposed on and off contrasts, additional connections
are introduced. The on-channel path R, — S')—o §@
implements a self-normalization by inhibition of S,
which prevents arbitrarily large activity of the cell. The
same holds true for the off-channel. The key connections of
the model are the cross-channel inhibitory connections
Ry '} and Ry StD. By disinhibition, i.e. inhibiting
the inhibition of SV, the simple cell response is non-linearly
amplified if both subfields are active simultaneously.

The first two steps are modeled using inhibitory shunting
equations. The steady-state solutions for the on-channel read

S(l) — Ron (2) _ Ron
M ag + BsRosr My + &S

The corresponding equations for the off-channel are
obtained by interchanging on and off. Variables occur for
all discrete orientations. The index 6 is omitted to simplify

-

Fig. Al. Sketch of the simple cell circuit with the non-linear, multiplicative
combination of simple cell subfields (MCSCS). Arrows denote excitatory
input, circles at the end of lines denote inhibitory input.
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notation. The activity of the third step S results from pooling
the contributions of the on and off-channel

< 2 2
§=83 + S5

Combining these equations and assuming a symmetric
relation between the two channels by setting 65 = Bs7s
yields a more concise equation. The resulting simple cell
activity consists of a linear and a non-linear, i.e. multi-
plicative, term

C(S(Ron + Roff) + 2IBS(ROnRoff)

asYs + Bs¥s(Ron + Ror)
The parameters are set to ag = 1.0, S5 = 10,000.0, and
vs = 0.01. Their specific choice is not critical as long as the

linear components scaled by ag and yg are small compared
to the non-linear component scaled by Ss.

S:

References

Alonso, J. M., Usrey, W. M., & Reid, R. C. (2001). Rules of connectivity
between geniculate cells and simple cells in cat primary visual cortex.
The Journal of Neuroscience, 21(11), 4002-4015.

Borg-Graham, L. J., Monier, C., & Frégnac, Y. (1998). Visual input evokes
transient and strong shunting inhibition in visual cortical neurons.
Nature, 393, 369-373.

Carandini, M., & Ferster, D. (2000). Orientation tuning of membrane
potential and firing rate responses in cat primary visual cortex. The
Journal of Neuroscience, 20, 470—484.

Cheng, H., Chino, Y. M., Smith, E. L., IIl, Hamamoto, J., & Yoshida, K.
(1995). Transfer characteristics of lateral geniculate nucleus X neurons
in the cat: Effects of spatial frequency and contrast. Journal of
Neurophysiology, 74(6), 2548—-2557.

Cohen, M., & Grossberg, S. (1984). Neural dynamics of brightness
perception: Features, boundaries, diffusion, and resonance. Perception
and Psychophysics, 36, 428—456.

Cottaris, N. P., & De Valois, R. L. (1998). Temporal dynamics of
chromatic tuning in macaque primary visual cortex. Nature,
395(6705), 896—900.

Fechner, G. T. (1889). Elemente der Psychophysik. Leipzig: Breitkopf &
Hartel.

Ferster, D. (1988). Spatially opponent excitation and inhibition in simple
cells of the cat visual cortex. The Journal of Neuroscience, 8(4),
1172-1180.

Ferster, D., & Miller, K. D. (2000). Neural mechanisms of orientation
selectivity in visual cortex. Annual Review of Neuroscience, 23,
441-471.

Furman, G. (1965). Comparison of models for subtractive and
shunting lateral-inhibition in receptor-neuron fields. Kybernetik, 2,
257-274.

Gardner, J. L., Anzai, A., Ohzawa, 1., & Freeman, R. D. (1999). Linear and
nonlinear contributions to orientation tuning of simple cells in the cat’s
striate cortex. Visual Neuroscience, 16(6), 1115-1121.

Gilbert, C. D. (1992). Horizontal integration and cortical dynamics.
Neuron, 9(1), 1-13.

Gilbert, C. D., & Wiesel, T. N. (1990). The influence of contextual stimuli
on the orientation selectivity of cells in primary visual cortex of the cat.
Vision Research, 30(11), 1689—1701.

Grossberg, S. (1970). Neural pattern discrimination. Journal of Theoretical
Biology, 27, 291-337.

Grossberg, S., & Mingolla, E. (1985). Neural dynamics of perceptual
grouping: Textures, boundaries, and emergent segmentation. Percep-
tion and Psychophysics, 38, 141-171.

Grossberg, S., Mingolla, E., & Ross, W. D. (1997). Visual brain and visual
perception: How does the cortex do perceptual grouping? Trends in
Neurosciences, 20(3), 106—111.

Grossberg, S., & Raizada, R. D. S (2000). Contrast-sensitive perceptual
grouping and object-based attention in the laminar circuits of primary
visual cortex. Vision Research, 40(10), 1413-1432.

Hammond, P., & MacKay, D. (1983). Influence of luminance gradient
reversal on simple cells in feline striate cortex. The Journal of
Physiology, 337, 69-87.

Hansen, T (2003). A neural model of early vision: Contrast, contours,
corners and surfaces. Doctoral dissertation, Ulm University, Faculty of
Computer Science, Department of Neural Information Processing.
Available on-line:  http://vts.uni-ulm.de/query/longview.meta.
asp?document_id = 3022.

Hansen, T., & Neumann, H. (2004). Neural mechanisms for the robust
detection of junctions. Neural Computation, 16(5), 1013-1037.

Heath, M. D., Sarkar, S., Sanocki, T., & Bowyer, K. W. (1997). A robust
visual method for assessing the relative performance of edge-detection
algorithms. [EEE Transactions of Pattern Analysis and Machine
Intelligence, 19(12), 1338—1359.

Heggelund, P. (1981). Receptive field organization of simple cells in cat
striate cortex. Experimental Brain Research, 42, 89—-98.

Hirsch, J. A., Alonso, J. M., Reid, R. C., & Martinez, L. M. (1998). Synaptic
integration in striate cortical simple cells. The Journal of Neuroscience,
18(22), 9517-9528.

Hirsch, J. A., Martinez, L. M., Pillai, C., Alonso, J. M., Wang, Q., &
Sommer, F. T. (2003). Functionally distinct inhibitory neurons at the
first stage of visual cortical processing. Nature Neuroscience, 6(12),
1300-1308.

Hodgkin, A. L. (1964). The conduction of nervous impulses. Liverpool:
Liverpool University Press.

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional
architecture of monkey striate cortex. The Journal of Physiology, 195,
215-243.

Jones, J. P., & Palmer, L. A. (1987a). The two-dimensional spatial structure
of simple receptive fields in cat striate cortex. Journal of Neurophysiol-
0gy, 58(6), 1187—-1211.

Jones, J. P., & Palmer, L. A. (1987b). An evaluation of the two-dimensional
Gabor filter model of simple receptive fields in cat striate cortex.
Journal of Neurophysiology, 58(6), 1233—1258.

Kapadia, M. K., Ito, M., Gilbert, C. D., & Westheimer, G. (1995).
Improvement in visual sensitivity by changes in local context: Parallel
studies in human observers and in V1 of alert monkeys. Neuron, 15(4),
843-856.

Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (2000). Spatial
distribution of contextual interactions in primary visual cortex and
in visual perception. Journal of Neurophysiology, 84(4),
2048-2062.

Kara, P., Pezaris, J. S., Yurgenson, S., & Reid, R. C. (2002). The spatial
receptive field of thalamic inputs to single cortical simple cells revealed
by the interaction of visual and electrical stimulation. Proceedings of
National Academy of Sciences of the United States of America, 99(25),
16261-16266.

Li, Z. (1998). A neural model of contour integration in the primary visual
cortex. Neural Computation, 10(4), 903-940.

Li, Z. (1999). Pre-attentive segmentation in the primary visual cortex.
Spatial Vision, 13, 25-50.

Lindeberg, T. (1994). Scale-space theory in computer vision. Boston:
Kluwer.

Marmarelis, P. Z., & Marmarelis, V. Z. (1978). Analysis of physiological
systems. New York: Plenum Press.

Marmarelis, P. Z., & Naka, K. (1972). White-noise analysis of a neuron
chain: An application of the Wiener theory. Science, 175(27),
1276-1278.

Marr, D. (1982). Vision. San Francisco, CA: W.H. Freeman & Co..

Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of
the Royal Society of London (B), 207, 187-217.


http://vts.uni-ulm.de/query/longview.meta.asp?document_id=3022
http://vts.uni-ulm.de/query/longview.meta.asp?document_id=3022
http://vts.uni-ulm.de/query/longview.meta.asp?document_id=3022
http://vts.uni-ulm.de/query/longview.meta.asp?document_id=3022

662 T. Hansen, H. Neumann / Neural Networks 17 (2004) 647—-662

Mingolla, E., Ross, W. D., & Grossberg, S. (1999). A neural network for
enhancing boundaries and surfaces in synthetic aperture radar images.
Neural Networks, 12, 499-511.

Monier, C., Chavane, F., Baudot, P., Graham, L. J., & Fregnac, Y. (2003).
Orientation and direction selectivity of synaptic inputs in visual cortical
neurons: A diversity of combinations produces spike tuning. Neuron,
37(4), 663-680.

Neumann, H. (1996). Mechanisms of neural architecture for visual contrast
and brightness perception. Neural Networks, 9(6), 921-936.

Neumann, H., & Mingolla, E. (2003). Contour and surface perception. In
M. Arbib (Ed.), Handbook of brain theory and neural networks (pp.
271-276). Cambridge, MA: MIT Press.

Neumann, H., & Mingolla, E (2001). Computational neural models of
spatial integration and perceptual grouping. In T. F. Shipley, & P. J.
Kellman (Eds.), From fragments to objects: Segmentation and grouping
in vision, Vol. 130 of Advances in psychology, chap. 12 (pp. 353—400).
Amsterdam: Elsevier.

Neumann, H., Pessoa, L., & Hansen, T. (1999). Interaction of ON and OFF
pathways for visual contrast measurement. Biological Cybernetics,
81(5-6), 515-532.

Neumann, H., & Sepp, W. (1999). Recurrent V1-V2 interaction in early
visual boundary processing. Biological Cybernetics, 81, 425—-444.
Ohzawa, 1., Sclar, G., & Freeman, R. D. (1985). Contrast gain control in the
cat’s visual system. Journal of Neurophysiology, 54(3), 651-667.
Palmer, L. A., & Davis, T. L. (1981). Receptive field structure in cat striate

cortex. Journal of Neurophysiology, 46, 260—276.

Pei, X., Vidyasagar, T. R., Volgushev, M., & Creutzfeldt, O. D. (1994).
Receptive field analysis and orientation selectivity of postsynaptic
potentials of simple cells in cat visual cortex. The Journal of
Neuroscience, 14(11 Pt 2), 7130-7140.

Reid, R. C., & Alonso, J. M. (1995). Specifity of monosynaptic connections
from thalamus to visual cortex. Nature, 378, 281-284.

Ringach, D. L. (2002). Spatial structure and symmetry of simple-cell
receptive fields in macaque primary visual cortex. The Journal of
Neurophysiology, 88(1), 455-463.

Ringach, D. L., Hawken, M. J., & Shapley, R. (1997). Dynamics of orientation
tuning in macaque primary visual cortex. Nature, 387, 281-284.

Ringach, D. L., Hawken, M. J., & Shapley, R. (2003). Dynamics of
orientation tuning in macaque V1: The role of global and tuned
suppression. The Journal of Neurophysiology, 90(1), 342—-352.

Schiller, P. H., Finlay, B. L., & Volman, S. F. (1976). Quantitative studies
of single-cell properties in monkey striate cortex. ii. Orientation
specificity and ocular dominance. The Journal of Neurophysiology, 39,
1321-1333.

Sclar, G., & Freeman, R. D. (1982). Orientation selectivity in the cat’s
striate cortex is invariant with stimulus contrast. Experimental Brain
Research, 46(3), 457-461.

Shapley, R., Hawken, M., & Ringach, D. L. (2003). Dynamics of
orientation selectivity in the primary visual cortex and the importance
of cortical inhibition. Neuron, 38(5), 689—-699.

Skottun, B. C., Bradley, A., Sclar, G., Ohzawa, 1., & Freeman, R. D. (1987).
The effect of contrast on visual orientation and spatial frequency
discrimination: A comparison of single cells and behavior. The Journal
of Neurophysiology, 57(3), 773-786.

Tolhurst, D. J., & Dean, A. F. (1990). The effects of contrast on the linearity
of spatial summation of simple cells in the cat’s striate cortex.
Experimental Brain Research, 79, 582—588.

Troy, J. B., & Enroth-Cugell, C. (1993). X and Y ganglion cells infor the
cat’s brain about contrast in the retinal image. Experimental Brain
Research, 93, 383-390.

Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998).
Contrast-invariant orientation tuning in cat visual cortex: Thalomocor-
tical input tuning and correlation-based intracortical connectivity. The
Journal of Neuroscience, 18(15), 5908—-5927.

Weber, E.-H (1846). Tastsinn und Gemeingefiihl. In R. Wagner (Ed.),
Handworterbuch der Physiologie. Reprinted in W. Ostwald (1905),
Klassiker der exakten Wissenschaften, Vol. 149. Leipzig: Engelmann.

Witkin, A. P. (1983). Scale-space filtering. In Proceedings of the Sth
International Joint Conference on Artificial Intelligence (IJCAI), 2,
1019-1022.



	A simple cell model with dominating opponent inhibition for robust image processing
	Introduction and motivation
	The model
	Contrast signals
	Simple cells
	Complex cells

	Simulations of physiological data
	Hammond and Mackay study
	Orientation tuning

	Processing of images
	Synthetic images
	Natural images

	Evaluation of DOI properties
	Response to small contrasts
	Determination of the DOI parameter and adaptive noise suppression

	Discussion and conclusion
	Principle findings
	Use of shunting inhibition vs. linear DoG


	Comparison with dominating inhibition as used in the model by &xref rid=
	Relation of the findings by &xref rid=
	Outline placeholder
	Response of white noise stimuli
	Model extensions: grouping, multiple scales, complementary processing streams

	Conclusion
	Acknowledgements
	Details of the non-linear simple cell circuit
	References


