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Abstract

The extraction of oriented contrast information by cortical simple cells is a fundamental step in early visual processing. The orientation

selectivity originates at least partly from the input of lateral geniculate nuclei neurons with properly aligned receptive fields. In the present

article, we investigate the feedforward interactions between on- and off-pathways. Based on physiological evidence we propose a push–pull

model with dominating opponent inhibition (DOI). We show that the model can account for empirical data on simple cells, such as contrast-

invariant orientation tuning, sharpening of orientation tuning with increasing inhibition, and strong response decrements to stimuli with

luminance gradient reversal. With identical parameter settings, we apply the model for the processing of synthetic and real world images. We

show that the model with DOI can robustly extract oriented contrast information from noisy input. More important, noise is adaptively

suppressed, i.e. the model simple cells do not respond to homogeneous regions of different noise levels, while remaining sensitive to small

contrast changes. The image processing results reveal a possible functional role of the strong inhibition as observed empirically, namely to

adaptively suppress responses to noisy input.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

At the early stages of visual processing, unoriented

contrast signals are extracted by retinal ganglion cells with

concentric receptive fields (RFs) and transmitted via the

lateral geniculate nuclei (LGN) to the primary visual cortex

V1. In V1, simple cells exist which have elongated RFs and a

distinct orientation preference. The origin of this orientation

selectivity is a field of intense research and controversy

debate (see Shapley, Hawken, & Ringach, 2003 for a recent

review). It is now widely agreed that tuned feedforward

input from LGN neurons with properly aligned RFs (Reid &

Alonso, 1995) and cortical inhibition (Borg-Graham,

Monier, & Frégnac, 1998; Monier, Chavane, Baudot,

Graham, & Fregnac, 2003) are important factors.

The classical proposal by Hubel and Wiesel (1968) was

based on feedforward input alone. In their model, simple

cell on-subfields receive excitatory input from LGN

on-cells, and off-subfields receive excitatory input from

LGN off-cells. Based on physiological studies (Ferster,

1988) this basic model has been extended such that each

subfield also receives inhibitory input from the opponent

pathway. This push–pull model of direct excitation and

opponent inhibition assumes an equal weighting of

excitatory and inhibitory input. However, a number of

empirical studies show that simple cells receive strong

inhibitory input which can overwhelm excitatory input.

Evidence comes from both extracellular (Heggelund, 1981;

Palmer & Davis, 1981) and intracellular recordings

(Borg-Graham et al., 1998; Hirsch, Alonso, Reid, &

Martinez, 1998). Based on this evidence we propose a

scheme of dominating opponent inhibition (DOI) using a

stronger weighting of the inhibitory input from the opponent

pathway. To generate the final simple cell responses, a non-

linear simple cell model using a multiplicative combination

of simple cell subfields (MCSCS) is employed (Neumann,

Pessoa, & Hansen, 1999).

The model is evaluated in two different respects:

simulation of empirical data and processing of images.

0893-6080/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neunet.2004.04.002

Neural Networks 17 (2004) 647–662

www.elsevier.com/locate/neunet

* Corresponding author.

E-mailaddresses: thorsten.hansen@psychol.uni-giessen.de (T.Hansen),

hneumann@neuro.informatik.uni-ulm.de (H. Neumann).

http://www.elsevier.com/locate/neunet


In a first set of simulations we show that the proposed model

is consistent with a number of physiological findings on

simple cells. In particular, the model can reproduce the

physiological data of simple cell responses to luminance

gradient reversal (Hammond & MacKay, 1983), where a

large decrease of activity occurs if small patches of opposite

contrast polarity are added to an optimal bar stimulus. The

model also exhibits contrast-invariant orientation tuning

(Sclar & Freeman, 1982), where DOI leads to a sharpening

of the tuning curves. Having verified the biological

relevance of the model by simulating a number of empirical

data, we next use the model with identical parameter

settings for the processing of noisy synthetic and real world

images. The results show that the robustness of the simple

cell responses increases for the model with DOI. More

important, noise is adaptively suppressed, i.e. the model

simple cells do not respond to noisy homogeneous regions,

irrespectively of the amount of noise. We have further

shown by numerical evaluation that the simple cells with

DOI remain sensitive even to small contrasts at edge

locations.

This article is organized as follows. In Section 2, the

simple cell model together with the proposed mechanism of

DOI is formally introduced. Simulation results of physio-

logical data are presented in Section 3. In Section 4, the

model is applied for the processing of images, and in

Section 5, its response properties to different noise levels

and small contrast changes are numerically evaluated.

Section 6 concludes the article.

2. The model

In this section a formal description of the model is given.

The model consists of a hierarchical organization of two

main processing stages, namely the extraction of contrast

signals, followed by a simple cell circuit. In all equations,

capital Roman letters denote the 2D maps of activity

distributions at the various stages and Greek letters denote

positively valued model parameters.

2.1. Contrast signals

Contrast signals are generated from the initial luminance

distribution of the input stimulus. Contrast signals occur at

luminance differences and are intended to model responses

of LGN cells. The model equations defining the first

processing stage, as detailed in the following, summarize

the initial visual processing by the retina and the LGN.

To model contrast signals, the initial luminance distri-

bution is first processed by a center–surround mechanism

similar to retinal ganglion cells. Center and surround

responses are modeled separately by filtering the initial

luminance distribution I with isotropic Gaussians of

different standard deviations (SDs) sc ¼ 1 and ss ¼ 3

Ic ¼ I p Gsc
; Is ¼ I p Gss

;

where p is the spatial convolution operator. The Gaussians

are sampled within a 3s interval, resulting in a filter mask of

size 7 £ 7 for the center and 19 £ 19 for the surround ð3s £

2 þ 1Þ: Input stimuli are normalized to the range [0,1], and

the Gaussian filters are normalized such that they integrate

to unity.

Center and surround responses provide the input to a

shunting mechanism (Furman, 1965; Grossberg, 1970;

Hodgkin, 1964). Shunting mechanisms yield a bounded

activity and cause a compression of high amplitude activity

following the Weber–Fechner law (Fechner, 1889; Weber,

1846):

›tX ¼ 2aX þ ðb2 XÞnetþ 2 ðgþ XÞnet2:

In the above equation, a ¼ 0:5 is the activity decay rate and

b ¼ 1; g ¼ 0:1 denote the upper and lower bound of the

activity, which is bounded in the interval ½2g;b�:

The shunting equation is assumed to quickly reach

steady-state and is solved at equilibrium. The equilibrium

solution is given for ›tX ¼ 0 and can be written as a

function X of two input variables, an excitatory contribution

netþ and an inhibitory contribution net2 :

Xðnetþ; net2Þ ¼
bnetþ 2 gnet2

aþ netþ þ net2
: ð1Þ

The shunting interaction is modeled for two domains,

namely on and off contrast signals. For the on domain, the

excitatory input netþ is provided by the center filtered input

Ic; whereas the inhibitory input net2 is provided by the

surround filtered input Is: The reverse holds true for the off

domain. Using the equilibrium function Xðnetþ; net2Þ; on

and off contrast signals Xon and Xoff are thus modeled as

Xon ¼ XðIc; IsÞ; Xoff ¼ XðIs; IcÞ: ð2Þ

These shunting contrast signals exhibit non-zero response to

homogeneous regions. As detailed by Neumann (1996),

shunting contrast signals can be segregated into a pure

contrast signal without any activity to homogeneous regions

(i.e. a signal with ‘zero DC level’) and a luminance signal

given by a low-pass filtered copy of the input activity.

Following Neumann (1996), zero DC level contrast signals

Kon and Koff result from mutual inhibition of opposite

domains

Kon ¼ ½Xon 2 Xoff�
þ
; Koff ¼ ½Xoff 2 Xon�

þ
; ð3Þ

where ½x�þ U max{x; 0} denotes half-wave-rectification.

The contrast signals Kon and Koff model LGN responses and

provide the input to the next processing stage. To sum up,

LGN responses are modeled as rectified non-linear filtering

of the input luminance distribution.
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2.2. Simple cells

The next processing stage deals with simple cells, which

are modeled for Omax ¼ 8 discrete orientations u ¼ 0; 22.5,

45,…,157.58 and for two opposite contrast polarities,

namely light–dark and dark–light. Light–dark and dark–

light simple cells are obtained by sampling the subfield

activity with an offset of three pixels orthogonal to the axis

of orientation of the simple cell: A light–dark cell has an

on-subfield with an offset to the left and an off-subfield with

an offset to the right. For a dark–light simple cell, left

and right offsets are interchanged. In Section 2.2.1 we

detail the modeling of simple cell subfield by the new

mechanism of DOI.

2.2.1. Simple cell subfields with dominating opponent

inhibition

A simple cell has two adjacent subfields, an on-subfield

sensitive to light increments and an off-subfield sensitive to

light decrements. Simple cell subfields are defined by

elongated, oriented weighting functions Gu: The weighting

function Gu is modeled with five isotropic Gaussians with

SD s ¼ 2; which are properly aligned along the preferred

axis of orientation u and spaced within a distance of 2 SDs.

A sample weighting function for u ¼ 08 is depicted in Fig. 1.

The modeling of the weighting function for the simple cell

subfields results in a plateau-like RF which is 29=19 < 1:5

times larger than the RF of the on and off cells. Generally,

for N Gaussians with a SD s; spaced within a distance of 2

SD’s, the width of the filter mask is given by 2 £ 3sþ 1 and

the length of the filter mask is given by ðN 2 1Þ2sþ 2 £

3sþ 1: For the parameters chosen ðN ¼ 5;s ¼ 2Þ this

results in an aspect ratio (length/width) for the simple cell

subfield of 29=13 ¼ 2:23 (see Fig. 1, left). Alternatively,

measuring the subfield aspect ratio by fitting an anisotropic

Gaussian results in a larger aspect ratio of 7:5=2 ¼ 3:75:

Physiological studies differ in the aspect ratio measured for

simple cells. Aspect ratios of 5 and larger have been

reported (Gardner, Anzai, Ohzawa, & Freeman, 1999; Jones

& Palmer, 1987a,b), while others have found considerably

smaller aspect ratios with a mean of 1.7 (Pei, Vidyasagar,

Volgushev, & Creutzfeldt, 1994). Recently, Alonso, Usrey,

and Reid (2001) found aspect ratios ranging from 1.17 to

5.45, with a mean of 2.5 ^ 0.8 (mean ^ SD). Similar

values have been obtained by Kara, Pezaris, Yurgenson,

and Reid (2002), who found a mean aspect ratio of

2.7 ^ 0.8. We conclude that the aspect ratio of our filter

is in reasonable agreement with the physiological data.

Before integration, contrast activity of different polarity

competes at each spatial location. Input activation for both

on and off subfields Ron and Roff with a preferred orientation

u is computed by convolution of the weighted difference of

unoriented LGN responses Kon and Koff with the subfield

mask Gu of the same orientation preference:

Ron;u ¼ ½ðKon 2 jKoffÞ p Gu�
þ
;

Roff;u ¼ ½ðKoff 2 jKonÞ p Gu�
þ
:

ð4Þ

A sketch of the interaction scheme which defines the

subfields is given in Fig. 2. The case of equally weighted on

and off inputs occurs for j ¼ 1: The newly proposed scheme

of dominating opponent inhibition (DOI) introduces a

weighting parameter j . 1 which scales up the opponent

contribution. This introduces a ‘one against many’ situation,

where, e.g. an on-subfield only receives input if the

contribution of the on-channel Kon is j times larger than

the contribution of the opponent off-channel Koff : The

subfield interaction with DOI is a special case of the push–

pull models (Ferster, 1988; Palmer & Davis, 1981; Tolhurst

Fig. 1. Left: Filter mask for a simple cell subfield of orientation 08. Right: The corresponding horizontal cross-section taken at the center of the mask.

Fig. 2. Simple cell model with DOI. An on-subfield Ron receives excitatory

input from properly aligned LGN on-cells Kon and inhibitory input from

LGN off cells Koff : The scheme of dominating opponent inhibition proposes

a stronger weighting of the inhibitory input with j . 1; as indicated by the

thicker lines. The reverse wiring pattern exists for the off subfields Roff :

Arrows denote excitatory input, circles at the end of lines denote inhibitory

input. For clearness of display, subfields are drawn separated.
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& Dean, 1990). Conventionally, the pull is provided by

simple cells with RFs of opposite contrast polarity (Ferster

& Miller, 2000; Troyer, Krukowski, Priebe, & Miller,

1998). The new scheme of DOI, on the other hand, assumes

that inhibitory input is provided by cells which are not

orientation selective and have a circular RF organization.

Recently, a possible neural substrate of DOI has been

reported, namely complex smooth cells in layer 4 which are

inhibitory and untuned for orientation (Hirsch, Martinez,

Pillai, Alonso, Wang, & Sommer, 2003).

The mechanism may also be interpreted in terms of

voting, where excitatory and inhibitory inputs represent

voting in favor or against a decision, i.e. whether the

subfield responds or not. For balanced inhibition, a simple

majority of 50% votes in favor results in a subfield response.

For dominating inhibition, a majority greater than 50% of

votes in favor are required to cause a response. More

precisely, for a weighting of the opponent inhibition with

j . 1; the excitatory drive has to comprise a fraction of

j=ðjþ 1Þ of the total input to drive the cell. In terms of

voting, this means that for setting, say, j ¼ 2; a 2/3 majority

is required to result in a response of the subfield.

DOI processing has important effects on the behavior of

the model. It is the key feature for simulating data in a

physiological study on luminance gradient reversal (Section

3.1), and it makes the model more robust to noise (Sections

4 and 5). As stated above, DOI relies on strong inhibition.

The assumption of strong inhibitory input to a simple cell

that can overwhelm excitatory contributions is supported by

many physiological studies. Evidence comes from both

extracellular (Heggelund, 1981; Palmer & Davis, 1981) and

intracellular recordings (Borg-Graham et al., 1998; Ferster,

1988; Hirsch et al., 1998).

2.2.2. Non-linear simple cell circuit

On and off subfields interact via a disinhibition circuit

that boosts activities for spatially juxtaposed on and off

contrast configurations (Neumann et al., 1999). Such

juxtaposed on and off contrasts occur at step edges, thus

the simple cell model exhibits significantly higher responses

for this configuration than for shallow luminance gradients,

for example.

The resulting simple cell activity consists of a linear and

a non-linear, i.e. multiplicative, term

~S ¼
aSðRon þ RoffÞ þ 2bSðRonRoffÞ

aSgS þ bSgSðRon þ RoffÞ
: ð5Þ

The parameters are set to aS ¼ 1:0; bS ¼ 10; 000:0; and

gS ¼ 0:01: Their specific choice is not critical as long as the

linear components scaled by aS and gS are small compared

to the non-linear component scaled by bS: For the normal-

ized input image with values in the range [0,1], the

parameterization of the model results in values of the

subfield activity Ron and Roff which are considerably below

one. To guarantee that multiplication of these values

actually leads to an increase of activity compared to

the linear addition result in the strong weighting of the

non-linear part in Eq. (5). Further details of the non-linear

simple cell circuit can be found in Appendix A.

In some of the simulations, the proposed non-linear

integration of simple cell subfields is compared to a basic

linear integration where subfield responses Ron and Roff are

simply added. For the linear subfield interaction, Eq. (5) is

replaced by

~Slin ¼ Ron þ Roff : ð6Þ

Here and in the following we refer to the model with a linear

combination of simple cell subfields as ‘quasi-linear’, since

this model contains non-linearities at the pre-processing

stages.

To sum up, the present simple cell model comprises two

mechanisms with complementary functionality. DOI serves

to suppress undesired spurious activity to noisy inputs,

while the non-linear simple cell circuit sharpens and

amplifies desired responses to edges.

2.3. Complex cells

Complex cell responses are insensitive to contrast

polarity and are modeled by pooling responses of simple

cells with opposite contrast polarity

Cu ¼ Sld;u þ Sdl;u: ð7Þ

Pooled complex cell responses Cpool result from summing

complex cell responses for all orientations

Cpool ¼
X
u

Cu: ð8Þ

Pooled complex cells responses are used in Sections 4 and 5

to visualize the responses of the whole model within a single

image.

3. Simulations of physiological data

In order to demonstrate the physiological plausibility and

relevance of the proposed model, basic properties of simple

cells found in vivo are simulated. In particular, we simulate

a study of Hammond and MacKay (1983), to show that DOI

processing can account for both classical linear response up

to saturation as well as strong depression effects as

measured by Hammond and MacKay. Further, we deter-

mined orientation tuning curves for the model simple cells

to study the effect of DOI on the tuning widths. The

simulations show a sharpening of orientation tuning with

increasing inhibition, in accordance with physiological

findings (Shapley et al., 2003). The values of the model

parameters are as described in Section 2 and are the same in

all simulations, except for the orientation tuning simulations

in Section 3.2 where 16 orientations are used to allow for a

sufficiently fine resolution of orientation space.
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3.1. Hammond and Mackay study

In this section we simulate a study of Hammond and

MacKay (1983), who investigated the response of simple

cells in cat to optimally oriented bars. This study is

challenging for any model of simple cells because it

shows classical effects like linear contrast summation up to

saturation and strong, possibly non-linear, suppressive

effects.

In their study, Hammond and MacKay recorded simple

cell responses to three types of bar stimuli: dark bars, dark

bars with light segments added in the middle (DLD) and

dark bars with light segments added at both ends (LDL).

Fig. 3 depicts the single stimulus used and a sample of

the whole stimulus set. A main result of their work is shown

in Fig. 4. Probing a simple cells without end-inhibition with

bars of different lengths results in a linear response up to

saturation (‘length-summation curve’).

When light segments are added to the dark bars (DLD

and LDL), the average response decrement is much larger

than predicted from linear contrast summation. Linear

summation would suggest that the slopes of the length-

summation curve and of the LDL and DLD curves are the

same.

Our model predicts that simple cell responses as observed

by Hammond and MacKay can be generated on the basis of

the proposed DOI scheme. Results are shown in Fig. 4

(right). The same model parameters as for the processing of

images in Section 4 are employed. The declining slopes of

the curves for both DLD and LDL stimuli are much steeper

than the ascending slope of the length-summation curve, as

reported by Hammond and MacKay. In summary, a good

qualitative fit with the physiological data is obtained. Note

that for the non-dominant case, i.e. setting the DOI

parameter j ¼ 1; no strong suppression occurs, but the

responses for LDL and DLD bar stimuli lie on the dotted line

as predicted by linear contrast summation. To rule out effects

of the non-linear simple cell circuit, the circuit is replaced by

a linear combination of simple cell subfields, where subfield

responses are simply added (Eq. (6)). For this model variant

with DOI, the results obtained are qualitatively the same.

3.2. Orientation tuning

The most prominent RF property of simple cells is their

orientation selectivity. One can plot orientation tuning

curves of simple cells by measuring the mean firing rate of a

simple cell for stimulus items of different orientations.

Orientation tuning curves of simple cells have a Gaussian

shape which peaks at the preferred orientation. The half-

width at half-height (HWHH) of the orientation tuning

Fig. 3. Left: Example of stimulus used. Right: A set of stimuli for a fixed

length of the dark bar.

Fig. 4. Physiological recording and simulation results of simple cell responses to a dark bar alone (length-summation curve, dashed) and a dark bar with added

segments of opposite contrast polarity. Segments of opposite contrast polarity are added either at the ends (LDL bars, data points marked ‘o’, solid line) or

centrally (DLD bars, data points marked ‘x’, dashed line). The abscissae denote total bar length (dark bar plus light segments). Left: Results of physiological

recordings by Hammond and MacKay (1983). Response curves to LDL and DLD bars are extrapolated to the response for the dark bar alone (as indicated by

arrows pointing to the length-summation curve). Curves are free-hand approximations to the data points. Data reprinted with permission of the publisher. Right:

Simulation result. For comparison, predictions by linear contrast summation (dotted) are shown in the plot of the simulated data. Both the physiological study

and the simulations show a strong response decrement when a light segment is added to the dark bar. The decrement for segments of opposite contrast polarity

is much stronger than the corresponding response increment for a segment of the same contrast polarity (compare slopes of length-summation curves with

slopes of curves for LDL and DLD bars).
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curves is used as a measure which characterizes the

sharpness of orientation tuning.

In this section we simulate orientation tuning curves to

study the effects of DOI and the subsequent linear vs. non-

linear combination of simple cell subfields on the orien-

tation selectivity of model simple cells. To determine

orientation tuning curves, we probe the circuit with

sinusoidal grating stimuli of different contrasts. For

computational convenience, rather than using grating

stimuli of different orientations, we determined orientation

tuning curves from simple cells responses with a number of

Omax ¼ 16 different orientations at the same fixed location

(Troyer et al., 1998). The location is chosen which results in

maximal response for a linear light–dark simple cell and is

kept fixed for all model variants studied. We parameterize

the simple cell model with Omax ¼ 16 different orientation

instead of Omax ¼ 8 (Section 2) to allow for a sufficiently

fine resolution of orientation space. The number of Omax ¼

16 orientations results in sampling of orientation space of

1808=16 ¼ 11:258: To rule out that the tuning curves depend

on the sampling of stimulus orientations we have rerun the

simulations with Omax ¼ 32 orientations. For all cases

shown in the following, the HWHHs differed by less than 18.

In a first study, we compare the effect of DOI on

orientation tuning curves for the linear and the combination

of simple cell subfields (Fig. 5). As a basic result, for both

the linear and the non-linear combination of simple cell

subfields, DOI, i.e. increasing the inhibition at the level of

LGN cells, results in a sharper orientation tuning. Note that

DOI has only small effects on the response magnitude of

the optimally tuned cell. Further, the orientation tuning

curves of the linear and the non-linear combination of

subfields exhibit two general differences. First, the orien-

tation tuning curves sharply fall off for the non-linear

combination and more smoothly roll off for the linear

combination. Second, the width of the curves is smaller for

the non-linear than for the linear combination. To sum up,

both DOI and non-linear processing have the effect of

decreasing the width of the tuning curves, with non-linear

processing additionally sharpens the shape of the curves.

Consequently, the highest selectivity is obtained for the

model with the, MCSCS together with DOI.

Physiological recordings of simple cells tuning curves

show that the tuning curves remains constant, even when the

contrast of the stimulus is changed (Sclar & Freeman, 1982;

Skottun, Bradley, Sclar, Ohzawa, & Freeman, 1987). All

model variants show this contrast-invariant orientation tuning.

As pointed out by Ferster and Miller (2000), this property is

difficult to explain in a simple feedforward model, because the

responses of both retinal ganglion cells and LGN cells strongly

depend on stimulus contrast (Cheng, Chino, Smith, Hama-

moto, & Yoshida, 1995; Troy & Enroth-Cugell, 1993).

The width of orientation tuning of simple cells in vivo

exhibits a certain variation. The HWHH between orientation

tuning curves in monkey varies between 5 and 508, with a

most frequent tuning of 208 (Schiller, Finlay, & Volman,

1976). More recently, Carandini and Ferster (2000) have

found an average HWHH for the spike responses of simple

cells of 238. The values obtained for the models are thus in

good agreement with the physiological experiments.

Because of the high aspect ratio of the filter used to model

the simple cell subfield, the HWHH of the quasi-linear

model also falls within the physiological range.

Shapley et al. (2003) summarize physiological data

which show a direct correlation between the amount of

Fig. 5. Orientation tuning curves for models with linear and non-linear

combination of subfields, both with and without DOI. The abscissa denotes

orientation in degree, the ordinate denotes the simple cell response at a

fixed spatial location. The three curves in each plot correspond to different

contrast levels, namely 0.8, 0.5 and 0.25 (top to bottom). Top right inset

denotes mean HWHH. The orientation tuning curves show contrast-

invariant orientation tuning for all four models and a sharpening of

orientation tuning by DOI.

Fig. 6. Sharpening or orientation tuning with increasing inhibition. Both

models with either a linear (upper curve, dashed) or a non-linear

combination of simple cell subfields (lower curve, solid), show a

sharpening of orientation tuning, i.e. a monotonically decrease in HWHH

with increasing amount of inhibition by increasing the DOI parameter j:

Simulated data points are marked with dots.
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inhibition a neuron receives and its orientation selectivity.

In a second study, we determine HWHHs of orientation

tuning curves for different amounts of inhibition by varying

the DOI parameter j in the range [0,4]. As above,

simulations are carried out for two model variants with a

linear or non-linear combination of simple cell subfields.

The results are shown in Fig. 6. For both models, increasing

the amount of inhibition results in an increasingly sharper

orientation tuning. Compared to the linear combination of

simple cell subfields, the non-linear combination has an

overall higher orientation selectivity. To sum up, the model

shows the direct correlation between the amount of

inhibition a neuron receives and its orientation selectivity,

as observed physiologically (Shapley et al., 2003).

4. Processing of images

In this section, we show the performance of the model on

synthetic and on natural images. The values of the model

parameters are as described in Section 2 and are the same in

all simulations. In the simulations we compare the new

mechanism of DOI (setting j ¼ 2) to a model with a linear

combination of subfields and to the non-linear model

without DOI ðj ¼ 1Þ: Recall that for the linear combination

of subfields the subfield responses are simply added to

replace the non-linear interactions of Eq. (5). As noted

above, we refer to this model as ‘quasi-linear’, since it

contains non-linearities at the pre-processing stages. The

model with the linear combination of subfields approxi-

mates filtering with a first order Gaussian derivative

(Neumann et al., 1999). The edge images show pooled

complex cell response (Eq. (8)), dark values indicate high

responses.

4.1. Synthetic images

In the first study we employ a synthetic image of a dark

ellipse on a lighter background, corrupted with 50%

additive Gaussian noise. Fig. 7 shows the input image

together with a horizontal cross-section taken at the center

of the image.

For this image, four results are generated by combining

two interactions at the subfield level (standard and DOI)

with two combinations of the subfields (linear and non-

linear). The simulation results are shown in Fig. 8. All

models show pronounced responses at the edge locations,

but only the non-linear models have a unimodal response to

an edge. Moreover, the results show that the models with

DOI are considerably less sensitive to noise. The simulation

results for this image exemplify the complementary proper-

ties of DOI and of the non-linear simple cell circuit: DOI

serves to suppress noisy inputs, while the non-linear

interaction of MCSCS sharpens the responses to edges.

The edge doubling observed for the quasi-linear model

occurs when the half-wave rectified input from LGN on and

off cells is processed by model simple cells with adjacent on

and off subfields. More precisely, the edge doubling results

from simple cells which have the same orientation as the

edge, but reversed contrast-polarity. Consider a light–dark

edge which generates adjacent on and off contrast responses.

The light–dark simple cell with matching RF subfields

responds strongest at the edge location. However, also the

dark–light simple cell with reversed RF subfields responds at

Fig. 7. Noisy ellipse (left) and corresponding horizontal cross-section

(right) taken at the center of the image. The size of the ellipse image is

253 £ 189 pixels.

Fig. 8. Top row: Simulation results for the image of a noisy ellipse. Bottom row: The corresponding horizontal cross-sections taken at the center of the images.

The size of the images is 253 £ 189 pixels.
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a location left to edge, due to the integration of on responses

by the on-subfield, and also right to the edge, due to the

integration of off responses by the off-subfield. Lateral

inhibition cannot remove these double responses: while the

undesired side responses are inhibited by the stronger central

response, at the same time the central desired responses

would be inhibited by the two side responses. Also, inhibition

between simple cell of opposite contrast-polarity, as has been

used in a previous version of our model, still results in double

responses for the linear model. Note that a linear filtering of

the raw input luminances without the intermediate stage of

half-wave-rectified LGN responses would not result in edge

doubling. The edge-doubling is thus a property of our

particular model, not a fundamental problem confronting

linear processing schemes.

4.2. Natural images

A further challenge to the model is posed by processing

of natural images. In the first simulation we use an image of

a tree which is shown together with the simulation results in

Fig. 9. For the DOI processing, responses to the lawn are

largely suppressed, while responses to the contour of the

tree and to the shadow are enhanced. We also employ an

image of a 3D laboratory scene as input image (Fig. 10).

Here, the contours of the cube are sharper and the spurious

responses at the floor vanish for DOI processing.

In two further simulations, we employ images from a set

used in an evaluation study of edge detection algorithms

(Heath, Sarkar, Sanocki, & Bowyer, 1997). We use a larger

scale to show the simulation results to compensate for the

approximately doubled image size compared to the

previously shown images.

For the traffic cone, the DOI processing results in sharp,

pronounced responses to the shape outline of the cone and

the car, while spurious responses to the leaves are

successfully suppressed. Similar results are obtained for

the image of a golf cart, where the edges of the cart are

reliably detected, while responses to small noisy structures

such as the lawn and the leaves are suppressed by DOI

(Figs. 11 and 12).

In some of the simulation results, the DOI processing

seems to suppress also responses to low contrast edges. This

effect is studied in detail in Section 5.1. It turns out that the

small responses are also retained for DOI processing, but

their visibility is reduced due to the rendering of the

simulation results.

5. Evaluation of DOI properties

In Section 4 we have qualitatively shown that DOI allows

for the robust processing of images. In this section we

further clarify the properties of DOI in a series of numerical

evaluations.

To motivate the simulations in this section it is

instructive to consider the DOI equation, Eq. (4), in more

detail. Using Eq. (3) and the equality ½x�þ 2 ½2x�þ ¼ x; we

Fig. 9. Natural image of a tree and simulation results. The size of the images is 255 £ 256 pixels.

Fig. 10. Image of a laboratory scene and simulation results. The size of the images is 230 £ 246 pixels.
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can rewrite Eq. (4) as follows:

Ron;u ¼ ½ðKon 2 jKoffÞ p Gu�
þ

¼ ½ðKon 2 KoffÞ p Gu 2 ðj2 1ÞKoff p Gu�
þ

¼ ½ðXon 2 XoffÞ p Gu 2 ðj2 1ÞKoff p Gu|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dynamic threshold

�þ: ð9Þ

This shows that DOI interaction introduces a dynamic

threshold that is proportional to j and depends on the

strength of the signal in the opponent pathway.

With respect to this adaptive threshold it needs to be

clarified to what extent desired responses to contrast

changes might be suppressed by DOI interaction. This

question is addressed in a first set of simulations where we

evaluate the response of DOI to small contrast changes. We

show that the model with DOI remains sensitive even to

small contrast changes in the presence of noise. In a second

set of simulations we investigate the choice of the DOI

parameter j to meet two conflicting demands as goods as

possible, namely the suppression of noise and the respon-

siveness to contrast changes. The response to different noise

levels further shows an important feature of DOI, namely

the adaptive suppression of noise.

5.1. Response to small contrasts

In this section, the effect of DOI on the processing of

small contrast changes is addressed, to examine whether

DOI has an undesired suppressive effect on contrast

responses. To study this question the response to small

contrast changes in the presence of high level noise is

evaluated for three simple cells models, namely a model

with a linear combination of subfields, and a non-linear

combination of subfields without and with DOI.

For the simulations a synthetic test image of alternating

on–off and off–on vertical step edges of increasing contrast

is employed. The on–off contrasts vary from 0.01 to 0.1 in

steps of 0.01 and are centered around a mean luminance

level of 0.5. For each on–off contrast, the image contains an

individual subimage of size 128 £ 256 pixels, resulting in a

total stimulus size of 1280 £ 256 pixels. The image together

with a horizontal cross-section is depicted in Fig. 13.

Fig. 11. Golf cart image and simulation results. The edge images are gamma

corrected with g ¼ 0:6 because of the high contrast variations in the image.

The size of the images is 548 £ 509 pixels.

Fig. 12. Traffic cone image and simulation results. The edge images are

gamma corrected with g ¼ 0:6 because of the high contrast variations in the

image. The size of the images is 437 £ 604 pixels.

Fig. 13. Top row: Test image for small contrast responses. Bottom row: The

corresponding horizontal cross-sections. The values at the abscissa denote

the contrast of the step edge at this position.
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In a pioneering study, the test image is corrupted with

Gaussian noise of SD 0.05 which is equivalent to 500%

noise for the smallest contrast and 50% for the largest

contrast. The input image and the simulation results

showing pooled complex cell responses for each of the

three simple cell models are depicted in Fig. 14. Most

obviously, the result produced by the model with DOI

differs from the results produced by the models without DOI

in the response to noise. With DOI, responses to noise are

absent or at least largely suppressed. At the same time, upon

first visual inspection, the model with DOI indeed seems to

suppress responses to small contrast. For example, compare

the response to the contrasts of 0.04 for the three models.

While both models using either a linear or a non-linear

combination of simple cell subfields but yield a visible

response without DOI, using DOI the response appears

fragmented and faint.

To further analyze this behavior, the mean response

along each column is computed for the three models

(Fig. 15). The plots show that all models yield a mean

response above the mean noise level for contrast values of

about 0.03 and higher. The reasons why these responses are

visible for the two models without DOI but seem to fade for

the model with DOI are caused by the properties of the

visual display. For each model the resulting image as shown

in Fig. 14 is scaled individually, mapping the lowest value

to white and the highest to black. Without DOI, the

responses to the edges add on a significant noise level, such

that, e.g. the mean response to 0.4 contrast has a strength of

about 30% of the maximum response, making it fairly

visible. For DOI, on the other hand, the noise level is

virtually zero, and the mean response to 0.4 contrast is only

at about 5% of the maximum response, making it virtually

invisible. Thus, the almost vanishing response to noise for

the model with DOI renders the response to small contrast

less visible, though this response is still present.

Next we determine for each model the contrast level at

which the response differs significantly from the response to

the noisy background. Therefore, the mean responses and

SDs at each dark–light contrast step (signal) are computed

and compared to the mean response and SD at the

background (noise). Results for the three simple cells

models are shown in Fig. 16.

The plots allow to determine the contrast which yields a

significant response. A significant response is to be found at

contrast locations where the error bars of signal and noise do

not overlap. The results show that the amount of contrast,

which is necessary to yield a significant response, is the

same for all models, in this case 0.05 contrast. Similar

results have been obtained for different noise levels. We

conclude that the simple cell model with DOI remains

sensitive even to small contrast changes, and that any

apparent loss of sensitivity can be attributed to the

properties of the visual display.

Fig. 14. Test image corrupted with noise of SD 0.05 and corresponding

simulation results.

Fig. 15. Column sum of simulation results shown in Fig. 14, using a test image which is corrupted with noise of SD 0.05. The abscissa denotes the contrast of

the step edges.
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5.2. Determination of the DOI parameter and adaptive

noise suppression

In this section we investigate the choice of the DOI

parameter j to meet two conflicting demands as goods as

possible, namely the suppression of noise and the respon-

siveness to contrast changes. We use a step edge which is

corrupted with Gaussian noise of different noise levels.

Both the response of an optimally oriented subfield and a

non-optimally, i.e. orthogonally oriented subfield are

simulated for three different noise levels (25, 50 and

80%), and different values of the DOI parameter j:

Responses are averaged over 100 different realizations for

each noise level.

Simulation results are shown in Fig. 17. For the optimal

orientation (Fig. 17, left), responses are a lineary decreasing

function of j; indicating that j cannot be chosen arbitrarily

large. For the non-optimal orientation (Fig. 17, right),

responses decrease non-linearly and are almost zero for j .

2: Interestingly, this is true for different noise levels,

showing that DOI can adaptively suppress noise. ‘Adaptive’

here refers to the fact that different noise levels (25, 50, and

80%) result in virtually zero response at the non-optimal

orientation for j ¼ 2; i.e. with DOI. Using DOI, the amount

of suppression thus adapts to the noise level: the larger the

noise, the larger the suppression.

These results provide criteria for the choice of j: For a

value of j < 2; the non-optimal responses are almost zero,

while the optimal responses are still considerably large.

Increasing j beyond 2 would mostly decrease the optimal

responses but not the non-optimal responses, which have

already smoothly approached zero. Thus, a value of j ¼ 2 is

chosen for all the simulations of the non-linear model with

DOI as presented in Section 3.

6. Discussion and conclusion

6.1. Principle findings

In this article we have proposed a simple cell model with

DOI. DOI is integrated into a push–pull interaction defining

the simple cell subfield responses. In push–pull interaction,

a subfield (e.g. on) receives both excitatory input from the

like domain (i.e. on) and inhibitory input from the opposite

domain (i.e. off). DOI proposes a stronger weighting of

the opponent input, resulting in a more selective response.

Fig. 16. Mean response at dark–light contrast edges (upper line) compared to mean response at the background (lower horizontal line) for the three models.

Error bars denote ^SD. The abscissa denotes the contrast of the step edges. For all three models, a significant response occurs at 0.05 contrast.

Fig. 17. The mean subfield responses to a noisy step edge, corrupted with 25, 50, and 80% additive Gaussian noise for various values of the DOI parameter j:

Responses are averaged over 100 different realizations of the respective noise level; error bars denote ^1 SD. Responses are normalized to allow for better

comparison. Left: The mean response of an optimally oriented subfield decreases linearly with j: Right: The mean response of non-optimally oriented subfield

decreases non-linearly with j and is almost zero for j ¼ 2; irrespectively of the amount of noise added. For the non-optimal response (left), we have rescale

y-axis to increase the visibility of the plot.
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The subfields are combined using a non-linear simple cell

model (Neumann et al., 1999).

The proposed model can account for a number of empirical

findings. The model reproduces the physiological data of

simple cell responses to luminance gradient reversal (Ham-

mond & MacKay, 1983), showing a large decrease of activity

if small patches of opposite contrast polarity are added to

an optimal bar stimulus. We have further investigated

the orientation tuning of model simple cells. The results

show that both DOI and MCSCS lead to a sharpening of the

orientation tuning. We show that the newly proposed model of

simple cells with DOI and MCSCS can generate sharp

orientation tuning from simple cell subfields with a physio-

logically plausible aspect ratio. The model further shows

contrast-invariant orientation tuning, an important feature of

simple cells in vivo (Ohzawa, Sclar, & Freeman, 1985; Sclar

& Freeman, 1982). Next we investigated the correlation

between inhibition and the sharpness of orientation tuning.

We show that the orientation tuning monotonically increases

(i.e. the HWHH decreases) with increasing weighting of the

inhibitory input to the simple cell subfield, in accordance with

physiological findings (Shapley et al., 2003).

After simulating empirical findings from physiology, the

model is used with identical parameter settings to process

noisy synthetic and natural images. The results show that the

robustness of the response increases for the model with DOI.

The model with DOI has a lower probability of responding to

noise, while the sensitivity to salient edges is preserved.

Finally, we conduct a detailed numerical evaluation to clarify

the role of DOI. We particularly focus on the strength of the

DOI parameter and the response to small contrasts. We

determine an optimal parameter value of j ¼ 2 which is used

in all simulations, and show that the DOI mechanism remains

sensitive to small contrasts. The numerical evaluation further

shows a unique property of DOI, namely the adaptive

suppression of noise. The adaptive suppression results in

equally good suppression for noise of different levels, as

shown in Fig. 17. Adaptive suppression is generated in our

model since the amount of suppression, i.e. the activity in the

opponent channel, scales with the noise level.

Finally, we presented a numerical evaluation of the DOI

properties to address two important questions. First, one

might ask whether the good suppression of noise for the DOI

model might be accompanied by the undesired feature of

suppressing responses to small contrast changes. Here it is

shown that a model with DOI does not lead to a gross

suppression of small contrast changes, but instead remains

sensitive to small contrast variations. However, the results

also show that the model with DOI does not outperform the

other models with respect to contrast sensitivity, i.e. the

lower response to noise does not cause a significantly better

response at lower contrast compared to the other models.

Second, one might ask what are the advantages of DOI

compared to a simple threshold. The advantages can be seen

when the model is probed with images of different noise

levels. Without DOI, different noise levels lead to an increase

of undesired responses to homogeneous regions and at

orientations orthogonal to the edge. Most important, this

increase is proportional to the noise level: the larger the

noise, the stronger are the undesired responses. A threshold

then has to be carefully determined by an additional

mechanism, depending on the noise level. Further, consider

an image with regions of different noise levels. Here, a global

threshold cannot distinguish between signal and noise, and

elaborated methods of local threshold determination needs to

be applied. With DOI, on the other hand, undesired responses

to homogeneous regions or at non-optimal orientations

orthogonal to an edge are strongly suppressed. Most

important, suppression is equally effective irrespectively of

the noise level. This is the adaptive noise suppression

property of DOI: as noise increases, the amount of

suppression adapts to the noise level, such that for different

noise levels undesired responses are virtually zero. With

DOI, the adaptive thresholding necessary to handle noise of

different levels does not require an extra mechanism, but

instead is achieved implicitly by an elegant, biologically

motivated interaction.

6.2. Use of shunting inhibition vs. linear DoG

The present model uses non-linear shunting interactions

for the first processing stage. Shunting interaction has a

number of useful properties such as automatic gain-control

and response normalization which results in bounded activity

and contrast-sensitivity depending on the overall luminance

level, following the Weber–Fechner law (Grossberg, 1970).

In contrast to the non-linear shunting interaction, a linear

interaction using a difference of Gaussians (DoG) model is

frequently used. The shunting equations result in a scaled

DoG normalized by a sum of Gaussians and comprises of

more general form of the basic DoG model (Mingolla, Ross,

& Grossberg, 1999; Neumann, 1996). We have rerun a

number of simulations with a basic DoG filter instead of the

shunting interactions. Replacing the shunting interactions

with a similar DoG filter essentially preserves all basic

properties of the proposed simple cell model. The proposed

mechanisms of DOI and MCSCS are thus robust against

changes in the pre-processing stage.

6.3. Comparison with dominating inhibition as used

in the model by Troyer et al. (1998)

Dominating inhibition is also used in a detailed

physiological model by Troyer et al. (1998) to explain

contrast-invariant orientation tuning of simple cells. In

contrast to our non-linear model, Troyer et al. (1998) use

linear Gabor filters to model simple cells. Strong ‘anti-

phase’ inhibition occurs between Gabor filters of phase shift

1808, i.e. opposite contrast polarity, while we employ

inhibition between isotropic on and off responses.

One crucial difference between the model by Troyer et al.

(1998) and our model is thus the generation of contrast-
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invariant orientation tuning. In our model, contrast-invariant

orientation tuning arises also with a basic linear model using

balanced inhibition, whether Troyer et al. (1998) proposes

stronger inhibition than excitation. Thus, contrary to Troyer

et al. (1998), our model predicts that simple cells which

receive balanced excitation and inhibition also show

contrast-invariant orientation tuning. Provided that intra-

cortical recurrent interaction may also play a significant role

in generating contrast-invariant orientation tuning, we

suggest a different functional role of DOI. On the basis of

our findings we suggest that the visual system mainly uses

DOI to robustly extract oriented contrast features in noisy

environments.

Another important difference between the model by

Troyer et al. (1998) and our model is the orientation

selectivity of the inhibition. Whereas the model by Troyer

et al. (1998) proposes orientation selective inhibition from

cells with respond in a contrast-dependent manner, DOI in

our model is untuned for orientation. Recently, two

populations of inhibitory cells have been found in layer 4,

namely orientation selective simple cells and unoriented

smooth complex cells (Hirsch et al., 2003). Thus, both kinds

of inhibition are supported by biological data. The first

version of our model included a stage of oriented inhibition

following the non-linear combination of simple cell

subfields. At this stage of opposite contrast polarity

inhibition, a simple cells receives inhibitory input from a

simple cell of same orientation, but opposite contrast

polarity. Eliminating this stage did not influence the

proposed model in a significant way. Recent work suggests

that orientation selective suppression accounts for the

dynamical reduction of orientation bandwidth (Ringach,

Hawken, & Shapley, 2003). The precise functional roles of

the two kinds of inhibition remains to be clarified by future

research.

6.4. Relation of the findings by Hammond and MacKay

(1983) to studies showing excitatory influence

of flanking bars

A number of physiological studies have found excitatory

influences of flanking bars on-cell responses (Gilbert, 1992;

Gilbert & Wiesel, 1990; Kapadia, Ito, Gilbert, & Westhei-

mer, 1995). The bar stimuli used in these experiments are

reminiscent of the DLD and LDL stimuli used by Hammond

and MacKay (1983), who found strong inhibitory rather

than excitatory influences. However, the stimuli used in

both kinds of experiments differ in two important aspects.

First, the stimuli used by, e.g. Kapadia, Westheimer, and

Gilbert (2000), extend well beyond the classical RF and

reveal excitatory long-range influences. On the contrary,

Hammond and MacKay (1983) reported strong suppression

even when small segments are added and the whole stimulus

is confined to the classical RF. Second, the stimuli used in

the long-range experiments consist of bars split into a

central part and two adjacent flankers, where the gap

between the individual parts of the bar has the same contrast

as the background. On the contrary, Hammond and MacKay

(1983) added segments of opposite contrast polarity to the

bars, which was crucial to generate strong suppression.

Merely breaking a bar into segments and filling the gaps

with the background luminance caused no more reduction

than predictable from the effective reduction in bar length

(Hammond & MacKay, 1983). Contextual long-range

interactions have motivated numerous models for contour

and feature linking (Grossberg & Mingolla, 1985; Li, 1998),

cortico-cortical interactions for boundary processing (Neu-

mann & Sepp, 1999), pre-attentive texture segmentation (Li,

1999), perceptual grouping and object-based attention

(Grossberg & Raizada, 2000), or junction detection (Hansen

& Neumann, 2004). A review of computational models can

be found in Neumann and Mingolla (2004) or Hansen

(2003). In contrast to these models, the present article

focuses on suppressive and facilitatory feed-forward

interactions within the classical RF.

6.5. Response of white noise stimuli

A number of physiological studies use white noise

variations as stimuli and then determine the response

properties and RF profiles of cells by reverse correlation

techniques (Marmarelis & Marmarelis, 1978; Marmarelis &

Naka, 1972). This method has been applied in various

studies to determine the spatio-temporal response properties

of cells (Cottaris & Valois, 1998; Ringach, 2002; Ringach,

Hawken, & Shapley, 1997). The reverse correlation method

using white noise stimuli would also work with DOI

occurring in vivo, since as the noise pattern resembles the

signal, DOI has been shown to be as selective as a

mechanisms without DOI (Section 5.1).

6.6. Model extensions: grouping, multiple scales,

complementary processing streams

The edge maps produced by the proposed model are

clean and sharp, but occasionally contain some gaps. These

gaps can be successfully handled by later stages involving

contextual grouping mechanisms. Without DOI, the non-

zero input to later stages might be caused by a contrast

change or, alternatively, by noisy fluctuations within the

signal. With DOI, on the other hand, a non-zero response is

a strong indication of a contrast change in the original

signal. Consequently, with DOI, grouping of local edge

information is not plagued by noisy responses but instead

integrates only the signal responses. A full evaluation of the

benefits of DOI for subsequent stages of grouping

mechanisms is an interesting question for future research.

The need to extract image structures such as edges at

multiple scales has a long tradition in computer vision and

biological modeling (Marr, 1982; Marr & Hildreth, 1980;

Witkin, 1983). A more recent discussion can be found in

Lindeberg (1994). The present model operates on single
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scale but can be naturally extended to the processing at

multiple scales by increasing the SDs of the Gaussians that

define the model RFs. We have shown in earlier work that

the non-linear simple cell circuit has a scale selective

property by boosting activity at the appropriate scale that

corresponds to the underlying image structure (Neumann

et al., 1999). In the present paper, we use a single scale to

focus on the contributions of the new mechanism of DOI.

The present model deals with the processing of boundary

information. Surface information such as shading and

textures can be processed by a parallel surface system,

which interacts by filling-in processes with the boundary

system (Cohen & Grossberg, 1984; Grossberg, Mingolla, &

Ross, 1997). A review can be found in Neumann and

Mingolla (2003).

7. Conclusion

Overall, we have presented a biologically motivated

simple cell model which incorporates two mechanisms:

DOI in a push–pull network, and MCSCS. The model can

account for a number of basic empirical findings, such as

linear contrast-summation up to saturation and contrast-

invariant orientation tuning, as well as for more challenging

data such as strong suppression by segments of opposite

contrast polarity, sharp orientation tuning using simple cell

subfields with a moderate aspect ratio of 2.23, and

increasing orientation selectivity with increasing inhibition.

Application of this model for the processing of images leads

to robust extraction of contrast information by adaptive

suppression of noise. This in turn allows to hypothesize a

functional role for the dominant inhibition as observed

experimentally, showing the fruitful cross-fertilization

between biological modeling and more technically oriented

applications.
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Appendix A. Details of the non-linear simple cell circuit

The purpose of the non-linear simple cell circuit is to

generate sharp responses at edges. Edges are characterized

by spatially juxtaposed on and off contrast responses. To

generate a sharp response, the desired circuitry thus has to

amplify responses if both subfields are simultaneously

active, similar to a soft AND gate. The circuit that

realizes this property is motivated computationally and is

not supposed to have a direct neurophysiological

counterpart.

The various parts of the non-linear simple cell circuitry

and their different computational roles are explained below.

A more detailed description and motivation of the non-

linear simple cell circuit is given in Neumann et al. (1999).

The circuit which defines the multiplicative combination

of simple cell subfields (MCSCS) comprises three inter-

mediate steps, namely Sð1Þ; Sð2Þ; and ~S (Fig. A1). The basic

circuitry is given by the excitatory Ron=off ! Sð2Þ
on=off !

~S

connections, which define the excitatory input to the simple

cell from its two subfields Ron and Roff : A circuit having

only this basic connection would results in a simple cell that

linearly sums its input. To make the circuit more selective

for juxtaposed on and off contrasts, additional connections

are introduced. The on-channel path Ron ! Sð1Þ
on wSð2Þ

on

implements a self-normalization by inhibition of Sð2Þ
on ;

which prevents arbitrarily large activity of the cell. The

same holds true for the off-channel. The key connections of

the model are the cross-channel inhibitory connections

RonwSð1Þ
off and RoffwSð1Þ

on : By disinhibition, i.e. inhibiting

the inhibition of Sð1Þ; the simple cell response is non-linearly

amplified if both subfields are active simultaneously.

The first two steps are modeled using inhibitory shunting

equations. The steady-state solutions for the on-channel read

Sð1Þ
on ¼

Ron

aS þ bSRoff

; Sð2Þ
on ¼

Ron

gS þ dSSð1Þ
on

:

The corresponding equations for the off-channel are

obtained by interchanging on and off. Variables occur for

all discrete orientations. The index u is omitted to simplify

Fig. A1. Sketch of the simple cell circuit with the non-linear, multiplicative

combination of simple cell subfields (MCSCS). Arrows denote excitatory

input, circles at the end of lines denote inhibitory input.
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notation. The activity of the third step ~S results from pooling

the contributions of the on and off-channel

~S ¼ Sð2Þ
on þ Sð2Þ

off :

Combining these equations and assuming a symmetric

relation between the two channels by setting dS ¼ bSgS

yields a more concise equation. The resulting simple cell

activity consists of a linear and a non-linear, i.e. multi-

plicative, term

~S ¼
aSðRon þ RoffÞ þ 2bSðRonRoffÞ

aSgS þ bSgSðRon þ RoffÞ
:

The parameters are set to aS ¼ 1:0; bS ¼ 10; 000:0; and

gS ¼ 0:01: Their specific choice is not critical as long as the

linear components scaled by aS and gS are small compared

to the non-linear component scaled by bS:
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