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Abstract

Filling-in models were successful in predicting psychophysical data for brightness perception. Nevertheless, their suitability for real-world

image processing has never been examined. A unified architecture for both predicting psychophysical data and real-world image processing

would constitute a powerful theory for early visual information processing. As a first contribution of the present paper, we identified three

principal problems with current filling-in architectures, which hamper the goal of having such a unified architecture. To overcome these

problems we propose an advance to filling-in theory, called BEATS filling-in, which is based on a novel nonlinear diffusion operator. BEATS

filling-in furthermore introduces novel boundary structures. We compare, by means of simulation studies with real-world images, the

performance of BEATS filling-in with the recently proposed confidence-based filling-in. As a second contribution we propose a novel

mechanism for encoding luminance information in contrast responses (‘multiplex contrasts’), which is based on recent neurophysiological

findings. Again, by simulations, we show that ‘multiplex contrasts’ at a single, high-resolution filter scale are sufficient for recovering

absolute luminance levels. Hence, ‘multiplex contrasts’ represent a novel theory addressing how the brain encodes and decodes luminance

information.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the natural environment, surface boundaries are often

defined by luminance contrasts indicating changes in

material. Experimental data indicate that such boundaries

are represented in the visual system: contrast sensitive

neurons are already present after the photoreceptor level in

the retina (Kuffler, 1953; Werblin & Dowling, 1969), and in

the primary visual cortex (Hubel & Wiesel, 1962, 1968).

However, our perception is richer than mere boundary

maps, and there is now evidence that cortical neurons exist

whose responses correlate with surface brightness (e.g.

Komatsu, Murakami, & Kinoshita, 1996; Kinoshita &

Komatsu, 2001; MacEvoy, Kim, & Paradiso, 1998; Rossi,
0893-6080/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.
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Rittenhouse, & Paradiso, 1996; Sasaki & Watanabe, 2004).

Given that the retina transmits contrast information to the

cortex, and the evidence for boundary sensitive neurons in

the cortex, one may ask how the visual system assigns

perceptual attributes (such as brightness) to surfaces. As a

possible solution it was suggested that contrasts subserve

boundary detection, and that contrast activity fills into areas

enclosed by boundaries, thereby generating surface rep-

resentations (Walls, 1954). Thus, surface representations are

generated at their boundaries by filling-in local contrast

information. A first framework for filling-in was proposed

by Gerrits and Vendrik (1970), for explaining data on

stabilized retinal images (Gerrits, de Haan, & Vendrik,

1966). Filling-in within this framework occurs in separate

channels for ‘brightness’ and ‘darkness’ activity, corre-

sponding to retinal ON and OFF contrast channels,

respectively (Fig. 1). Brightness activity determines the

surface attribute ‘brighter than mid-gray’, and darkness

activity determines the attribute ‘darker than mid-gray’.
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Fig. 1. Filling-in framework proposed by Gerrits and Vendrik (1970).

Retinal ON (OFF)-responses provide the initial state in a brightness

(darkness) diffusion layer. Activity propagation is controlled by mutual

inhibition of spatially corresponding cells in both layer. Perceived

luminance is computed by brightness (darkness) activity acting excitatory

(inhibitory) on an Eigengrau level (Knau & Spillman, 1997; Gerrits &

Vendrik, 1970).

Fig. 2. Filling-in framework proposed by Cohen and Grossberg (1984). A

boundary contour system (BCS) controls activity propagation in the feature

contour system (FCS, the diffusion layer). Notice that boundaries have to be

available before filling-in begins.
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The mid-gray level is called Eigengrau (Gerrits & Vendrik,

1970; Knau & Spillman, 1997), and refers to the percept

which is reported by subjects after the disappearance of a

stabilized retinal image. Here, we will use the term

perceived luminance or perceptual activity to describe the

final appearance of a surface. Perceived luminance is

assumed to be a function of brightness activity and darkness

activity.1

The filling-in framework proposed by Gerrits and

Vendrik was formalized by Cohen and Grossberg (1984)

and Grossberg and Mingolla (1985) (herein referred to as

standard filling-in). Standard filling-in clarified the role of

boundaries and features by proposing two interacting

subsystems (see Fig. 2), a boundary contour system

(BCS), and a feature contour system (FCS).

With standard filling-in, a given intensity image is

initially processed by center-surround mechanisms,

modeling retinal contrast enhancement (Marr & Hildreth,

1980; Marr, 1982). Center-surround processing results in

two information channels, one for conveying ON-contrasts

(signalling luminance increments), and one for OFF-

contrasts (signalling luminance decrements). Both, FCS

and BCS, make use of these contrast channels. BCS

processing implements an edge detector by looking for

spatially coinciding ON and OFF contrast patterns. Edges

define areas to be filled-in by the FCS. Filling-in is

implemented by heat diffusion,2 whereby BCS edges act
1 Usually, in the literature it is referred to as (perceived) brightness to

what we mean with perceived luminance, and perceptual activity,

respectively. We introduced the latter terms to avoid confusion, since we

further distinguish brightness related activity, and a darkness related

activity.
2 Filling-in may appear similar to anisotropic diffusion models (Perona &

Malik, 1990) at first sight. However, diffusion in filling-in models occurs

isotropically, using a scale-constant boundary structure (see also Neumann

et al., 2001). Since filling-in models aim to explain psychophysical and

neurophysiological data, and no specific adaptive anisotropies have been

reported so far, models remain at using isotropic completion mechanisms

for surface attributes.
as barriers for the diffusion process (Grossberg &

Todorović, 1988).

Various experiments corroborate the filling-in hypoth-

esis, both behaviorally (Davey, Maddess, & Srinivasan,

1998a; Davey, Srinivasan, & Maddess, 1998b; Paradiso &

Nakayama, 1991; Paradiso & Hahn, 1996; Watanbade

& Sato, 1989;) and neurophysiologically (Kinoshita &

Komatsu, 2001; MacEvoy et al., 1998; Rossi et al., 1996;

Rossi & Paradiso, 1999, but see Pessoa & Neumann, 1998,

and Pessoa, Thompson, & Noë, 1998). Corresponding

models evolved in parallel, where models addressed, for

example, dynamical aspects (Arrington, 1994; Grossberg,

Francis, & Mingolla, 1994; Keil & Neumann, 2001), the

processing of luminance gradients (Grossberg & Mingolla,

1987; Pessoa, Mingolla, & Neumann, 1995), perceptual

grouping (Gove, Grossberg, & Mingolla., 1995; Ross,

Grossberg, & Mingolla, 2000), and the three-dimensional

perception of surfaces (Grossberg, 1997; Grossberg &

Pessoa, 1998; Grossberg & Howe, 2003; Kelly &

Grossberg, 2000). Filling-in models were also applied to

improve the perceived quality of synthetic aperture radar

(SAR) images (Grossberg, Mingolla, & Williamson, 1995;

Mingolla, Ross, & Grossberg, 1999). But for all that success

so far, results from filling-in models with real-world images

remain scarce (with the exception of Hong and Grossberg

(2004) and Sepp & Neumann (1999)).

The first goal of our paper was to investigate why there

exists such discrepancy between explaining perceptual data

and the apparent limitations of filling-in models when

applied to real-world data. We identified three problems:

(i) The introduction of gradients into the perceptual activity

of surface representations, which were actually absent from

the visual input (trapping problem). (ii) Filled-in represen-

tations often suffer from a loss of contrast compared to the

input (fogging problem). (iii) Originally sharp-edged

surfaces in the visual input are mapped onto surface

representations with blurred edges (blurring problem; see,

for example, simulation results of Gove et al., 1995;

Grossberg et al., 1995; Mingolla et al., 1999; Sepp &

Neumann, 1999).

We further asked how to reduce those artifacts, and

present an advance to filling-in theory, which we called



Fig. 3. Filling-in framework proposed in this paper. Instead of having a

single BCS for both diffusion layers, each layer possesses its own set of

boundaries (i.e. contours and cofftours). The diffusion process is nonlinear,

because of using a nonlinear diffusion operator, and mutual inhibition of

brightness and darkness layer in an interaction zone. This interaction was

introduced since boundary gaps have more deleterious effects due to the

nonlinear diffusion operator.
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BEATS filling-in (‘Bigger EATs Smaller’, Fig. 3). Unlike its

predecessors, BEATS filling-in is based on a nonlinear

diffusion operator. The dynamics of the corresponding

diffusion process is such that smaller activity values are

overwritten, or ‘eaten’, by bigger ones. BEATS filling-in

furthermore introduces a novel boundary structure in order

to enhance the spatial accuracy for controlling the diffusion

process. Whereas usually a single set of boundaries slows

down diffusion in both the brightness and the darkness

diffusion layer, BEATS filling-in uses two sets of

boundaries, which are called contours (darkness layer)

and cofftours (brightness layer). In conjunction with

nonlinear diffusion, the novel boundary structure counter-

acts the blurring and trapping problem.
Fig. 4. Contrasts alone are ambiguous. By only considering contrast information

luminance profile (right). Thin curves represent retinal ON and OFF-responses, bo

above each plot).
As a second contribution of this paper we propose a new

mechanism of how luminance information is made available

in the visual cortex. Retinal ganglion cells are sensitive to

luminance contrast within their receptive field (Kaplan &

Shapley, 1982; Kaplan, Lee, & Shapley, 1990; Kuffler,

1953). However, by considering only contrast information,

we cannot distinguish the stimuli shown in Fig. 4. As a

solution, most models addressing brightness perception and

image coding, respectively, propose a low-pass or

luminance channel, in addition to (often multi-scale)

contrast channels (e.g. du Buf & Fischer, 1995; Hong &

Grossberg, 2004; Pessoa et al., 1995, but see Arrington,

1996): luminance information is superimposed with filled-in

or multi-scale-contrast information to recover absolute

luminance levels.

Recently, a luminance-sensitive ganglion cells (GC) has

been reported which projects to the suprachiasmatic nucleus

(SCN) (Berson, Dunn & Takao, 2002). This type of

ganglion cell (SCN-GC) is thought to be involved in

entraining circadian rhythms. However, it is an unlike

candidate for a luminance-driven channel, because it does

not use rod nor cone input (but is rather excited by its light-

sensitive dendrites). Furthermore, the response kinetics of

SCN-GCs is far too sluggish for normal vision.

Another candidate, the biplexiform cell (Mariani, 1982;

Zrenner, Nelson, & Mariani, 1983), uses direct input from

rod photoreceptors. However, the function of biplexiform

cells is poorly understood, and it is hypothesized that they

may be involved in controlling pupil size, or in entraining

circadian rhythms.

Since we could not found evidence in the literature for

other mechanisms which support the notion of a luminance-

driven channel, we propose instead that luminance

modulates local contrast responses in a way that contrast
, one cannot distinguish a luminance staircase (left) from a teeth-shaped

ld gray curves represent luminance (2D luminance distributions are shown



Table 1

Parameter values for the retinal stage. Notice that Eq. (1) actually

represents two equations (for ON- and OFF-contrasts), defined by the

respective values of E 0
cent and E 0

surr

Parameter Value Equation Description

gleak 1 1 Leakage conductance

Vrest 0 1 Resting potential

Esi 0 1 Self-inhibition reversal

potential

ðE 0
cent;E

0
surrÞ (1,K1) 1 ON-cell (center, surround)

amplitude

ðE 0
cent;E

0
surrÞ (K1,1) 1 OFF-cell (center, surround)

amplitude

D 0.35 2 Saturation constant

sOS 4 2 Outer surround spatial

constant
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and luminance are simultaneously encoded (multiplex code).

Then, filling-in of multiplex contrasts directly recovers an

anchoring level of perceived luminance based on absolute

luminance levels. Notice that, in order to recover an

anchoring level with a luminance-driven channel, one has

to add its output to the output of filling-in layers (i.e. after

filling-in has been completed), what implies that filling-in

alone is insufficient for the generation of brightness maps.

The notion of a multiplex code involves a consistent

interpretation of anatomical evidence provided by Li, Pei,

Zhou, and von Mitzlaff (1991) and Li, Zhou, Pei, Qiu, Tang,

and Xu (1992), and is also in line with recent evidence

demonstrating a fast and low-level mechanism for encoding

human brightness information (McCourt & Foxe, 2004).

In this paper we present simulations with the novel

BEATS filling-in, and the recently propose confidence-

based filling-in (Neumann, Pessoa, & Hansen, 2001). We

show that brightness of real-world images can be recovered

by using only single-scale high-pass information. The

possible impact of our results on human brightness coding

and encoding of images is discussed.
3 In biological ganglion cells, ON- and OFF channels are not symmetric

in many properties. For instance, ON cells fire spontaneously at a higher

rate than OFF cells under photopic stimulation (Chichilnisky & Kalmar,

2002; Cleland, Levick & Sanderson, 1973; Kaplan, Purpura, & Shapley,

1987; Passaglia, Enroth-Cugell, & Troy, 2001; Troy & Robson, 1992;

Zaghloul, Boahen, & Demb, 2003).
2. Retinal model

Whereas previous filling-in models use the same contrast

information for boundary detection and filling-in, we use to

different types of contrasts, as illustrated in Fig. 3. Retinal

contrasts for boundary detection correspond to high-pass

information and were computed with a dynamic normal-

ization network (details are given in Keil, 2003). Unlike

spatial differentiation with a Laplacian, our approach leads

to ‘smoother’ boundary structures at feature junctions.

Contrasts for filling-in were computed with a Laplacian-like

receptive field structure (Marr & Hildreth, 1980).

The center/surround receptive field of our model

ganglion cells is specified as follows. Center width was

one pixel, that is ChL, where L2½0; 1� is the input

image. Surround activity was computed by convolving L

with a 3!3 kernel with zero center weight, exp(K1)/h for

the four nearest neighbors, and exp(K2)/h for the four next-

nearest neighbors (h was chosen such that the kernel

integrated to one). Retinal responses were evaluated at

steady-state of

dVijðtÞ

dt
Z gleakðVrest KVijÞCE 0

centCij CE 0
surrSij

CIij;siðEsi KVijÞ (1)

with parameter values specified in Table 1. The decay of

activity is defined by gleak, and Vrest is a resting potential.

The term Iij;si h½E 0
centCij CE 0

surrSij�
C denotes self-inhi-

bition with reversal potential Esi, where [$]Chmax($,0).

Self-inhibition implements the compressive and non-

linear response curve observed in biological X-type cells

(Kaplan et al., 1990). ON-responses x5h[V]C are obtained
by setting E 0
cent Z1 and E 0

surrZK1, and OFF-responses

x5h[V]C by E 0
cent ZK1 and E 0

surr Z1. With Eq. (1), ON-

and OFF-responses at luminance edges have equal

amplitudes (c.f. Fig. 4).3

Multiplexed retinal responses ~m4 and ~m2 were generated

by modulating x4 and x2, respectively, with average local

luminance. Averaging took place within a region - called

outer surround OS - which is a structure situated beyond the

classical receptive field of retinal ganglion cells (Li et al.,

1991; Li et al., 1992; see Fig. 10).

Let Norm[$] implement the normalization operator, that

is if a%fij%bci,j, and asb, then 0%Norm[fij]%1. (The

normalization operator represents a simple model for

network adaptation to the full dynamic range of the input)

. The activity of the outer surround is computed by

convolution (symbol ‘5’) with a Gaussian kernel:

OShNorm½L�5GsOS
. We chose sOSZ4, in line with the

data from Li et al. (1991, 1992), who found that the outer

surround is large compared to the ‘classical’ surround of

ganglion cells. Nevertheless, we did not observe significant

differences in our results for choosing larger or smaller

values for sos. Outer surround activity acts to multi-

plicatively gate the ‘classical’ center/surround responses

of retinal ganglion cells according to

~m5
ij Z x5

ij

OSij

D COSij

~m2
ij Z x2

ij

1 KOSij

D C1 KOSij

(2)

where D is a saturation constant (bigger values result in a

more linear encoding of luminance). For fixed contrasts, ~m4

increases as a function of intensity, and consequently ~m4

encodes local brightness. Likewise, ~m2 decreases as a

function of intensity, making ~m2 encode local darkness.



Table 2

Parameter values for BEATS filling-in. Eq. (13) was integrated with the

forth-order Runge Kutta method (with parameter values given in the last

two rows of the table)

Parameter Value Equati-

on

Description

3 25.0 3 contour/cofftour diffusion slow

down gain

l /N 3 Max-diffusion

Qw 0.0125 9 contour/cofftour threshold

bw 1.0 9 contour/cofftour saturation constant

Qz 0.070 10 Interaction zone threshold value

bz 0.005 11 Interaction zone saturation constant

sz 2.0 11 Interaction zone blurring constant

gw 0.75 13 contour/cofftour inhibitory gain

Ein K0.025 13 contour/cofftour inhibitory reversal

activity

Dt 1.0 Forth-order Runge Kutta time step

tmax %600 Number of integration time steps

Since only the parameters’ order of magnitude matters, all simulation

results are robust with respect to specific parameter values.
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3. A generic diffusion operator

In this section we define a general diffusion operator for

describing previously existing filling-in mechanisms as

special cases. Let f+ be a function denoting brightness

activity, and f† a function that encodes darkness activity.

We assume the existence of two separate diffusion layers,

one for brightness activity and one for darkness activity.

Then, we can define diffusion operators K8 and K† for the

brightness layer and the darkness layer, respectively, as

K8
3;lf 8ij Z

X

ðp;qÞ2Nij

P8
ijpqTl½f

8
pq K f 8ij�

K†
3;lf †ij Z

X

ðp;qÞ2Nij

P†
ijpqTl½f

†
pq K f †ij �

(3)

where Nij denotes a von Neumann neighborhood.4 Since

boundaries block activity propagation, we define spatially

varying diffusion coefficients, or permeabilities, for the

brightness layer P+hP+(G+), and the darkness layer

P†hP†(G†), respectively, as

P8
ijpqðG

8Þ Z ð1 C3G8
ijpqÞ

K1

P†
ijpqðG

†Þ Z ð1 C3G†
ijpqÞ

K1
(4)

Both G+ and G† are functions of boundary signals (or

BCS-activity), which act as diffusion barriers. The

effectiveness of blocking diffusion is characterized by 3.

The operator Tl½$� is defined by

Tl½x� Z
hx

1 CeKlx
(5)

where hZ1CeKjlj is a normalization constant. The

parameter l defines the functional behavior of Tl½,�, that is

1. Inverse half-wave rectification:

lim
l/KN

Tl½x� Z minð0; xÞ (6)

2. Identity:

l Z 0/T0½x� Z x (7)

3. Half-wave rectification:

lim
l/CN

Tl½x� Z maxðx; 0Þ (8)

Details of the derivation of the operator and its limit

properties can be found in Keil, 2003.
4. BEATS (‘bigger EATs smaller’) filling-in

Owing to a nonlinear diffusion operator (Eq. (8)), the

dynamics of BEATS filling-in looks as if cells with lower
4 A von Neumann neighborhood Nij of a grid point (i, j) denotes its four

nearest neighbors Nij ZfðiC1; jÞ; ðiK1; jÞ; ði; jC1Þ; ði; jC1Þg.
activities are ‘eaten’ by neighbors with higher activities.

The nonlinear diffusion operator is thought to model

rectifying (i.e. voltage dependent) gap junctions (e.g.

Edwards, Heitler, Leise, & Friscke, 1991; Edwards, Yeh,

& Krasne, 1998). BEATS filling-in is now introduced

formally, with parameter values given in Table 2. A sketch

of the architecture is shown in Fig. 3.
4.1. Contours and cofftours

To keep the model simple, we did not explicitly model

the computation of boundary maps with oriented contrast

operators, what would, in cortical terms, correspond to

compute simple and complex cell responses, respectively.

Instead, we estimated the latter responses by retinal ON- and

OFF-responses (denoted by ~y4 and ~y2, respectively). Those

estimates are contours (activity w+) representing diffusion

barriers in the darkness diffusion layer, and cofftours

(activity w†) acting as diffusion barriers in the brightness

diffusion layer (see Fig. 5):

w8
ij Z

threshQw
ð ~y4

ijÞ

bw C threshQw
ð ~y4

ijÞ

w†
ij Z

threshQw
ð ~y2

ijÞ

bw C threshQw
ð ~y2

ijÞ

(9)

where threshQw
ðxÞZ ½Norm½x�KQw�

C implements adaptive

thresholding with threshold Qw 2½0; 1�. This threshold is

associated with gradient suppression and smoothness offilled-

in surface representations. bw is a saturation constant for

amplifying supra-threshold boundary activity. The compu-

tation of boundary contrasts ~y4 and ~y2 has been outlined in

Section 2. The motivation for using two sets of boundary is

described in Section 6.1. Notice that we use a steady boundary

structure while diffusion proceeds. This is different to



Fig. 5. Boundaries and filling-in contrasts do not overlap with BEATS

filling-in. BEATS filling-in uses two sets of boundaries (contours and

cofftours) such that filling-in contrasts cannot overlap with boundaries. In

this way activity trapping is avoided. Bold gray curves correspond to

luminance.

Fig. 6. Multiplexing luminance with contrast. By modulation of contrast response

possible to distinguish between the luminance staircase and the teeth-shaped lum
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anisotropic diffusion approaches, where boundaries traverse

the scale space with time (Perona & Malik, 1990).
4.2. Brightness/darkness interaction zone

A boundary with ‘holes’ (i.e. a not entirely ‘watertight’

boundary) allows for activity exchange between adjacent

surface representations. As a consequence, perceived

luminance contrasts between surfaces decrease, because

they eventually adopt the same value of perceptual activity

(‘fogging’). In order to counteract fogging, we define an

interaction zone around contours and cofftours. Within this

zone, brightness activity and darkness activity undergo

mutual (divisive) inhibition. This causes a slow-down of

diffusion rate at boundary leaks (since then brightness and

darkness will spatially coincide). Thus, fogging is

decelerated, and surface edges will appear blurry at

boundary gaps. Let

zij Z threshQz
ðw8

ij Cw†
ij Þ (10)

with a threshold value Qz. Interaction zone activity Z is

defined as

Z Z
z

bz Cz
5Gsz

(11)

where bz is a saturation constant for amplifying small values of

boundary activity, and sz the standard deviation of the

Gaussian kernel Gsz
(‘5’ denotes spatial convolution). Why

not extending the interaction zone across the whole surface?

Because doing so would increase significantly the required

time to arrive at homogeneously filled-in surface represen-

tations in cases where brightness and darkness activity

spatially overlap during filling-in. The luminance staircase

shown in Fig. 6 constitutes a corresponding situation.
s according to local intensity within an outer surround (Fig. 10), it is now

inance profile by means of contrast responses.
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4.3. Nonlinear diffusion operator

BEATS filling-in employs max-diffusion, which corre-

sponds to l/N in Eq. (3). The permeabilities P+hP+(G+)

and P†hP†(G†) are instantiated by defining the functions

G+ and G† of Eq. (4) as

G8
ijpq Z Zij½f

†
ij �

C CZpq½f
†
pq�

C

G†
ijpq Z Zij½f

8
ij�

C CZpq½f
8
pq�

C
(12)

where [$]C denotes half-wave rectification.
4.4. Brightness/darkness diffusion layer

Diffusion layers are defined as

db8
ijðtÞ

dt
Z gww†

ij ðEin Kb8
ijÞCK8

3;Nb8
ij Cdðt K t0Þ ~m

4
ij

db†
ij ðtÞ

dt
Z gww8

ijðEin Kb†
ij ÞCK†

3;Nb†
ij Cdðt K t0Þ ~m

2
ij

(13)

with b+(b†) denoting brightness (darkness) activity. The

initial state (tZt0) of the diffusion layers is defined by

multiplexed activities ~m4 and ~m2, respectively. Layer cells

are assumed to have zero activity for t%t0. In order to

prevent activity propagation across contours and cofftours,

we took advantage of the fact that max-diffusion cannot

propagate negative activity values. Consequently, we let

contours and cofftours hyperpolarize layer cells with weight

gw. The lower hyperpolarization limit is defined by Ein.

Output activities are S+h[b+]C, and S†h[b†]C.
4.5. Perceptual activity of surface representations

The perceived activity of filled-in surface representations

correspond to the non-rectified steady-state activity

pij Z
gleakVrest CEexS8

ij CEinS$
ij

gleak CS8
ij CS†

ij

(14)

with parameters given in Table 3 The Eigengrau level

(Gerrits & Vendrik, 1970; Knau & Spillman, 1997) is set to

VrestZ0. The last equation applies to both BEATS filling-in

and confidence-based filling-in.
Table 3

Parameter values for the perceptual stage

Parameter Value Equation Description

gleak 1 14 Leakage conductance

Vrest 0 14 Resting potential

(Eigengrau value)

Eex 1 14 Maximum brightness value

Ein K1 14 Maximum darkness value

Notice that Eq. (14) is just a means for visualizing the output of the model,

and does not represent a full anchoring mechanism (see e.g. Gilchrist et al.,

l999).
5. Confidence-based filling-in

We compare the newly proposed filling-in mechanism

with previously developed approaches. Therefore, we

present a brief summary introduction for the recently

regularized mechanism of confidence-based filling-in. We

utilize the notations developed in the previous sections, thus

showing the generalization properties of the new scheme.

Standard filling-in generates non-uniformly, or ‘bowed’,

surface representations: activity is maximal at the sites of

filling-in contrasts (i.e. at boundaries), and decreasing while

moving further into the middle of a surface. This ‘bowing

effect’ is more pronounced for larger surfaces. To examine

this artifact Neumann et al. (2001) investigated filling-in

and identified the nature of the inverse problem. They

showed that standard filling-in tries to ‘fit’ its activity values

to ‘zero data’ at positions where there are actually no data

measurements available (this is equivalent to minimizing

everywhere the data term of a regularization functional).

This minimization is due to a spatially constant activity

decay on the one hand, and due to ‘clamped’ retinal filling-

in contrasts on the other. Neumann et al. accordingly

modified the equations for the diffusion layers such that both

the passive decay gleak, and the ‘clamped’ contrasts (here ~m4

and ~m2, respectively) are suppressed on locations where no

contrast measurements are available. Suppression is

achieved by a confidence measure k2[0,1], and resulting

surface representations are free of ‘bowing’ artifacts.

BEATS filling-in does not reveal ’bowing’ artifacts, since

(i) it employs nonlinear max-diffusion, which permits pulse-

like injection of filling-in contrasts to achieve uniformly

filled-in surface representations (independent of their size),

and (ii) BEATS filling-in dose not incorporate a passive

decay of activity in the cells of the diffusion layers.

Diffusion layers for confidence-based filling-in are

defined as:

dc8ijðtÞ

dt
Z ð ~m4

ij Kgleakc8ijÞkij CK8
3;0c8ij

dc†ij ðtÞ

dt
Z ð ~m2

ij Kgleakc†ij Þkij CK†
3;0c†ij

(15)

k is a monotonic and bounded function of boundary

activity, e.g. kijZ1-exp(gwwij). Notice that standard

filling-in is obtained for kijZ1ci, j. Confidence-based

filling-in uses a single set of boundaries w, which is

computed here by spatially blurring contours and

cofftours (Eq. (9)):

w Z ðw8Cw†Þ5Gsw
(16)

Both, standard filling-in and confidence-based filling-in

use heat diffusion (diffusion operators K8
3;0 and K†

3;0), that

is lZ0 in Eq. (3). Permeabilities P8hP8(G8) and

P†hP†(G†) are instantiated by defining (see Eq. (4))

G8
ijpq hG†

ijpq Z wij Cwpq (17)



Table 4

Parameter values for confidence-based filling-in

Parameter Value Equation Description

3 750 3 contour/cofftour diffusion

slow down gain

l 0 3 Laplacian diffusion

Qw 0.025 9 contour/cofftour threshold

bw 25 9 contour/cofftour saturation

constant

sw 0.25 16 Blurring constant

gleak 0.001 15 Leakage conductance

Specific parameter values are not crucial for our conclusions, as long as

they stay within the same order of magnitude.
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At steady-state, Eq. (15) can be expressed in matrix

notation (with matrix coefficients denoting lateral inter-

actions), and hence filled-in brightness and darkness,

respectively, can be computed by matrix inversion (further

details are given in Neumann et al., 2001). The output

S+h[c+]C and S†h[c†]C is obtained by half-wave

rectified activities of layer cells, and perceptual activities

are obtained through Eq. (14). Parameter values for

confidence-based filling-in are given in Table 4.
6. Limitations of filling-in

Most filling-in models (and also other models for

brightness perception) reveal some artifacts which are

illustrated in Fig. 7, and which are detailed below.
6.1. Activity trapping

A first type of activity trapping occurs if filling-in

contrasts spatially overlap with boundary activity: since

boundaries act to locally decrease activity exchange

between adjacent cells, filled-in activities remain large at

boundaries, and get continuously smaller when moving

away from them. Activity trapping gets particularly

pronounced with high contrast boundaries (Fig. 8), and

occurs both with standard-filling, and confidence-based

filling-in. The reason is that identical boundary sets are used
Fig. 7. Filling-in artifacts. ‘Fogging’, ‘blurring’, and an extreme example of ‘trap

three images were produced with BEATS filling-in, by blurring, and changing pa
for the brightness and the darkness diffusion layer (Fig. 9),

which must be blurred in order to achieve symmetric

alignment ‘between’ the interior and the exterior of surfaces

(c.f. Eq. (16)).

With BEATS filling-in, filling-in contrasts do not overlap

with boundaries (Fig. 5), since different boundaries are used

for the brightness and the darkness diffusion layer (cofftours

and contours, respectively). As a consequence, the latter

type trapping cannot occur.

Nevertheless, a second source of trapping can be the

presence of boundary webs (Grossberg & Mingolla, 1987;

Pessoa et al., 1995) inside surfaces, as generated, for

example, by smooth luminance gradients. If boundary

activity associated with such webs is sufficiently high,

diffusion will get ‘frozen’. The latter type of trapping also

affects BEATS filling-in.
6.2. Fogging

Fogging refers to a loss of perceived contrast as a

consequence of activity exchange between adjacent surface

representations. This situation typically occurs for two

reasons. First, activity may be exchanged across boundaries

with small amplitudes. Second, activity may be exchanged

through boundary gaps (or holes), where activity leaks

through to adjacent surface representations. To fix such

gaps, small-scale grouping mechanisms were proposed, in

order to render filling-in areas ‘watertight’ (e.g. Gove et al.,

1995; Grossberg et al., 1995; Mingolla et al., 1999).

Alternatively, boundaries can be blurred in a way that

holes are ‘smeared up’. Doing so, however, can lead to

activity trapping (due to a now increased overlap with

filling-in contrasts), and also to the blurring problem.

BEATS filling-in tackles the problem of leaky bound-

aries by the interaction zone around contours and

cofftours, where brightness activity and darkness activity

can undergo mutual inhibition (Eqs. (10) and (11)).

Activity diffusion across boundaries is avoided by making

brightness (darkness) activity negative-valued at boundary

locations, since nonlinear diffusion can only propagate

positive values.
ping’ is illustrated with the image Peppers (original shown in Fig. 11). All

rameter values, respectively, of contours and cofftours.



luminance (input)
 256 x 256 pixel

 BEATS filling-in
  (600 time steps)

confidence-based
      filling-in

Fig. 8. Activity trapping. The left image shows a luminance step which

served as input image (size 256!256 pixel). BEATS filling-in does not

reveal activity trapping (middle image), whereas confidence-based filling

does (right image). The last two images show individually normalized

perceptual activities.
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6.3. Blurring

Methods for boundary detection usually increase the

degree of spatial uncertainty of boundaries (e.g. Neumann,

1994). However, when the detected boundaries are too

blurry, then edges of the corresponding filled-in surface
Fig. 9. Initial state of diffusion layers with standard filling-in. Both diffusion

layers make use of the same boundary w. As a consequence, boundaries

overlap with initial filling-in contrasts. Since boundaries act to locally

decrease the diffusion rate, initial filling-in contrasts are ‘trapped’ (c.f.

Fig. 8). The luminance profile corresponds to the bold gray curves.
representation will appear also more blurred than they

originally were. The blurring problem seems to be of

particular importance with multi-scale approaches, and one

can observe it in the output of various filling-in architectures

(e.g. Gove et al., 1995; Grossberg et al., 1995; Sepp &

Neumann, 1999; Mingolla et al., 1999). The blurring

problem can also occur as an intermediate situation between

trapping and fogging, if a partial activity exchange across

boundaries takes place.

In principle there exist two ways for counteracting this

problem, namely re-sharpening of blurred boundaries (e.g.

by center-surround mechanisms), or ensuring spatial

accuracy during the boundary detection process. BEATS

filling-in in its present (single-scale) form makes use of two

sets of high-resolution boundary maps to overcome this

problem. Nevertheless, in this way it is less robust against

noise compared with multi-scale approaches for boundary

detection.
6.4. Recovering absolute levels of perceived luminance

Only few approaches to brightness perception incorpor-

ate neurophysiologically satisfying solutions to the problem

of how to go from contrast measurements to the absolute

levels of perceived luminance of a surface (e.g. Arrington,

1996). A standard technique is to band-pass filter the visual

input over multiple scales, and subsequently adding

luminance information to recover absolute luminance levels

(e.g. Hong & Grossberg, 2004; Neumann, 1996; Pessoa

et al., 1995). We instead propose a multiplexed retinal code,

which is generated from contrast responses by modulating

ON-cell (OFF-cell) responses with local brightness (dark-

ness) (Fig. 10). Multiplexed retinal responses represent
Fig. 10. Creating a multiplexed retinal code. An excitatory center and an

inhibitory surround generate an ON-response. An outer surround

subsequently modulates ON-contrast amplitudes according to local

intensity. In this way a multiplexed ON-response is generated, which

encodes local brightness. In an analogous fashion, OFF-type responses are

modulated by local darkness.
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filling-in contrasts, and below we show that single-scale

information is sufficient to recover perceived luminance

maps with natural images.
7. Simulation results

The performance of BEATS filling-in (‘beats-FI’) and

confidence-based filling-in (‘confidence-FI’) were evalu-

ated by simulation experiments. The luminance maps which

served as input images are shown in Fig. 11. Filled-in results

(i.e. perceived luminance) are shown in Figs. 12 and 13 for

beats-FI and confidence-FI, respectively.

The edges of the surface representations generated with

beats-FI are sharper than they actually were in the input

images. This is a consequence of the nonlinear diffusion

operator, which effectuates deblurring (or deconvolution) of

edges, and suppression of luminance gradients, respectively

(see the out-of-focus bar in the background of the Lena
image). However, different to backward diffusion
Fig. 12. Results for BEATS filling-in. Images show the perceptual activities

(perceived luminance). For displaying, all images were individually

normalized. Input images are shown in Fig. 11.

Fig. 11. Input images. Images show luminance. All images were of size

256!256 pixels with 256 gray levels. For the simulations, the images were

normalized such that intensity values lay between zero and one.
approaches (as, e.g. Perona & Malik, 1990), deconvolution

by nonlinear max-diffusion does not involve numerical

instabilities. Another observation with beats-FI is that there

is a loss of contrast in perceived luminance. This is because

retinal filling-in contrasts tend to be higher at feature

junctions (e.g. corners), and all cells representing a surface

will adopt these activity values due to nonlinear diffusion.

Conversely, higher activities at feature junctions do not

represent a problem with a linear diffusion mechanism,

since they are simply averaged out.

With confidence-FI we can observe a certain degree of

blurring in the sense of a partial exchange of activities

across boundaries, what leads to ‘washing out’ of fine

structured details (as it is most obvious with the image

Boats and the image Picard, where persons’ heads appear

to be self-luminous). The reason lies in corresponding small

boundary activities.

To prevent activity diffusion across boundaries, one

could in principle increase the gain of boundary signals.



Fig. 13. Results for confidence-based filling-in. Images show the perceptual

activities (perceived luminance). For displaying, all images were

individually normalized. Input images are shown in Fig. 11.
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In this way fine structure is preserved, but the trapping

problem due to contrast overlap gets more pronounced,

what causes a decrement in perceptual contrasts (as

exemplified with Fig. 7). As an alternative, one could use

contours and cofftour with confidence-based filling-in.

Although blurring virtually disappears in the latter case,

one must increase boundary activity sufficiently to prevent

fogging. Doing so, however, increases activity trapping

due to boundary webs.

The principal advantage of confidence-FI over beats-FI

are the perceived contrasts: confidence-FI has the tendency

to even exaggerate contrasts in filled-in surface

representations.
8. Discussion and conclusions

With the present article we presented an advance to

filling-in theory. We proposed a novel mechanism for
encoding luminance information in contrast responses of

retinal ganglion cells: retinal ON-responses are modulated

according to local brightness levels, and OFF-responses

according to local darkness levels (‘multiplexed retinal

code’). An outer surround is used to locally measure these

intensity levels. The outer surround is located beyond the

classical center/surround receptive field of retinal ganglion

cells. The multiplex code represents a neurophysiologically

plausible mechanism for addressing the problem of how the

visual system recovers absolute luminance levels from

contrasts. The solution is plausible since it represents a

consistent interpretation of the findings from Li et al. (1991,

1992). The latter authors conjectured that the outer surround

plays a role in transmitting luminance information.

Furthermore, recent evidence from measuring EEG-activity

in humans strongly favors a fast and low-level mechanism

for encoding luminance information over mid-level or

higher-level processing (McCourt & Foxe, 2004). By means

of filling-in, perceived luminance can directly be recovered

from the multiplex code. Consequently, we hypothesize that

two retinal pathways are involved in luminance perception:

one for detecting boundaries, and another for recovering the

perceived luminance of surfaces. This distinction between

‘retinal boundary contrasts’ and ‘filling-in contrasts’ is not

included in other filling-in models proposed up to the

present. We demonstrated by simulations with real-world

images that single-scale information is sufficient for

recovering absolute levels of perceived luminance. In

other words, it seems that images can be recovered from

their boundaries (or contrasts). This should be compared

with the widespread notion that a multi-scale decomposition

of the visual input is necessary in order to create a faithful

representation of the visual input. One advantage of multi-

scale approaches over the single-scale scheme proposed in

this paper is that the former are more robust against noise.

Furthermore, within the context of filling-in, multi-scale

multiplex contrasts could presumably accelerate the filling-

in process (c.f. Sepp & Neumann, 1999). A further

hypothesis is that odd symmetric features on the finest

scale eventually lead to surface representations, whereas

grosser scales trigger representations of smooth luminance

gradients (or shading, Keil, Cristóbal, & Neumann, 2005).

As a second contribution of our paper we identified some

shortcomings with present filling-in models: the blurring

problem, the fogging problem, and the trapping problem

(Section 6 and Fig. 7). As an solution to those problems we

proposed BEATS filling-in, which is based on nonlinear

diffusion mechanisms.

Specifically, BEATS filling-in employs different bound-

aries in each diffusion layer (‘contours’ and ‘cofftours’),

and avoids in this way the overlap of boundaries and

contrasts for filling-in (activity trapping, see Section 6.1).

Since these boundaries correspond to high spatial frequen-

cies, boundary allocation is accurate, and the blurring

problem is reduced (see Section 6.3). The fogging problem

(Section 6.2) is addressed by using a nonlinear diffusion
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mechanism for filling-in, which cannot propagate negative

activity values.

We subsequently compared the results of BEATS filling-

in with confidence-based filling-in: BEATS filling-in

maintains the fine structured details of surface represen-

tations, but reveals a decrease in contrast of perceived

activity. Confidence-based filling-in, on the other hand,

attenuates high spatial frequencies, but enhances contrasts

of perceived luminance. Both models are minimally

complex in the sense that they cannot be reduced further

to obtain the results we presented. Moreover, we omitted an

explicit stage for boundary detection for simplicity reasons.

Nevertheless, by incorporating such a stage, one could

expect that perceived luminance is more faithful to the

input, and an increase in the explanatory power of our

models (we did not make any attempt to simulate

psychophysical data).

The ultimate goal of understanding human luminance

perception is a model which both predicts psychophysical

data, while having a robust performance when processing

real-world images. Such a model can even be expected to

discount noise which was present in the input, and/or

enhance the subjective appearance of the input. At the

present, only few such models are available (e.g. Hong &

Grossberg, 2004). Our contribution takes a step towards this

direction. Since filling-in models were successful in

explaining a broad spectrum of psychophysical data (e.g.

Arrington, 1994; Arrington, 1996; Gove et al., 1995;

Grossberg & Todorović, 1988; Grossberg, Hwang, &

Mingolla, 2002; Neumann, Pessoa, & Mingolla, 1998;

Pessoa et al., 1995; Pessoa, 1996; Pessoa & Ross, 2000;

Rudd & Arrington, 2001), we do believe that it is

worthwhile to improve those models in a way to make

them suitable for image processing tasks.
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Grossberg, S., & Todorović, D. (1988). Neural dynamics of 1-d and 2-d

brightness perception: A unified model of classical and recent

phenomena. Perception and Psychophysics, 43, 241–277.

Hong, S., & Grossberg, S. (2004). A neuromorphic model for achromatic

and chromatic surface representation of natural images. Neural

Networks, 17(5–6), 787–808.



M.S. Keil et al. / Neural Networks 18 (2005) 1319–1331 1331
Hubel, D., & Wiesel, T. (1962). Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. Journal of Physiology,

London, 160, 106–154.

Hubel, D., & Wiesel, T. (1968). Receptive fields and functional architecture

of monkey striate cortex. Journal of Physiology, London, 195, 214–243.

Kaplan, E., Lee, B., & Shapley, R. (1990). New views of primate retinal

function. Progress in Retinal Research, 9, 273–336.

Kaplan, E., Purpura, K., & Shapley, R. (1987). Contrast affects the

transmission of visual information through the mammalian lateral

geniculate nucleus. Journal of Physiology (London), 391, 267–288.

Kaplan, E., & Shapley, R. (1982). X and y cells in the lateral geniculate

nucleus of macaque monkeys. Journal of Physiology, 330, 125–143.

Keil, M. (2003). Neural architectures for unifying brightness perception

and image processing. PhD thesis, Universität Ulm, Faculty for

Computer Science, Ulm, Germany.
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