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In everyday experience, perceived colors of objects remain approximately constant under changes in illumination. This
constancy is helpful for identifying objects across viewing conditions. Studies on color constancy often employ monitor
simulations of illumination and reflectance changes. Real scenes, however, have features that might be important for color
constancy but that are in general not captured by monitor displays. Here, we investigate categorical color constancy
employing real surfaces and real illuminants in a rich viewing context. Observers sorted 450 Munsell samples into the 11
basic color categories under a daylight and four filtered daylight illuminants. We additionally manipulated illuminant cues
from the local surround. Color constancy as quantified both with a classification consistency index and a standard color
constancy index was high in both cue conditions. Observers generally classified colors with the same precision across
different illuminants as across repetitions for the daylight illuminant. Moreover, the pattern of classification consistency in
terms of stimulus hue, value, and chroma was similar when comparing different observers for the daylight illuminant and
when comparing individual observers across different illuminants. We conclude that color categorization is robust under
illuminant changes as well as across observers, thus potentially serving both object identification and communication.
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Introduction

Did you ever have problems to judge whether a lemon
is ripe or not? The light reflecting from objects to the eye
varies substantially due to changes in lighting conditionsV
whether the objects are viewed under fluorescent light,
sunlight, in shadow, or under a canopy in the forest.
Regardless of these changes in illumination, we are
usually able to successfully judge the ripeness of lemons,
or more generally, the surface color of any object that we
encounter. This ability to perceive constant surface colors
despite the variability in the light signal is called color
constancy.
Humans are able to discriminate thousands of colors

(Linhares, Pinto, & Nascimento, 2008; Marı́n-Franch &
Foster, 2010; Nickerson & Newhall, 1943; Pointer &
Attridge, 1998), but colors are also readily classified into a
few discrete categories (e.g., Berlin & Kay, 1969; Kay &
Regier, 2003). Categorizing the colors of objects, as in the
case of the ripening lemon green or yellow, might support

color constancy in everyday situations together with lower
level constancy mechanisms (Jameson & Hurvich, 1989;
Smithson, 2005). In addition, color categories are useful
when communicating about colors with others. For
communication to be effective, however, two things are
important: that color categories remain roughly constant
under illuminant changes, and that there be some agree-
ment between individuals about the use of categories. Our
main goal here is to characterize categorical color
constancy, but we also aim to elucidate the relationship
between color constancy and communication by compar-
ing the consistency of categories across illuminants to
consistency of categories across individual observers.
In color constancy experiments, observers are com-

monly asked to match the appearance of two targets
embedded in different illumination contexts (asymmetric
matching), or to match one target to an internal reference
of gray (achromatic settings). It is not clear whether these
kinds of tasks are optimal for measuring constancy; in
natural viewing conditions, illuminant changes often
cause the color appearance of a surface to change, for
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instance across a shadow boundary, without affecting our
judgment of the reflectance of the surface (e.g., Reeves,
Amano, & Foster, 2008; Zaidi & Bostic, 2008). In other
words, identical color appearance is not necessary for
correct identification. Some more recent studies have
investigated color constancy with tasks that do not require
observers to match the appearance of stimuli across contexts
(e.g., Bramwell & Hurlbert, 1996; Craven & Foster, 1992;
Foster, Amano, & Nascimento, 2006; Zaidi & Bostic,
2008). Foster et al. (2006) adopted an operational approach
to study color constancy in natural images. They found
observers to be able to reliably discriminate between
changes in the illuminant and changes in the reflectance
of a test surface embedded in the scene; color constancy
indices calculated from discrimination performance varied
between 0.69 and 0.97. Zaidi and Bostic (2008) studied
color constancy in real scenes with a forced-choice
paradigm, where observers had to indicate which of four
objects, placed in two contexts with different illuminants,
was different from the other three. Zaidi and Bostic found
that observers were often good at making this judgment,
but that they made some systematic errors that could be
described with a suboptimal similarity-based strategy.
For the present study, we chose color classification as an
alternative for matching, following a number of studies
that have used it successfully to measure chromatic
adaptation and color constancy (e.g., Amano & Foster,
2008; Chichilnisky & Wandell, 1999; Hansen, Walter, &
Gegenfurtner, 2007; Olkkonen, Hansen, & Gegenfurtner,
2009; Smithson & Zaidi, 2004; Speigle & Brainard, 1996;
Troost & de Weert, 1991; Uchikawa, Uchikawa, &
Boynton, 1989).
One advantage of the color classification method is that

it allows us to investigate the constancy of a large sample
of both achromatic and chromatic surfaces. By using a
collection of Munsell chips with varying hues, chromas,
and values and by asking the observers to select proto-
types among the chips in addition to the classification
task, we can investigate whether constancy depends on the
hue, chroma, or value of a particular chip, and whether
prototypes are classified more consistently than other
chips of the same chroma. The classification method also
allows us to relate the consistency with which individual
observers classify chips across illuminants to the consis-
tency with which different observers classify the chips
under the same illuminant.
Color constancy has been measured extensively with

monitor simulations of flat surfaces and more recently of
3D scenes. Color constancy with these kinds of displays
varies between low and relatively high (around 80%)
depending on the exact task and richness of the display
(e.g., Arend, Reeves, Schirillo, & Goldstein, 1991; Bäuml,
1994; Delahunt & Brainard, 2004; Lucassen & Walraven,
1996). The size of the illumination context also has a large
effect on color constancy, at least for simple displays
(Hansen et al., 2007; Murray, Daugirdiene, Vaitkevicius,
Kulikowski, & Stanikunas, 2006; Rinner & Gegenfurtner,

2000). Moreover, cues from 3D scene geometry (Bloj,
Kersten, & Hurlbert, 1999; Hedrich, Bloj, & Ruppertsberg,
2009), highlights (Snyder, Doerschner, & Maloney, 2005;
Yang & Shevell, 2003), and stereo disparity (Werner, 2006;
Yang & Shevell, 2002) appear to be used in estimating
surface reflectance and illumination.
Using monitor displays is convenient because of the

control they afford. Moreover, complex scenes containing
physically accurate illuminant cues such as depth, shad-
ows, and highlights can be readily simulated with the
latest computer rendering techniques (e.g., Boyaci,
Doerschner, Snyder, & Maloney, 2006). Still, some
features of real scenes, such as depth along with the
correct oculomotor cues, are hard to reproduce on
conventional monitors (e.g., Hoffman, Girshick, Akeley,
& Banks, 2008). In an important series of papers, Brainard
et al. studied color constancy in a nearly natural real setup
(Brainard, 1998; Brainard, Brunt, & Speigle, 1997; Kraft
& Brainard, 1999; Kraft, Maloney, & Brainard, 2002). In
their investigations, observers matched the color of
surfaces produced by superimposing a projected image
on a real surface across illuminant contexts. The exper-
imental rooms contained various objects that provided
cues to the illuminant. In general, color constancy indices
measured either with asymmetric matching (Brainard
et al., 1997) or with achromatic settings (Brainard, 1998;
Kraft & Brainard, 1999) were higher than what had
previously been found with monitor simulations for the
same type of task. In line with this, de Almeida, Fiadeiro,
and Nascimento (2004) found high color constancy
indices (0.81–0.93) derived from asymmetric matches in
a real setup.
We recently reported color constancy measurements for

simulated surfaces using a color naming method, showing
that observers’ color naming consistency across illumi-
nants approached that of test–retest consistency for a
single illuminant and correlated strongly with color
naming consistency across observers (Olkkonen et al.,
2009). An important motivation for the present study is to
investigate whether these findings generalize to a real
scene. It will be of interest to see whether the degree of
constancy is comparable for real and for simulated
surfaces, and perhaps more importantly, whether we find
the same pattern of constancy across color space for real
surfaces as for the simulated surfaces.
Granzier, Brenner, and Smeets (2009) recently studied

categorical color constancy in a fully natural setting.
Granzier et al. collected color names for six unsaturated
paper samples in several indoor and outdoor locations and
found observers to be relatively good (55% identification
rate) at naming the papers across the different locations.
However, their conclusions are limited by the small
number of test samples. Here, we investigate categorical
color constancy for a large collection of real surfaces in a
natural indoor setting where the illuminant could be
manipulated with colored filters. In particular, we ask
what the limits of categorical color constancy are in a rich
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environment, and how the degree of color constancy
relates to the color classification consistency of individual
observers over time and to the color classification consis-
tency across different observers for the same illuminant.

Methods

Observers

Four naive observers (one male and three females, ages
20–26) and the author CW (male, age 29) took part in the
experiment. All participants were native German speakers.
All had normal color vision as tested with the Ishihara
color plates and self-reported normal or corrected-to-
normal visual acuity.

Stimuli

Three hundred twenty chromatic and 10 achromatic
Munsell samples used in the World Color Survey (WCS;
http://www.icsi.berkeley.edu/wcs/) served as stimuli. The
chromatic WCS surfaces include 40 hues from all Munsell
hue groups (with 2.5-unit distance) and vary in lightness
from Munsell value 2 to 9. The WCS chips are always the
most saturated papers of a given hue/value combination,
chroma varying between 2 and 16. The 10 achromatic
chips have values between 1.5 and 9.5. To more closely
investigate the effect of saturation on color constancy, we
chose an additional set of 120 unsaturated Munsell chips,
consisting of 3 chips from each the 40 Munsell hue groups
having Munsell chromas 2, 4, and 6 at Munsell value 5. A
photograph of the chip collection is shown in Figure 2A.
The experiment was conducted in a room with office

furniture and large windows on the southwest side of the
room (Figure 1A). We collected data under unfiltered
daylight illumination and four chromatic illuminants that
were produced by covering the windows with Lee filters
(http://www.leefilters.com). The filters were selected so
that the chromaticities of the produced illuminants
corresponded roughly to the cardinal axes of the DKL
color space (red, bluish green, greenish yellow, and
violet), which were the illuminants used in our experiment
on color naming for simulated surfaces (Olkkonen et al.,
2009).
All sessions were conducted during light hours. The

illumination was measured off a white reference surface
(Photo Research SR-2) before and after each session for
observers IR and CW and before and after most sessions
for the other observers. Detailed information about the
illuminant chromaticities is provided in Supplementary
Tables 2–6. Filter specifications along with the average
CIE xyY values of the illuminants are provided in Table 1.
Figure 1B shows the illuminant chromaticities for each

Figure 1. (A) A part of the experimental room with the red filters
over the windows is shown with the chip collection on the gray
cloth. The monitor and the white paper were not present during the
experiments and are here only to indicate the reddish color
appearance of the illuminant. The visible red borders of the filters
at the edges of the window were covered during the experiments.
(B) Judd–Vos corrected CIE chromaticities of the five experimental
illuminants measured in each session are plotted on the xy plane.
Symbol colors indicate the chromaticity of the illuminants. The two
measurements made before and after each session are con-
nected with lines. Different pairs of symbols show measurements
in different sessions. The gray curve shows the daylight locus.
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session where measurements were made. The variation in
illuminant chromaticity within a given session was
generally not large except for one session for the reddish
illuminant for observer HB.
We used reflectance spectra provided by the University of

Joensuu Color Group (http://spectral.joensuu.fi/) for calcu-
lating Judd–Vos corrected CIE xyY values of the chips
under each illuminant. In order to see how well the
calculated chromaticities matched the actual chromaticities
under the illuminants, we measured the chromaticities
directly from 10 saturated chips under the daylight and
the yellowish illumination. There was a small difference
between the measured and the computed chromaticities, as
shown in Supplementary Figure 1. The Euclidean distance
in the CIE xy plane between the measured and the computed
chromaticities ranged between 0.009 and 0.03 for the
daylight illuminant and between 0.003 and 0.03 for the
yellowish illuminant. As our data analyses focus on
comparing classification performance across conditions,
this difference should not bear consequences on the
interpretation of the results as any systematic shifts would
be present for all illuminants. It should be noted, however,
that the chromaticities depicted in Figure 2B and listed in
Table 1 are based on the computed xyY values and are thus
approximate.

Procedure

The experiment was run under two cue conditions. In
the full-cue condition, the chips were laid out on a table
on a medium gray cloth with Judd–Vos corrected CIE
chromaticities x = 0.33, y = 0.35 under average daylight
illumination. The chips were approximately square with
an extension in the bottom part; maximum dimensions
were 2 cm � 4 cm or 2.3 � 4.6 degrees of visual angle at
a distance of 50 cm. The visible portion of the cloth was
148.5 cm � 61 cm or 112 � 63 degrees. In this condition,
some of the chips had a higher luminance, and some had a
lower luminance than the gray cloth.
In the reduced-cue condition, the chips were laid on a

black cloth and observers wore black gloves to reduce cues
to the illumination from local contrast between the chips
and the background and between the chips and the hands.
The visible portion of the black cloth was 200 cm � 61 cm

or 127 � 63 degrees. In this condition, all chips reflected
more light than the background.
In both conditions, all 450 chips were laid out on the

cloth simultaneously in a random arrangement, and the
observers’ task was to sort the chips into eleven categories
that correspond to the basic color terms (red, orange,
yellow, green, brown, blue, purple, pink, white, gray, and
black). The color names were given in German (rot, orange,
gelb, grün, braun, blau, lila, rosa, weiQ, grau, schwartz).
Observers were not given any additional instructions on
how to accomplish the sorting task.
In addition to sorting each chip, observers chose the

best examples for each category, i.e., prototypical colors,
among the chips in each condition.
One session, taking about an hour, consisted of running

the sorting task and the prototype selection once under
one illuminant. Observers ran one session on any given
day. Data for all observers were collected for a given
illuminant condition in consecutive sessions, after which
the filters on the windows were changed and the next
condition was run. The order of the two cue conditions
within any given illuminant condition was counterbal-
anced across observers. Supplementary Table 1 lists the
session order for each observer.

Illuminant Filter x mean (SD) y mean (SD) Y (cd/m2) mean (SD)

Daylight – 0.321 (0.005) 0.347 (0.005) 194 (137)
Red 35 Light pink 0.349 (0.012) 0.313 (0.009) 926 (2527)
Green 138 Pale green 0.256 (0.010) 0.372 (0.013) 280 (130)
Yellow 242 Lee 4300K 0.331 (0.01) 0.451 (0.007) 127 (146)
Violet 136 Pale lavender 0.310 (0.015) 0.290 (0.015) 206 (179)

Table 1. Filter specifications and the average Judd–Vos corrected CIE xyY values of the chip collection under each illuminant. The
reported values are the means (standard deviations) across all sessions for a particular illuminant. Supplementary Tables 2–6 list the xyY
values separately for each session and observer.

Figure 2. (A) The WCS chips (8 top rows) and the unsaturated
chips (3 bottom rows) are shown photographed under a daylight
illuminant. The WCS chip collection is organized such that value
increases from bottom to top and hue varies from left to right. The
chroma for each chip is the maximum for that particular hue/value
combination. In the unsaturated group, chroma decreases from
top to bottom; all chips are at value 5. The ten achromatic chips
are shown left from the WCS chips. (B) Average Judd–Vos
corrected CIE xy chromaticities of the Munsell chips under each
illuminant are shown for the daylight (far left) and for the reddish
(top left), greenish (top right), yellowish (bottom left), and violet
(bottom right) illuminants. The XYZ values for each chip were
calculated from spectral measurements for the Munsell collection
downloaded from the University of Joensuu Color Group Spectral
Database. Illuminant spectra were measured in the experimental
room for each filter. N in each panel indicates the number of
available spectral measurements for each illuminant condition.
Symbol colors indicate the color signal reflecting off the chips
under each illuminant. Error bars show the variation in the color
signals across repetitions of the same illuminant condition.
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Data analysis
Color constancy

Color constancy was quantified with three different
analyses. First, the proportion of same classifications

between the second run of the daylight condition and
each chromatic illuminant condition was calculated for
each observer (pairwise consistency). For any given
chip, this value could be 0 (different) or 1 (same), and
the average across the whole stimulus collection describes
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the overall amount of categorical color constancy for
any given illuminant change from neutral. In addition,
the proportion of same classifications between the first
and second runs of the daylight condition was calculated
for each observer to estimate test–retest color sorting
reliability.
A second type of analysis sought to quantify the overall

stability of categories across the five illuminant conditions
(overall consistency). To this end, the frequency with
which each Munsell chip was classified in the same
category across all five illuminants was calculated for each
observer (see Troost & de Weert, 1991). Specifically, the
number of same classifications for each chip was calculated
over the five illuminant conditions (range 0–5) and divided
by the maximum number of same classifications (5). An
index of 0 would mean that a chip was classified differently
under all illuminations and 1 that a chip was classified the
same under all illuminations. This index describes the
overall degree of categorical color constancy for each chip.
We also calculated classification consistency across observ-
ers for the daylight illuminant, which describes the degree
of agreement between different observers’ color categories.
Finally, the effect of each illuminant change from

neutral on the achromatic point was quantified with a
measure similar to a standard color constancy index
(Equation 1). Achromatic points were defined as the
centroids of the gray category in the Judd–Vos corrected
CIE xy plane, i.e., the mean xy chromaticities of all chips
named gray. Rather than to quantify the change in the
achromatic point relative to the change in the illuminant,
the physical change in stimulus chromaticities was used as
the reference:

CI ¼ Sc I Sp

ÝSpÝ
2

ð1Þ

In Equation 1, vector Sc is the observed shift in the
achromatic point from the neutral to a given test
illuminant and vector Sp is the predicted shift of the
achromatic point given perfect constancy. Projecting Sc to
Sp gives the common component of the observed shift in
the direction of the predicted shift, and the constancy
index is derived by dividing the magnitude of the
projection by the magnitude of the predicted shift.
We also calculated color constancy after Equation 1 for

the category prototypes of each observer to get a
comparison between color constancy for achromatic and
chromatic samples.

Lower bound prediction

The fact that some color categories are larger than others
might be expected to influence classification consistency
across illuminants. In the case of a large category, such as
green, even a large shift in the illuminant might not be

sufficient to push the chromaticities of all stimuli to a different
category. In other words, we expect some baseline consis-
tency even in the absence of color constancy. To estimate the
influence of this effect on color classification consistency, we
calculated a lower bound estimate for consistency as follows.
First, category boundaries were fitted to the color classifica-
tion data under the daylight illuminant as described in
Olkkonen et al. (2009). For boundary fitting, stimulus
chromaticities were converted from CIE XYZ to CIE
L*a*b* coordinates (Wyszecki & Stiles, 1982). The CIE
L*a*b* space was convenient for boundary fitting because it
represents color variation around an origin, which we
defined as the chromaticity of the gray cloth under neutral
daylight. The white point of the space was the same for all
illuminant conditions. The fitting was done for each observer
and each Munsell value separately. After fitting the
boundaries, the light signal reflecting from each chip under
each average chromatic illuminant was calculated in L*a*b*
coordinates. The light signals under each chromatic illumi-
nant were categorized based on the category boundaries for
the daylight illuminant. Finally, a consistency index was
calculated based on the simulated classifications as described
in the Color constancy section.
We had full illuminant measurements for two observers

(IR and CW), for whom we were able to run the above
analysis individually. Figure 3 shows the lower bound
predictions calculated from the individual illuminant data
for observers IR and CW, as well as from illuminant data
averaged over all measurements. The patterns in the three
curves are reasonably similar, and so we will use

Figure 3. Lower bound predictions for individual and average
illuminants as a function of Munsell hue. The lower bound
prediction calculated from the illuminant spectra in each session
is shown for observer IR with the gray dashed curve and for CW
with the black dot-dash curve. The red solid curve shows the lower
bound prediction calculated from average illuminant spectra.
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individual predictions for IR and CW and the average
predictions for the other three observers.
A lower bound estimate for observer consistency was

calculated in a similar manner. As there are no stimulus
chromaticity changes across observers, we modeled the
effect of category size by rotating the category boundaries in
the daylight condition by a random amount chosen uni-
formly between j60 and +60 degrees separately for each
observer, after which the estimated observer consistency
index was calculated based on the rotated boundaries. The
rationale was that the largest categories would be most
immune to the rotation and would thus give us an estimate of
the effect of category size for the classification consistency
across observers. The simulation was repeated 100 times,
and the mean of the simulated indices was taken as the lower
bound prediction for observer consistency.

Results

Classification consistency across illuminants

Observers classified colors in a rather consistent manner
across different illuminants. Figure 4 shows the classi-
fication data for observer IR under all five illuminants in
the full-cue conditions for Munsell chips at value 5. The
data from the two sessions under daylight illumination are
shown in the top row, and the data from the filter
conditions are shown in the middle and bottom rows.
This observer changed her classifying strategy for some
categories between the first and second runs of the
daylight condition. The categories remained more or less
stable from the second baseline run to the filter conditions.
For the other observers (Supplementary Figures 2–6),
color categories remained similar across all conditions.
Because of practice effects, we used the second run of the
daylight condition as a baseline for subsequent color
constancy calculations.
Figure 5 shows the color categories averaged over

observers for the whole chromatic chip collection in the
full-cue conditions. Category boundaries fitted to the data
in the second baseline condition (Figure 5B) are shown in
each panel with black lines. Comparing the data in each
panel to the baseline boundaries shows that, overall,
categories were rather stable across illuminants. The most
salient changes were the enlargement of the green
category between the baseline and the yellowish filter
condition (Figure 5E), and the small decrease in the size
of the pink category between baseline and the greenish
filter condition (Figure 5D).
The small disks in each panel show the prototypical

loci, aggregated over observers. The size of the disks
indicates the frequency of each locus. Most loci tended to
fall near the category centers, although there was some

scatter especially for the pink category. Even though the
loci remained rather constant under illuminant changes,
the illuminant had an effect on the variability of the
prototypes: under yellowish illumination (Figure 5E), for
instance, the prototypes for red and green were the same
for all observers, whereas under other illuminants these
prototypes were more variable. Similarly, the prototype
for pink was less variable under the violet illuminant
(Figure 5F) than under the other illuminants.
In the reduced-cue conditions (Figure 6), categories

were nearly as stable as in the full-cue conditions. Again,
the most salient changes were the enlargement of the
green category from daylight to the yellowish (Figure 6E)
and to the greenish (Figure 6D) illuminants. As in the full-
cue conditions, prototypes were generally located close to
the category centers, with the exception of the red
prototype, which was close to the red–brown boundary
in all conditions. In addition, the prototype loci remained
rather stable under illuminant changes. The constancy of
prototypes is addressed further in the Color constancy for
the prototypes section.
Similar figures for individual observers are presented in

Supplementary Figures 2–11. The most salient effects for
the individual observers were the enlargement of the green
category under the yellowish illuminant (see, e.g., OX, AI,
HB) and the enlargement of the purple category under the
violet illuminant (see, e.g., OX, HB, CW). The effects
were somewhat larger in the reduced-cue conditions
particularly for OX, AI, HB, and CW.
Figures 5 and 6 show that both test–retest consistency

and consistency across illuminants were rather high and of
comparable degree. This is summarized for individual
observers in Figure 7, which shows classification consis-
tency between the two baseline runs, as well as consis-
tency between the second baseline and each filter
condition. For each observer, the first bar shows test–
retest consistency in the baseline condition; the other bars
show the comparisons between the baseline and each of
the chromatic illuminant conditions. IR classified 62% of
all stimuli in the same category between the first and
second runs of the daylight condition and on average 84%
of the stimuli when the baseline was compared to the filter
conditions. For observers OX and HB, classification
consistency was best for the test–retest condition at 93%
and 97%, respectively, and dropped to 76% and 80% for
the illuminant change comparisons. For observers AI and
CW, classification consistency was about the same for the
test–retest comparison at 83% and 79% and the illuminant

Figure 4. Raw classification data from observer IR under daylight
illumination (first and second runs, top row), under the reddish and
greenish illumination (middle row) and under the yellowish and
violet illumination (bottom row). Each symbol denotes one
Munsell chip at value 5. Symbol colors indicate the color name
given to each chip. Munsell hue varies concentrically and chroma
varies radially.
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Figure 5. Average color categories in the full-cue conditions. Color categories aggregated over observers are shown for the (A) first and
(B) second runs of the daylight condition. Hue varies from left to right, and value increases from bottom to top for theWCS chips (8 top rows).
For the unsaturated chips (three bottom rows), saturation increases from bottom to top. The small disks show the prototypical loci. The size
of the disks corresponds to the frequency with which each locus was selected. The black lines show category boundaries fitted to the second
baseline condition. Aggregated color categories are shown for the (C) reddish, (D) greenish, (E) yellowish, and (F) violet filter conditions.
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Figure 6. Aggregated color categories in the reduced-cue conditions. Details as in Figure 5.
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change comparisons at 79% and 80%. Binomial propor-
tion confidence intervals (see error bars in Figure 7)
indicate that the differences between the test–retest and
the illuminant change conditions were significant for
observers IR, OX, and HB but not for AI and CW. Note,
however, that the direction of the effect was different for
IR on the one hand, and for OX and HB on the other hand.
The fact that test–retest consistency was relatively low

for IR compared to the other observers can be understood
by looking at IR’s raw classification data from the two
runs of the daylight condition (see first row of Figure 4).
The data from the first run were noisier than the data from
the rest of the sessions, and the criteria for classifying
chips green or purple changed from the first run to the
second. In contrast, there were no such large changes for
the other observers, which is clear from the raw data plots
(Supplementary Figures 2–6) and from Figure 7.
Figure 8 illustrates the distribution of consistency over

all observers and conditions (5 illuminants, 2 cue
conditions). Numbers indicate relative consistency; values
above 90% have been omitted to avoid clutter. Two things
are clear from this figure. First, consistency was highest
toward the centers of the categories. Second, prototypes
tended to cluster in the central regions, perhaps with the
exception of the pink and blue categories. Especially for
the large green category, however, high consistency in the
category center can be partly explained by the fact that the

chromaticities of the stimuli close to category centers are
bound not to shift as much under illuminant changes as
the chromaticities of the chips close to boundaries, thus
retaining their category membership under more extreme
illumination changes. We will return to this issue in
further analyses below.
Figure 9 illustrates the relative overall consistency of

each category for both cue conditions. With the excep-
tion of the white category, consistency in both cue
conditions was high. Overall classification consistency
averaged over categories ranged from 75% to 82% for
the full-cue condition (mean 80%) and from 75% to 83%
for the reduced-cue condition (mean 78%) for the
different observers. In a two-way repeated measures
ANOVA with category and cue condition as factors,
there was no statistically significant difference between
cue conditions (F(1, 4) = 2.2, p = 0.21). In both cue
conditions, consistency was highest for green, red, brown,
and black, and lowest for pink and white. The overall
difference between categories reached statistical signifi-
cance (F(10, 40) = 6.9, p G 0.001).
We also analyzed consistency separately for Munsell

hue, chroma, and value to see whether consistency
depended systematically on any of these dimensions. In
Figure 10A, overall consistency across illuminants aver-
aged over observers is plotted as a function of hue for the
full-cue condition (black circles) and for the reduced-cue

Figure 7. Proportion of same classifications pooled over stimuli for full-cue conditions. Each set of bars shows data for one observer. Each
bar within a set shows the comparison of classification data between the daylight condition and a given other condition, from left to right,
daylight 1–daylight 2, daylight 2–reddish, daylight 2–greenish, daylight 2–yellowish, daylight 2–violet. Error bars show the binomial
proportion confidence intervals, where N = 450 (number of chips).
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Figure 8. Stimulus consistency calculated over all observers, illuminations, and the two cue conditions. The chromatic chips are displayed
in the same format as in Figures 5 and 6, and the achromatic chips are shown on the right. The small disks in each panel show the
prototypical loci. The size of the disks corresponds to the frequency with which each locus was selected. The numbers show percent
consistency; values above 90% have been omitted to avoid clutter.

Figure 9. Overall classification consistency per category for full-cue conditions (white bars) and reduced-cue conditions (black bars). Error
bars denote standard errors of the means across five observers. Color categories are indicated by the bar edge colors and denoted below
the bars as follows: G (green), B (blue), V (purple), P (pink), R (red), O (orange), Y (yellow), Br (brown), W (white), N (gray), K (black).
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condition (black crosses). The gray dashed and solid
curves plot the lower bound prediction for the full-cue and
the reduced-cue conditions, respectively. The consistency
maxima coincided with some of the prototypical hues

(shown with shaded vertical bars), most notably with the
green, blue, and purple prototypes. The lower bound
prediction near green approached 0.9, however, indicating
that in about 90% of the cases the stimuli would be

Figure 10. Across illuminants classification consistency as a function of stimulus variables. (A) Circles (full-cue condition) and crosses
(reduced-cue condition) show overall classification consistency averaged over observers for each of the 40 Munsell hues. Indices have
been pooled across stimulus value and chroma. The dashed and solid black curves drawn through the data points were derived by
averaging values over two adjacent hues and interpolating between these averages. Shaded areas around the curves indicate the
standard error of the mean across observers. Dashed and solid gray curves show the lower bound predictions for the full-cue and the
reduced-cue conditions, respectively. Vertical bars indicate the range of prototypical hues chosen by the observers. (B) Naming
consistency across stimulus chroma. The two data points for zero chroma at the left are for the achromatic chips. The rest of the data
points are for the 440 chromatic chips, pooled over value and hue. Error bars indicate the standard error of the mean across observers.
Other details as in (A). (C) Naming consistency across stimulus value pooled over stimulus hue and chroma. Details as in (B).
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classified correctly without color constancy. For the other
hues, the lower bound prediction was around 0.5. The
comparison between the prediction and the data shows
that classification consistency due to color constancy was
particularly high for blue, purple, and orange and
relatively low for pink and red.
Classification consistency increased with saturation for

the chromatic chips (Figure 10B). The lower bound
prediction indicates that the increase in consistency
toward higher chromas was well predicted by the stability
in stimulus chromaticities. In contrast, the high consis-
tency for the neutral chips in the full-cue conditions,
shown with the open symbol at Munsell chroma 0, was
not reflected in the lower bound prediction. Analyzing
consistency for the achromatic chips separately at each
value revealed that consistency was only particularly good
for the medium to dark achromatic chips; indices for
achromatic chips at or below value 6 varied between 90%
and 100% (mean 97%), whereas average index for
achromatic chips above value 6 was 73%. In comparison,
average consistency for chromatic chips was around 80%.
Figure 10C shows that for the whole chip collection,

classification consistency tended to decrease with increas-
ing value. This pattern was not obvious in the lower bound
prediction, which was overall rather flat. The small trough
in consistency for value 5 reflects the fact that the
collection of unsaturated chips was selected from value

level 5 and is thus overrepresented in the data point for
that value.
Overall, consistency was similar in the full-cue and the

reduced-cue conditions, which is indicated by the closeness
of the dashed and solid black lines in all panels of Figure 10.
The only exception to this were the achromatic chips, for
which there was a large difference in consistency between
the two cue conditions, shown in Figure 10B. Moreover,
the pattern of consistency as a function of stimulus
variables was virtually the same for both cue conditions.

Classification consistency across observers

Classification consistency across observers varied
across stimulus hue in a manner similar to the consistency
across illuminants (Figure 11A). The peaks in the
consistency indices in both cue conditions coincided with
some prototypes, particularly green, blue, purple, and
orange. Consistency was lowest between the blue and the
green prototypes and for the pink/red region. As in the
case of the illuminant consistency index, the peak near
green could be well explained by the lower bound
prediction, but this was not as clearly the case for the
other hues.
Figure 11B illustrates the fact that the variation in

classification consistency as a function of hue was similar

Figure 11. (A) Across observers classification consistency for the daylight illuminants is shown as a function of Munsell hue for the full-cue
(circles) and reduced-cue (crosses) viewing conditions. The dashed (full-cue) and solid (reduced-cue) black curves drawn through the
data points were derived by averaging values over two adjacent hues and interpolating between these averages. Gray dashed and solid
curves show the lower bound predictions for the full-cue and reduced-cue conditions, respectively. Vertical shaded bars indicate the range
of prototypical hues. (B) Classification consistency across illuminants is plotted against classification consistency across observers for the
full-cue (circles) and the reduced-cue (crosses) viewing conditions. Each point indicates one Munsell hue, collapsed over chroma and
value. The dashed and solid black lines correspond to the main common variance of the two indices (as represented by the first principal
component) for the full-cue and the reduced-cue conditions, respectively. Gray dashed line indicates unity.
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across illuminants and across observers. The two indices
correlated strongly for both cue conditions (full-cue: > =
0.95, p G 0.001; reduced-cue: > = 0.91, p G 0.001). Partial
correlations between the two indices, controlling for both
the illuminant and the observer consistency lower bounds,
were also high (full-cue: > = 0.91, p G 0.001; reduced-cue:
> = 0.83, p G 0.001).

Color constancy for the achromatic point

To compare our classification data to previous color
constancy experiments measuring achromatic settings, we
quantified color constancy for the achromatic point with
an index that relates the shift in the gray category centroid
to the physical shift in stimulus chromaticities under a
given illuminant change (Equation 1).
Color constancy indices ranged between 0.92 and 1.2

for the four illuminant changes from neutral for the full-
cue conditions and between 0.88 and 1.02 for the reduced-
cue conditions (Figure 12). Such high constancy indices
are in line with data collected for monitor simulations in
full-field viewing conditions (Hansen et al., 2007; Murray
et al., 2006; Olkkonen et al., 2009; Rinner & Gegenfurtner,
2000) and for achromatic settings for real stimuli (Speigle
& Brainard, 1999) but are higher than indices reported for
asymmetric matching experiments in either simulated or
real scenes (e.g., Arend et al., 1991; Brainard et al., 1997).

The red lines drawn over the bars in Figure 12 show the
proportion of same classifications between the daylight
and each chromatic illuminant for the chips classified as
gray. The blue lines show the proportion of same
classifications aggregated over the whole stimulus collec-
tion. Classification consistency for the gray category gives
roughly the same estimate for color constancy as does the
color constancy index. On the other hand, classification
consistency for the whole chip collection was lower at
80% and 78% for the full-cue and the reduced-cue
conditions, respectively.

Color constancy for the prototypes

From Figure 12, it might appear that the chips classified
as gray retained their perceived color, at least in a
categorical sense, better than other chips in the stimulus
set (compare the blue lines to the red lines and to the bars).
To get some measure of color constancy for the chromatic
samples comparable to the color constancy index for the
achromatic point, we calculated color constancy indices for
the chromatic category prototypes. Indices averaged over
observers for each prototype and illuminant change from
neutral are shown in Figure 13. Color constancy for the
chromatic prototypes was on average close to 1.
From the high constancy indices alone, it is difficult to

say whether category prototypes enjoy a higher consis-
tency than other chips of the same Munsell chroma and
value. However, comparing pairwise classification con-
sistency for prototypes and non-prototypes of the same
Munsell parameters suggests that constancy was indeed
slightly higher for the prototypes. With the exception of
pink and white, for which classification consistency was
relatively low (70% and 40%, respectively), consistency
was overall very high for prototypes (100% for green,
purple, orange, brown, gray, and black, and 95% for red,
yellow, and blue). In comparison, consistency for the rest
of the chip collection was on average 82%. In a two-way
repeated measures ANOVA with chip type (prototype/
other) and chroma as factors, both the main effects of
chroma (F(3, 12) = 5.4, p = 0.01) and chip type (F(1, 4) =
28.8, p = 0.006) were significant. There was no significant
interaction between chroma and type (p = 0.13).

Discussion

We found a high degree of categorical color constancy
for real surfaces across five broadband illuminants. This
confirms previous findings with monitor simulations
(Hansen et al., 2007; Olkkonen et al., 2009) and is in line
with comparable results from hue scaling (Schultz,
Doerschner, & Maloney, 2006), successive memory match-
ing (Ling & Hurlbert, 2008), color selection (Hedrich et al.,

Figure 12. Average color constancy indices for the gray category
centroid for the full-cue (white bars) and the reduced-cue (black
bars) stimuli. For comparison, average pairwise classification
consistency for the gray category is shown with the red lines, and
average pairwise classification consistency for the whole chip
collection is shown with the blue lines. Each set of bars is for a
given illuminant change from baseline. Error bars denote one
standard error of the mean over five observers.
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2009), and a preliminary report of categorical color
constancy (Ling, Allen-Clarke, Vurro, & Hurlbert, 2008).
We will discuss the main results in the following sections
in relation to our previous work with simulated surfaces, as
well as to other work on color constancy in simulated and
real scenes.

Comparison to similar data for simulated
surfaces

One motivation behind the present study was to follow
up on experiments we reported recently on categorical
color constancy for simulated surfaces (Olkkonen et al.,
2009). The stimulus collections for the two experiments
are shown in Figure 14A. Even though only 18 of the
same chips were used in both studies, the range of
chromaticities overlapped to a large extent. The chip
collections in both experiments included chips from all
Munsell hue groups, from value groups 4 to 7 and from
chroma groups 2 to 12.

The chromaticities of the illuminants in the two experi-
ments are shown in Figure 14B. We chose filters for the
present study that would reproduce the chromaticities of the
lamp illuminants from our previous study as closely as
possible. As is clear from Figure 14B, the chromaticities of
the filter illuminants, shown with open symbols, are shifted
relative to the lamp illuminants, shown with crosses. The
direction and magnitude of the offsets of the chromatic
illuminants from the daylight illuminants, however, are
comparable in the two cases.

Consistency across illuminants

Figure 15 shows a comparison between the present data
and the data from Olkkonen et al. (2009) under full-cue
conditions. In general, the two data sets agree remarkably
well. Naming consistency across illuminants is higher for
the real chips for some hues, but the pattern of consistency
for hue (Figure 15A), chroma (Figure 15B), and value
(Figure 15C) is similar for the levels that overlapped in
the two experiments. In contrast to the classification data,

Figure 13. Color constancy indices for the prototypes in the full-cue conditions. Each set of bars is for one prototype, and the bars in each
set stand for illuminant changes from daylight to the reddish, greenish, yellowish, and violet directions, from left to right. The notations of
the prototypes are as in Figure 9. Error bars show one standard error of the mean over five observers. The dashed line indicates full
constancy. Values over 1 indicate overcompensation for the illuminant change.
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the lower bound predictions are somewhat different for the
two types of surface, reflecting the differences in the
stimulus collections and illuminants employed in the two
experiments. This further underlines the fact that classi-
fication performance is not solely determined by the shifts
in the physical stimulus but also by category effects such
as, for instance, the location of a stimulus within its
category.
Based on both data sets, categorical color constancy

relative to the baseline correction is highest near the
orange, blue, and purple prototypes and relatively low at
the pink and red prototypes. Consistency is also high for
green, but there it is difficult to disentangle constancy from
baseline stability because of a ceiling effect. It is worth
noting that in the experiment with monitor simulations, the
category “pink” was not available for observers. The lack
of one basic color term might have conceivably caused a
trough in the consistency function around that color, but as
Figure 15A shows, consistency was equally low for the
real as for the simulated surfaces around red. There is one
caveat, however. One notable feature of the representation
in Figure 15A is that consistency is pooled over value and
chroma to highlight the pattern of consistency for stimulus
hue. While the categories for blue, purple, and green do
not depend on value in our data set, the categories for pink
and red, as well as for brown, orange, and yellow partly
overlap on the hue continuum (visible from Figure 5). In
the case of red and pink, for instance, dark chips around
Munsell red (R) are classified as red, whereas lighter chips

are classified as pink. As can be seen from Figure 9,
consistency for pink was lower than for red, which
contributes to the consistency around the red prototype
in Figure 15A.
When consistency is plotted two-dimensionally for hue

and value, there is a visible tendency for consistency to
peak near the prototypes (Figure 8). This implies that
prototypes seem to be relatively stable across individuals
and illuminations, when compared to boundaries. This
observation has also been made for cross-language
comparisons: boundaries vary considerably across lan-
guages, while prototypes are relatively stable (MacLaury,
1997; Regier, Kay, & Cook, 2005; Regier, Kay, &
Khetarpal, 2007; Webster & Kay, 2005, 2007). This
might indicate the special status of prototypes suggested
by, e.g., Philipona and O’Regan (2006). As is also clear
from Figure 8, however, prototypes tend to cluster near
the category centers, and thus it is possible that the
closeness to the category center is more important than
prototypicality.

Consistency across observers

Observer consistency followed a similar pattern to illumi-
nant consistency for both types of surface. Figure 15D plots
classification consistency across illuminants against classi-
fication consistency across observers for the two experi-
ments. There was a significant correlation between
illuminant and observer consistency both for the real (black

Figure 14. (A) Black open circles denote the Judd–Vos corrected CIE xy chromaticities of the real Munsell surfaces when viewed under a
standard daylight. The purple asterisks denote the chromaticities of the simulated Munsell surfaces in Olkkonen et al. (2009) under a
standard daylight. The black triangle indicates monitor gamut. (B) The CIE xy chromaticities of the real illuminants are shown with crosses
and those of the lamp illuminants with open symbols. Symbol colors indicate the chromaticity of the illuminants. Note the different axis
scales in (A) and (B).
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circles, > = 0.95, p G 0.001) and for the simulated (red
crosses, > = 0.85, p G 0.001) surfaces. Partial correlations
that controlled for the lower bound predictions were also
high (real: > = 0.91, p G 0.001, simulated: > = 0.81, p G
0.001). This indicates that the stimuli that remained most
stable across illuminants were also classified most similarly
across the different observers.
Our data do not address the causal relationship between

observer consistency and color constancy, but the fact that
the correlation remained significant even when taking
category size effects into account indicates that this

pattern is not only caused by the physical interactions
between illuminant and surface reflectance spectra.

Effect of local contrast

Changing the background from gray to black and
making observers wear black gloves had virtually no
effect on color classification consistency for real surfaces.
We devised this manipulation to resemble the manipu-
lation in our previous experiment with monitor simula-
tions, where constancy dropped when the monitor

Figure 15. Comparison between color classification data for monitor simulations and real surfaces. (A–C) Classification consistency
across illuminants for monitor simulations (red symbols and curves) and real surfaces (black symbols and curves), where the monitor
data are replotted from Figures 5 and 7 in Olkkonen et al. (2009). Plotting conventions are otherwise as in Figure 10 of the present paper.
(D) Classification consistency across illuminants is plotted against classification consistency across observers for monitor simulations
(red crosses) and real surfaces (black circles). The black and red lines show the main common variance of the two indices (as
represented by the first principal component) for the real and simulated surfaces, respectively. The gray dashed line indicates unity.
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background was set to black instead of setting it to the
chromaticity of the illuminant. Because of the general
differences between these two studiesVthe simulated
stimuli were presented on a monitor in a viewing booth,
while the stimuli here were presented on the table in a
regular roomVthe cue manipulations necessarily had a
different impact on the general viewing context. In the
former experiment, the background manipulation intro-
duced a clear discontinuity between the monitor and the
illuminated wall. In the present experiment, the local
context change introduced by the black gloves and the
black cloth was not as dramatic because the scene was
richer to begin with. Kraft et al. (2002) found with real
displays that scene complexity did not affect constancy
when there were many valid cues to the illuminant in the
scene, but when the number of cues decreased, increasing
scene complexity did improve performance. In addition,
Brainard (1998) and Kuriki and Uchikawa (1998) showed
that a local contrast manipulation did not have a large
effect on constancy in a real scene. It appears that our real
scene was rich enough that reducing cues from local
contrast was not enough to hamper performance.

Color classification as a method
for measuring color constancy

Color constancy has been traditionally measured with
asymmetric matching, where stimuli are matched in color
across two different illumination contexts (e.g., Arend &
Reeves, 1986; Bäuml, 1999; Brainard et al., 1997), and
with achromatic matches where a stimulus is made to look
achromatic under different illuminants (e.g., Brainard,
1998; Helson & Michels, 1948; Werner & Walraven,
1982). Recently, new tasks to measure constancy have
been introduced to overcome some of the caveats of
matching methods (e.g., Bramwell & Hurlbert, 1996;
Craven & Foster, 1992; Khang & Zaidi, 2002). These
operational (Craven & Foster, 1992) or forced-choice
(Bramwell & Hurlbert, 1996; Khang & Zaidi, 2002) tasks
appear to be more directly related to the functional role of
color constancy in helping to identify objects across
changes in viewing context. The forced-choice method
advocated by Zaidi et al. (Khang & Zaidi, 2002; Robilotto
& Zaidi, 2004; Zaidi & Bostic, 2008) was devised to
reflect the fact that even though the appearance of object
colors may change from one illuminant context to the
next, perceived surface reflectance does not necessarily
have to change. A similar principle is reflected in the
differentiation of a “surface match” task and an “appear-
ance match” task in asymmetric matching experiments,
where some groups have found constancy to be signifi-
cantly higher for the surface matches than for the
appearance matches (e.g., Arend & Reeves, 1986; Kuriki
& Uchikawa, 1996; Troost & de Weert, 1991).
Even though there is no direct relationship between

color classification and object identification, classification

is arguably more similar to the tasks of everyday color
vision than matching. Importantly, categorical color per-
ception is necessarily more robust to changes in the
proximal stimulus than color discrimination (see Olkkonen
et al., 2009, for further discussion). This also means,
however, that there will always be some baseline
consistency in color categories even without chromatic
adaptation. Our lower bound prediction was meant to take
this baseline consistency into account. Indeed, on average,
half of the stimulus collection remained in the same
category under illuminant changes without assuming color
constancy. Color classification performance across illu-
minants was much closer to test–retest reliability than to
the lower bound prediction, however, indicating that
categorical color constancy was close to its upper bound
for our experimental conditions.
Color naming consistency across illuminant changes has

been previously measured for simulated (Troost & de
Weert, 1991) and for unsaturated real (Granzier et al.,
2009) papers. Troost and de Weert (1991) reported that on
average 38% of the simulated papers were classified in the
same category over five illuminants. Granzier et al. (2009)
reported an average correct identification rate of 55% for
their six samples across 12 viewing contexts. In the
present study, the proportion of chips classified in the
same category under all five illuminants ranged from 43%
to 60%; naming consistency (similar to the identification
rate in Granzier et al.’s study), ranged from 78% to 86%.
The different degrees of consistency found by Troost and
de Weert, on the one hand, and by Granzier et al. and by
us, on the other hand, probably reflect a difference
between real and simulated stimuli. The fact that we
found higher consistency than Granzier et al., on the other
hand, might be due to the subtle differences in quantifying
consistency and to the different number of illuminant
conditions employed. It appears, however, that the broad
features of the data by Troost and deWeert and by
Granzier et al. generalize to a larger set of stimulus
papers and to a different set of illuminants.
Perhaps the largest advantage in color classification

compared to other widely used methods is its speed,
which makes measuring constancy for a large portion of
color space feasible. This, in turn, allows detailed analysis
of color constancy for each color category, as well as
constancy as a function of stimulus hue, saturation, and
lightness. The present results together with our previous
work on simulated surfaces show that categorical color
constancy is not homogeneous across the whole color
space, and that most, but not all of this inhomogeneity can
be accounted for by category size effects. In addition,
categorical color constancy was as good for the chromatic
as for the achromatic categories, with the exception of the
black surfaces for which consistency was 100%. This is in
agreement with Speigle and Brainard (1999), who showed
that asymmetric matches for chromatic stimuli could be
predicted from achromatic settings as long as the viewing
conditions were held constant. Our data do point to a
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slight advantage for category prototypes in terms of
classification consistency, but this issue needs to be
investigated further with an experiment focused on
category prototypes.

Is constancy better for real stimuli?

In the few direct comparisons between real and simulated
displays, conclusive differences between the two display
media have not been found (Berns & Gorzynski, 1991;
Brainard & Ishigami, 2005; Savoy & O’Shea, 1993). On
the other hand, it appears based on indirect comparisons
that constancy might be better for real scenes (Smithson,
2005). This is partly confirmed by our data: classification
consistency is overall slightly higher for real surfaces than
what we found previously for simulated surfaces. More
importantly, however, both sets of data warrant the same
conclusions: categorical color constancy is robust across
illuminant changes and is comparable to within-observer
and across-observer reliability.
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Bäuml, K.-H. (1994). Color appearance: Effects of illuminant
change under different surface collections. Journal of
the Optical Society of America A, 11, 531–542.
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