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ZUSAMMENFASSUNG

Seit einiger Zeit ist bekannt, dass das menschliche visuelle System zu einer erstaunlich schnellen 

Verarbeitung natürlicher Szenen in der Lage ist. Wenn man einem Beobachter zwei Bilder präsentiert, 

sei es auch nur für sehr kurze Zeit (z. B. 30ms), so das auf genau einem der Bilder ein Objekt einer 

bestimmten Objektklasse (z. B. „Tiere“) zu sehen ist, so können Menschen dies nicht nur überaus 

zuverlässig (im Allgemeinen über 90% richtig), sondern auch extrem schnell erkennen – schon ab 

150ms entscheiden manche Versuchspersonen über-zufällig richtig. Eine solch schnelle Entscheidung 

lässt  nicht  sehr  viel  Zeit  für  kognitive  Abläufe.  Es  ist  wahrscheinlich,  dass  diese  Fähigkeit  zur 

schnellen  Entscheidung  nicht  etwa  auf  einem Abgleich  mit  einem im Gedächtnis  gespeicherten 

Katalog  von  Tierbildern  beruht,  sondern  aufgrund  von  sehr  grundlegenden  Bildeigenschaften 

geschieht. Eine mögliche Informationsquelle, die zu solch schneller Klassifikation beitragen könnte, 

ist das globale Amplitudenspektrum. Es ist das Ziel dieser Dissertation, zu untersuchen in wie weit 

das  globale  Amplitudenspektrum zur  Klassifikation  von  Bildern  beitragen  kann,  und  ob  dieses 

tatsächlich auch im menschlichen visuellen System geschieht. Durchgeführt wird dies am Beispiel 

der Bildklassen „Tier“ und „kein Tier“.

Dazu wurde zunächst eine knapp 11000 Bilder umfassende Datenbank geschaffen, die zu jeweils 

50%  aus  „Tier“-  und  „nicht  Tier“-Bildern  besteht.  Im  folgenden  wird  zunächst  ein  Computer-

Algorithmus ausführlich vorgestellt, der mit einer Trefferquote von ca. 75% in der Lage ist, „Tier“- 

von  „nicht  Tier“-Bilder  zu  unterscheiden,  und  zwar  ausschließlich  anhand  des  globalen 

Amplitudenspektrums.

Anschließend  werden  drei  Hauptmerkmale  des  Klassifikationsverhaltens  dieses  Computer-

Algorithmus mit dem Verhalten menschlicher Versuchspersonen verglichen,  um Gemeinsamkeiten 

und Unterschiede herauszuarbeiten.

Im ersten Experiment wird die Anfälligkeit des Computer-Algorithmus auf Rotierten der Bildern mit 

der  Anfälligkeit  menschlicher  Versuchspersonen verglichen.  Aufgrund der  Rotationsinvarianz  des 

Computer-Algorithmus  wird  ein  angenommenes  Klassifikationsprofil  mit  den  tatsächlich 

experimentell  gemessenen  Ergebnissen  der  Versuchspersonen  verglichen.  Eingesetzt  wurde  ein 

2AFC-Paradigma,  bei  dem  die  Augenbewegungen  der  Versuchspersonen  zur  Ermittlung  der 

relevanten Messgrößen werden. Es stellt sich heraus, das Menschen in der Tat eine ähnliches, wenn 

auch schwächer ausgeprägtes Profil aufzeigen. Bilder in kardinalen Rotationswinkeln (0°, 90°, 180°) 

werden dabei besser klassifiziert als Bilder in anderen Winkeln (45°, 135°).

Das  zweite  Experiment  behandelt  die  individuelle  „Schwierigkeit“  von  Bildern.  Der  Computer-

Algorithmus  vergibt  aufgrund  des  Abstandes  von  der  Klassifikationsebene  eine  Wertung  der 

„Tier“-haftigkeit bzw. „nicht Tier“-haftigkeit jedes Bildes. Je höher die „Tier“-haftigkeit eines Bildes 

ausfällt, desto leichter sollte es einer Versuchsperson fallen, dieses korrekt zu klassifizieren.



Hier wurde ein Go/NoGo-Paradigma eingesetzt, bei dem die Versuchspersonen einen Knopf immer 

dann  schnellstmöglich  loslassen  sollten,  wenn  ein  „Tier“-Bild  gezeigt  wurde.  Anhand  von 

Reaktionszeit und Trefferquote konnte auch in diesem Experiment ein hohes Maß an Ähnlichkeit 

zwischen menschlichem Verhalten und Computer-Algorithmus festgestellt werden.

Im  dritten  Experiment  wird  die  Reaktion  auf  den  Wegfall  des  globalen  Amplitudenspektrums 

betrachtet. Dazu wurde das individuelle Amplitudenspektrum der Bilder ersetzt durch das gemittelte 

Amplitudenspektrum  ihrer  jeweiligen  Bildklasse.  Eingesetzt  wurden  sowohl  2AFC-  als  auch 

Go/NoGo-Paradigma.  Während  der  Computer-Algorithmus  durch  das  Fehlen  des  einzigen 

Klassifikationsmerkmals auf Zufallsniveau abfällt, verringern sich die Leistungen der menschlichen 

Versuchspersonen nur geringfügig (übereinstimmend in beiden Paradigmen). 

Im  zweiten  Teil  dieser  Dissertation  wird  untersucht,  welche  Datengrundlage  zur  Klassifikation 

herangezogen werden könnte,  wenn das globale  Amplitudenspektrum nicht in Frage kommt.  Als 

Konsequenz wird ein neuer Computer-Algorithmus vorgestellt, der nicht nur Frequenz, Orientierung 

und Amplitude, sondern auch die Lokalisation der Information berücksichtigt. Als Datengrundlage 

dient eine Bildpyramide, die mehrere Frequenz- und Orientierungsbänder an jeder Stelle des Bildes 

beinhaltet.  Mit  diesem neuen Algorithmus wird eine  Klassifikationsleistung von annähernd 78% 

erreicht.  Durch eine genauere Analyse der Verteilung der relevanten Information über die Fläche 

eines  Bildes  wird  dabei  ein  zuvor  unentdecktes  Artefakt  aufgezeigt,  welches  bereits  durch  den 

Aufnahmeprozess  der  Bilder  entstanden  ist.  Dieses  Artefakt  ist  in  der  Lage,  einem Computer-

Algorithmus zu einer recht hohen Klassifikationsleistung (ca 74-75%) zu verhelfen, auch wenn das 

eigentlich relevante Bildzentrum ausgeblendet wird und somit das Objekt der Szenerie nicht mehr 

vorhanden ist. Dies ist von Bedeutung, da die Bilddatenbank, welche als Quelle sämtlicher Bilder 

dieser Arbeit dient, im Bereich der Wissenschaft weite Verbreitung genießt.

In einem vierten Experiment wird getestet, ob menschliche Versuchspersonen ebenfalls auf dieses 

Artefakt zurückgreifen können. Eingesetzt  wird das bewährte 2AFC-Paradigma, bei dem selektiv 

verschiedene  Bildausschnitte  gezeigt  werden.  Ein  Effekt  des  Artefaktes  auf  menschliche 

Versuchspersonen konnte nicht festgestellt werden.

Abschließend werden die Resultate aller 4 Experimente, sowie der Computer-Algorithmen diskutiert 

und  geschlussfolgert,  dass  das  globale  Amplitudenspektrum aller  Wahrscheinlichkeit  nach  keine 

dominante  Rolle  für  schnelle  Bildklassifikation  im  Menschen  dient.  Es  wird  eine  Empfehlung 

ausgesprochen, dies bei zukünftiger Forschung im Bereich menschlicher Klassifikationsleistung zu 

berücksichtigen.



ABSTRACT

Humans are capable of rapidly classifying scenes by content, even when they are presented only very 

briefly. Classification accuracy can exceed 90%, while above-chance performance can be achieved in 

about 150ms. The global amplitude spectrum of an image has repeatedly been suggested to be a 

possible source of information for such fast classification. The aim of this thesis was to analyze the 

way in which humans classify images, specifically for the case of scenes which contain an animal or 

not. Indeed it was found that the information contained in the global amplitude spectrum, even at a 

rather coarse scale, is quite adequate for successful computer classification. In the first part of this 

thesis, a computer classifier was developed, capable of correctly classifying 75% of the images in our 

database. Then, 3 main characteristics of this classifier are identified and then tested against human 

subjects in 3 experiments:

First, the sensitivity to image rotation is tested. Using a 2AFC paradigm, human subjects were asked 

to decide which of two displayed images contained an animal. Eye movements were recorded to 

measure response time and classification accuracy. A high degree of similarity to the behavior of our 

computer classifier was found, with better performance on cardinal image rotations (0°, 90°, 180°).

Second, the order of the images in terms of classification difficulty is analyzed. We employed both a 

2AFC paradigm and a Go/NoGo paradigm. In the latter subjects were asked to release a button as 

quickly as possible only when an animal image was shown. Here too a high degree of similarity 

between the results of the human visual system and those of our computer classifier was found.

Third, classification without the amplitude spectrum as a primary clue is tested. We modified our 

images,  replacing  the  individual  amplitude  spectrum  of  each  image  with  the  mean  amplitude 

spectrum of its image class. The individual phase spectrum was retained, unaltered. In this case, the 

computer  classifier  was  “blinded”  and would not  exceed chance performance,  while  our  human 

subjects still achieved high classification performance. This clearly contradicts the global amplitude 

spectrum hypothesis.

In the second part of this thesis, a different approach to computer classification is presented. The 

images were filtered in a way that allowed to analyze image content for different frequencies and 

orientations at discrete locations (as opposed to the global amplitude spectrum). The new computer 

classifier was able to achieve almost 78% correct classification. Also, a previously unreported artifact 

of the image capturing process was discovered within the image database used. This is remarkable 

because of the widespread scientific acceptance of the Corel Stock Photo Library used in this thesis.

Finally, the results obtained during all 4 experiments and the computational analysis are integrated 

and the possible use of the global amplitude spectrum in human visual classification is discussed. The 

main conclusion of this work is that the global amplitude spectrum is in all likelihood not a dominant 

factor in human visual classification. This finding should be considered in future research.
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1. INTRODUCTION

1.1. Humans Can Do

When we view an image, be it printed, or on TV, or on a computer screen, we can usually understand 

what is  displayed very quickly and easily.  This happens seemingly without  effort,  and we do it 

countless times every day. Because of this, the human visual system has been the subject of both 

interest and admiration of many scientists. The ability of humans to grasp the content of an arbitrary 

image suddenly appearing in the field of view is indeed astounding. When shown, for example, a 

photography of a polar bear in it's natural  surrounding,  the question “Is there an animal on this 

picture?”  would  be  considered  trivial  by  almost  any  person,  even 

though most of us rarely get to see an actual polar bear in real life. This 

task,  however,  is  one  that  is  considered  highly  difficult  for  todays 

computer algorithms. Just asking “Is there an animal on this picture?” 

for  an  arbitrary  image  poses  a  serious  challenge  to  all  currently 

established object recognition approaches. This is mainly due to the 

fact that there exists a huge number of different animals, and they can 

be  depicted  in  an  infinite  manifold  of  perspectives,  orientations, 

situations and be surrounded by just as many backgrounds. Browsing 

through a catalog of animal photographs, one might find several images showing the same type of 

animal, possibly even the very same individual specimen, but still none of the photographs will show 

the animal in exactly the same way (unless the photography was a duplicate). There will always be at 

least a small difference in posture, perspective, lighting and so on – which does not appear to be a 

problem for human observers. For classical computer algorithms, however, those slight changes are 

extremely difficult  to  deal  with.  As there  is  virtually  an  infinite  number  of  individual  views of 

animals, it is not possible to compile a catalog of animal images and compare them one-by-one. Aside 

from the near-infinite space required for this hypothetical catalog, the amount of time required to 

search through it would also be almost infinite.

Still, humans perform admirably well in this task. It does not really matter how an animal is shown to 

us – be it from its front, side, rear or even from the bottom, we will usually be able to find the animal 

in the scene quickly and easily. The same would hold true for other object detection / localization 

tasks, e. g. cars or vehicles in a city scene, or furniture in an indoor photograph. Object detection in 

humans is largely invariant to general scene properties such as perspective, lighting, object posture, 

object rotation and so on. This is not true for most of todays algorithms in computer vision.

Jan Drewes Justus-Liebig-Universität Gießen 14/154

Illustration 1: Polar Bear



Classification of Natural Scenes 1.Introduction

1.2. Exactly What Can Humans Do?

The exact  way in  which humans detect  and identify  objects  in  scenes  is  still  unknown,  though 

interesting advances have been made recently. It is currently believed that, when presented with a 

novel photograph as mentioned above, a human observer will assemble the scene's abstract contents 

(objects, their positions and postures etc.) in several stages, starting from low-level features such as 

contrast,  edges,  orientation to higher level features such as contours and segmented shapes with 

textures to a final representation of abstract objects, their positions and meanings in the scene. This 

theory is supported by the pattern of eye-movements that humans use to attend different positions in 

the presented photograph. When observing a scene, eye movements occur because of the distribution 

of receptors on the human retina. While there is a very high density of color receptors in the center of 

the retina, the so-called “fovea”, the density of receptors and especially that of color receptors drops 

dramatically with increasing eccentricity. The number of photo receptors is in the order of 200000-

250000 receptors within the central 1° of the visual field, but there are far less in the outer periphery 

(see Illustration 2). This is reflected also in the number of ganglion cells at the fovea, and extends to 

the  general  representation  of  the  fovea  in  the  primary  visual 

cortex (V1), about 50% of which is dedicated to the fovea. In 

order to perceive an entire scene, which typically spans at least 

several degrees in both width and height, the eye will need to 

scan it in order to sample the most important locations of the 

presented photograph with the higher  foveal  resolution.  Those 

perceived patches which will then be stitched together when our 

brain  processes  the  information  delivered  through  the  optical  nerve.  These  point-to-point  eye-

movements are called “saccades” and happen very rapidly, up to 3-4 times per second. These very 

first eye-movements on a novel scene are believed to be mostly directed by a data-driven bottom-up 

strategy,  designed to  efficiently encode the images'  most  important  locations to facilitate  further 

processing. Since they happen very quickly, they are also assumed to be controlled mainly by early 

stages of the information processing, and therefore are attracted mainly by targets with a high low-

level saliency.
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.

Illustration 3: The model of saliency as proposed by Itti, Koch and 

Niebur [Itti Koch Niebur 1998]

Conservatively, one would assume that successful detection of complex objects such as animals will 

only be possible after a rather high level of processing has been completed, e. g. after an abstract 

object representation has been formed.

In contrast to this assumption, Thorpe and colleagues [Thorpe Fize Marlot 1996] have discovered that 

humans  are  capable  of  detecting  classes  of  objects  in  image  presentations  very  quickly  when 

experimental conditions are designed accordingly. The experimental setup was a so called “Go/No-

Go” paradigm (see  Illustration 4)  in which the subjects  were given the task to produce a  “Go” 

response by releasing a pushbutton as quickly as possible (with a maximum allowed reaction time of 

1000ms) whenever the presented picture contained any kind of animal, and to produce a “No-Go” 

response by not releasing the button for 1000ms whenever there was no animal on the presented 

picture. 
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Even though the images were presented only for a very brief moment (20ms), subjects were able to 

respond on average in 445ms, with the fastest subjects at 382ms median latency and the slowest at 

567ms. Strikingly, the average percentage of correct responses was at 94% despite of the very fast 

responses. Also, the very short presentation time of the images effectively ruled out the factor of eye 

movements, meaning that the presence of an animal must have been detected literally at the first 

glance – even though they had no a priori knowledge about the type,  size,  position or even the 

number of animals shown. All images were novel to the subjects. These findings posed a serious 

challenge to many established models of human vision and raised a number of questions.

Jan Drewes Justus-Liebig-Universität Gießen 17/154

Illustration 4: The course of events during the Go / No-Go paradigm
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1.3. How Long Do We Actually Need to “See” an Image?

A detailed analysis of a scene usually involves several fixations and therefore takes much longer than 

the results in  [Thorpe Fize Marlot 1996] would suggest.  However,  the task the observers had to 

perform was actually a simpler one. Just to tell  if there is any animal present in the scene with a 

binary choice of “yes” or “no” might require less processing than the precise localization of the 

animal  within the  presented scene  and its  complete  identification within arbitrary choices  –  the 

conclusion “Yes, there is some animal somewhere in the picture” might be easier to find than “There 

is a Polar Bear at the center of the image”. Still, the very short time needed to respond correctly to a 

presented  image  can  not  be  explained  well  with  the  assumed  stages  of  processing  commonly 

associated with the detection of complex objects in human vision, especially since these <500ms even 

include the time necessary to perform the motor output response. In an attempt to better tell apart 

motor preparation and execution from the actual decision process (which necessarily has to precede 

the motor output), Thorpe and colleagues measured their subject's event related potentials (ERPs) 

[Thorpe  Fize  Marlot  1996] [Bacon-Mace  et  al  2005].  ERP  recordings  showed  a  statistically 

significant difference between target- and distractor-trials in form of a frontal negativity specific to 

No-Go animal detection trials, which started as early as 150ms after stimulus onset (the beginning of 

the display of the image).

This enormously short response time is apparently related to the decision process only, since the onset 

latency of the frontal negativity and that of the following motor reaction showed no correlation. One 
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Illustration 5: Average brainwave patterns (ERPs) [Thorpe Fize Marlot 1996]
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can therefore conclude that the necessary visual processing for the decision process must already 

have been sufficiently completed at this very early time. This is supported by the finding of Kirchner, 

Thorpe  and  colleagues  that  Human  reaction  times  can  be  further  enhanced  when  using  a  2 

alternatives forced choice paradigm (2AFC) instead of the “Go/No-Go” one [Kirchner Thorpe 2006]. 

In this, the subject is presented with 2 alternative images, one of which being a target image, the other 

one being a distractor. They are usually shown side-by-side, modifying the subjects critical decision 

in the task into not if there is an animal, but where is the animal (binary choice: left or right). In this 

setup there were no “No-Go” responses, hence the tag “forced choice”, requiring the subjects to 

“prime” themselves for a quick reaction, which would always be triggered in one of two possible 

ways. This caused a dramatic drop in median reaction times of about 100ms, lowering the median 

reaction  time  of  all  subjects  to  about  350ms,  without  degrading  classification  performance  (on 

average, 94% of the images were correctly classified). Even at only 250ms, some subjects were still 

able to perform statistically significantly better than chance performance, which complies with the 

reported minimum time required to generate a “reaching” command being around 80-100ms [Kalaska

Crammond 1992].
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Illustration 6: The course of events during a 2AFC gap paradigm similar to the one in [Kirchner Thorpe 2006]
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Another  set  of  ERP recordings  performed during this  new experiment  showed the same frontal 

negativity,  emerging about  150ms after  stimulus  onset.  This  unchanged negativity onset  time in 

combination with the dramatically shortened median reaction time supports the assumption that the 

measured ERP difference is not related to motor planning/preparation, but to decision making, which 

is also supported by the location of the most intense negativity, over the Pre-Frontal Cortex (PFC). 

This area of the brain is  commonly assumed to play a  major  role in categorical  judgments and 

decision making (see Illustration 7). 

The ability for this quick detection process, called “ultra rapid visual classification”, was also shown 

to exist in rhesus monkeys [Fabre-Thorpe et al 1998]. In fact, the monkeys were able to perform a 

similar task with different categories (food vs. non-food) at a very high level of correctness (about 

90,5%), while in the animal vs. non-animal task, the monkeys performed at about 84% correct. Their 

reaction times in this Go/No-Go paradigm were somewhere between 100 and 180ms faster than that 

of the human response times mentioned above, a speed advantage which may be based on the smaller 

size of their brains: the transduction velocity of spikes in the cranial nervous system is commonly put 

at  roughly 2m/s,  which might  account  for  the  faster  responses  of  the  monkeys.  Aside  from the 

similarities between humans and monkeys both in processing speed and accuracy, it is notable that 

about 90% of the errors made by humans and monkeys are the same, giving reason to assume that the 

mechanisms involved in object detection both in monkeys and in humans are essentially the same as 

well.
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Illustration 7: Timecourse of visual processing in monkeys (Thorpe et al.)
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Now since all these experiments have dealt with animal vs. non-animal (or food-nonfood) detection 

tasks, one might argue that the quickness of the responses is due to some hard-wired mechanism that 

evolved over the time course of several milleniae. The biological survival relevance of the quick 

detection of animals, be it from the view of a predator as possible food or from the view of the prey 

as a possible threat, is undisputed. This theory of a hardwired mechanism has been swiftly disproved 

by another  experiment of  Van Rullen and Thorpe  [VanRullen Thorpe 2001].  In  this  experiment, 

applied the Go/No-Go paradigm to a man-made category: “means of transport”. The target images 

contained cars, airplanes, boats and many more vehicles, all of which are certain to not possess a 

significant biological relevance. As a cross-check, they also tested their new subjects on the known 

animal/non-animal  task,  and  interchanged  some  of  the  images  to  serve  as  distractors  in  their 

respective opposite tasks: in the animal task, ½ of the distractors where randomly selected from the 

“means of transport” category, and in the “means of transport” task, ½ of the distractors came from 

the set of animal images.

The percentage of correct responses was similar to the former experiments, as were the reaction 

times. This effectively rules out the possibility of a general,  unintentional difference between the 

sample images to be responsible for the results; it truly had to be a detection of the desired object 

class  that  was  responsible  for  the  subjects  performance.  No  significant  differences  were  found 

between the two categories; this suggests that there exists no category-specific hardwired mechanism 

in our visual system. This would also explain the findings that their subjects overall performance was 

slightly reduced when they switched between object categories from block to block as one would not 

expect  such  a  reduction  in  performance  if  subjects  were  merely  switching  between  different 

hardwired decision mechanisms. However, there might still exist a partially fixed mechanism, which 

can  be  tuned  to  different  image  categories,  probably  including  any  acquired  category.  This  is, 
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Illustration 8: Images similar to the categories used in [VanRullen Thorpe 2001]
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however, still subject to current research.
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1.4. A Limit to the Speed of Processing

Another experimental setup by Kirchner et al.  [Kirchner Thorpe 2006] modified the 2 alternatives 

forced choice paradigm to use eye movements instead of button presses as motor responses. In this 

setup, the fastest response times were measured to be around 150ms and were still far above chance 

performance. As even eye movements need a certain time to be prepared after the decision has been 

made, this implies that the actual detection and decision have been computed before the 150ms, thus 

even before the onset of the frontal negativity that Thorpe and colleagues reported  [Thorpe Fize

Marlot 1996].

When combined with the approximated speed of the brain (see Illustrations 7 and 9), this leaves only 

about 45-60ms for the actual information processing, which strongly supports the theory that ultra-

rapid object detection is based mainly on feed-forward networks, not involving extensive feedback or 

top-down interaction. However, this does of course not exclude the possibility that the class of objects 

to be detected can in some way be selected or tuned via means of a top-down mechanism. More 

evidence for the feed-forward nature of visual object categorization comes from another experiment 

[Fabre-Thorpe et al. 2001]: the subjects were not able to further shorten their fastest responses on 

familiar images, even after 3 weeks of training – afterwards, novel scenes were still classified equally 

as good as the well-known ones that had been used in training over and over again. This, however, 

holds only for the images that were classified within the time interval typical for ultra-rapid image 

Jan Drewes Justus-Liebig-Universität Gießen 23/154

Illustration 9: Taken from [Kirchner Thorpe 2006]: timecourse of visual processing
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categorization. The more difficult images, which had longer latencies (sometimes > 500ms) could be 

classified significantly faster after the 3 weeks of training, suggesting that there in fact is a top-down 

or memory-feedback involved at a later processing stage that is not applied to the easier, ultra-rapidly 

classifiable images, or is at least not necessary with these to find a reliable decision.

During  the  ultra-rapid  categorization  experiments  performed  by  Thorpe,  Gegenfurtner  and 

colleagues, more interesting discoveries were made: Subjects were able to respond to images shown 

for the usual 20ms, but in unpredictable locations across the entire extent of the horizontal visual field 

[Thorpe Gegenfurtner et al 2001]. Even at 70° eccentricity, subjects were still able to categorize the 

shown images at over 60% correct, being significantly above chance level – they knew they had seen 

an animal even though they were sometimes unable to identify what kind of animal it had been. The 

fact that the images appeared at unpredictable locations and disappeared again too quickly to allow 

for any sort of eye movement showed that locally focused visual attention is apparently not essential, 

contrasting once more the conventional view of the human visual system. This again was further 

supported by Rousselet and colleagues, who showed that the time required to process several images 

shown simultaneously does not increase linearly with the number of images shown [Rousselet et al

2004]. There exists a high level of parallelism during the earliest stages of vision, with competition 

arising only later on at frontal sites, an idea that is partially carried by the known fact that in V1, 

several low-level features like edges, corners and orientations are all computed in parallel over the 

entire visual field. Also, they found possible evidence for a intra-hemispherical parallelism (each 

hemisphere might be analyzing a different scene in parallel), as also suggested in [Kirchner Thorpe

2006] (see Illustration 9).

Another facet that might explain some of the very short latency of the visual system is pipelining. 

While later stages of the visual system are still processing previous visual input, earlier stages might 

already begin to work on newer, more recent impressions. To think that the highly efficient and 

optimized human brain would actually allow a large portion of its subsystems to be inactive most of 

the time, as the visual system as we know it would be without pipelining, is probably a far-fetched 

thought all by itself.  Still,  in a recent rapid serial  visual presentation (RSVP) study Keysers and 

Perrett showed that human subjects can detect images of certain categories in sequences presented at 

rates of up to 75 images per second [Keysers Perrett 2002]. As this would only leave about 13ms for 

each image to process, it is highly unlikely that any mechanism in the human visual system could 

perform at such level without extensive use of pipelining. It is therefore an interesting question just 

how  long  a  picture  actually  needs  to  be  displayed  for  the  visual  system  to  gather  sufficient 

information to allow reliable processing.

The retina and the very early stages of the visual system can perform like a  “sample-and-hold” 
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circuitry. This means that the perceived input as it is delivered to the higher stages of the visual 

system can persist even after the original stimulus, for example an image,  has already vanished. 

Because  of  this,  a  simple  variation  in  stimulus  presentation  time  will  not  be  able  to  produce 

significant performance differences, as the visual system would reach a saturation point too early 

(20ms, as used in the above studies, already appears to be sufficient). The sample-and-hold function 

can be disrupted by the appearance of a sufficiently dominant new stimulus that differs from the 

original one very much. Such a stimulus would then be called a mask, and the time between the onset 

of the stimulus and the onset of the mask, replacing the stimulus, is the stimulus onset asynchrony 

(SOA), posing as a more suitable measure of the time available for a stimulus to be processed within 

the earliest stages of the visual system.

Bacon-Mace and colleagues showed that without masking, the stimulus presentation time can be as 

short as 6,25ms without a decline in categorization performance  [Bacon-Mace et al 2005]. When 

masked, however, an SOA of also 6,25ms resulted in near chance performance: the subjects behaved 
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as if no image (at least none that contained anything recognizable) had been presented at all, which 

means that at this short SOA the mask effectively overrides the perception of the preceding image. 

Categorization performance steadily increased with longer SOAs, along with a decrease in median 

reaction times, until at about 80ms SOA, the mask had no major effect on the subjects performance 

anymore.
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1.5. Simpler Than Expected?

This ultra-rapid categorization mechanism has given reason to several examinations as to what kind 

of information could be used to reach a decision after such limited processing time. Vogels reported 

that in a “tree” vs. “non-tree” categorization task, simple low-level features such as texture, size and 

color could not account for the subjects categorization performance [Vogels 1999a][Vogels 1999b]. 

The use of color specifically in the “animal” vs. “non-animal” task can be ruled out since the removal 

of chromatic information from the images shown does not essentially affect the performance either in 

humans or  monkeys.  This is commonly accredited to the fact  that  the chromatic input  from the 

parvocellular  pathways  reaches  the  visual  cortex  slightly  (~20ms)  after  the  luminance  based 

information of the magnocellular pathway, so the earliest responses to visual input would not be 

influenced by  chromatic  information  [Fabre-Thorpe  et  al.  2001].  It  has  further  been  found that 

reaction times to simple stimuli such as geometric shapes can be up to 50ms faster (for mean reaction 

times) than the responses to target images mentioned here [Aubertin et al 1999]. If animal- or object-

detection in general  would be based on such simple stimuli alone,  one would not expect such a 

difference in response times.

The stimulus properties used for categorization must therefore be more complex than a single low-

level feature, yet must still be processable in a single feed-forward sweep through the visual system. 

The unique ultra-rapid categorization ability works best with complex, real-life scenes, and has been 

tested most thoroughly with natural scenes. Images of abstract, artificial objects such as letters or 

geometric shapes usually need active attention to be recognized, unless the presentation has been 

simplified a lot (e. g., single letters or words instead of entire paragraphs, or unique sine grids instead 

of complex structures). Evolution has obviously tuned the abilities of our visual systems to the needs 

of everyday vision.
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1.6. The Properties of Natural Scenes

A term that will frequently be referred to in the following pages is “natural scene”. A scene in general 

is an arrangement of objects and non-objects in such way that they are contained in a single view, 

which  is  then  usually  represented  by  a  photography.  A “natural”  scene  in  this  context  is  a 

photography of  some real-world view,  be it  a  mountain,  desert  or  a  forest,  any kind of  natural 

environment, sometimes with certain animate or inanimate objects such as rocks, animals, or plants, 

in the studies referred to mostly at a central, focused position. When artificial (meaning “man-made”) 

scenes are examined, they frequently contain long, straight edges and sharp angles (e. g. buildings 

with windows, balconies etc.). While the true meaning “natural” would not allow for any artificial 

and thus not natural objects to be depicted, we will expand our use of the term to all kinds of real-

world photographs, showing man-made objects or even entire surroundings as well as truly natural 

elements.

One thing often mentioned in literature is that natural scenes share a common spectral property: their 

power spectrum roughly follows a  1/f  curve  [Field 1987],  and generally,  horizontal  and vertical 

components are more frequent and thus more prominent in the power spectrum than oblique angles. 

This could be due to the force of gravity: If something wishes to rise towards the sun, for example a 

tree, then its main body will have to sustain the least static stress when growing straight up, balancing 

out  the gravitational pull,  therefore resembling a  vertical  structure,  which results  in a  horizontal 

frequency. On the other hand, when something is laying down, it will usually follow the shape of the 

ground, which in most cases will be flat, parallel to the horizon, resembling a vertical frequency. The 

effect is emphasized even more in images showing man-made objects, as these tend to include sharp 

and rectangular edges (e. g., windows and balconies of buildings etc.). It has been proposed that this 

prominence of vertical and horizontal structures may have allowed for a specialization of the visual 

system enabling us to efficiently process scenes that resemble natural images, as these are the ones 

we need to process most frequently in everyday life. There are, for example, more neurons in the 

visual cortex that respond to horizontal  and vertical  orientations,  than oblique ones  [DeValois &

DeValois 1988].

Torralba and Oliva have also found manifestations of several other scene aspects in the amplitude (or 

power)  spectrum,  like openness,  average  depth and so on  [Torralba,  Oliva 2003].  The  common 

spectral  properties of natural  vs.  man-made scenes have been thoroughly described in  [Torralba,

Oliva 2003], as shown in the figure below. 
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Illustration 11: Mean power spectra of natural scenes (taken from [Torralba, Oliva 2003])

The amount of general similarity between images of the same class can be illustrated by averaging 

the  spectrum  of  many  images  of  one  class  into  spectral  signature-like  contour  plots.  The 

differentiation among various classes of man-made scenes shows a strong bias towards horizontal and 

vertical frequencies, while natural (here: meaning not man-made) scenes show a broad variation in 

spectral shapes. 
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In a recent article, Johnson and Ohlshausen [Johnson, Ohlshausen 2003] report another finding about 

a difference in the average spectral signature of two classes of images: images of animals and images 

of nature without animals (see Illustration 13). Images containing animals appear to have a more even 

distribution of power among different orientations, while the strong peak in vertical frequencies (or 

horizontal edges) in both animal and non-animal images is claimed to be related to the appearance of 

the horizon in many natural  images.  These findings support  those in  [Torralba,  Oliva 2003] and 

suggest that the spectral differences between the two classes of images might be used to determine 

the category of an otherwise unknown scene through an evaluation of its spectral shape.

Illustration 13: Mean amplitude spectra of “Animal” and “Nature” image (Taken from: [Johnson, Ohlshausen 2003])
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Illustration 12: Spectral signatures of different image categories (taken from [Torralba, Oliva 2003])
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1.7. The Black Box Approach

The challenge of understanding aspects of the human visual system resembles a black box problem: 

there exists a system of unknown inner functionality o=fbi, i∈I ,o∈O , which is capable of 

transforming a set of input data I into a set of associated output values O . 

Illustration 14: Symbolic blackbox system

In our particular case, I is comprised of all possible natural scenes, whereas O is comprised of 

only the two possible labels “animal” and “non-animal”.  The black box itself,  the human visual 

system, can not be disassembled to discover its working mechanism; therefore, the only way to derive 

an equivalent to its inner functionality f b is to find an emulation function o=f e i,i∈I, o∈O

such that ∀ i∈Ib :f e i=fbi  (any given input value must always be translated into the same 

output value by both f b and f e ). The emulation function is not necessarily identical to the black 

box function;  however,  it  is  mathematically  equivalent.  In  many complex  problems,  like  image 

classification, there is one major problem that prevents us from comparing input and output in their 

entirety:  for  all  practical  purposes,  the  input  set  is  of  infinite  magnitude.  Also,  the  intricate 

mechanisms of the human visual system are extremely sophisticated and show a high degree of inter-

individual variance; discovering a perfect emulation function seems very unlikely. We will have to 

content  ourselves  with  an  emulation  function that  exhibits  at  least  a  reasonably  high degree  of 

similarity with the human visual system. 
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1.8. The Task Ahead

To proceed, we will first need to assemble a suitable subset of the input set Is⊂I ; this will be done 

in chapter 2. Then, we need to develop an emulation function and evaluate it on the input subset; this 

will be done in chapter  3. Last, we need to compare the output of our emulation function with the 

output of the original black box to determine whether our emulation function behaves similar to the 

original one; this will be done in chapter 4.
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2. THE IMAGE DATABASES

As a first step in our attempt to emulate the black box functionality, we need to assemble a suitable 

set of test images that can be used in experiments involving visual presentation with human subjects 

as well as computer / algorithmic classification trials. The following chapters introduce the two sets 

of images used in this work.
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2.1. The APG Database

The  images  used  in  the  classification  experiments  were  taken  from the  formerly  commercially 

available Corel Stock Photo Library, which contains about 60000 images of both natural and man-

made objects and scenes. For the APG animal / non-animal database, roughly 11000 images were 

selected, one half of which contained animals (and possibly humans, but never humans alone) and 

served  as  targets,  the  other  half  of  which  contained  no  animals  and  no humans  and served  as 

distractors. Out of the Corel Stock Photo Library, the original images measure 768x512 pixels, in 

either portrait or landscape orientation, and are stored as individual JPEG image files (see Illustration

15, step I). To facilitate the application of the digital Fourier transform that most of the following 

sections make use of, a square-shaped section of the rectangular original image was cropped in such 

way that the scene's main object, if there was one, was centered (step II). The resulting square images 

were of size 512x512 pixels and were cut by 16 pixels on either of the four borders to remove 

boundary artifacts (black bars that are not part of the actual scene), which were apparently introduced 

during the original scanning process (step III). The remainders of the images were then shrunk down 

to 256x256 pixels to limit processing time (step IV). This also helps to minimize JPEG artifacts. In 

some of the psychophysics experiments, the images were shown in color. In all of the computational 

experiments, grayscale versions of the images were used (step V, see Illustrations 15, 16 and 17).
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2.2. Samples from the APG Database

Illustration 16: APG database, samples of animal images (as in step IV of Illustration 15

Illustration 17: APG database, samples of non-animal images (as in step IV of Illustration 15)
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2.3. General Statistics of the APG Image Database

To obtain a general idea of the differences between the two image classes, some aspects of general 

image statistics were analyzed. We started with averaging the actual pixels of our images, separately 

for the “animal” and the “non-animal” class. This was performed by adding up the intensity values 

independently for all 3 color channels (Red, Green, Blue) of every pixel of all images, then dividing 

the results by the number of images. As the resulting image would be a monotonous medium gray due 

to the averaging effects, all 3 color planes of the resulting mean images were scaled with a common 

scaling factor to span the full range of possible RGB values (so-called “24 bit” RGB images allow for 

256 shades per color channel, spanning the value range of an unsigned 8-bit integer [0 255 ] ).

Both mean images show an orange-brownish blob at the center of the image, surrounded by a mostly 

brownish green with a slight shade of blue at the top, which appears to be somewhat stronger on the 

“non-animal” category. The blue tones in the top corners can be assumed to be generated by the sky, 

depicted in a (dominantly) large number of images in both classes. The greenish-brown at the bottom 

of  the  images  would  be  the  ground,  and  the  orange-brownish  blob  in  the  center  of  the  image 

represents the main object of the scene, which was arranged to be mostly at the center of each image 

when the images were cut to squares (see chapter 2.1). The mean “non-animal” image appears to be a 

bit darker towards the bottom and at the corners, which might be an effect of the photographer's 

camera settings.

As a second aspect,  the amplitude spectra of the images were analyzed.  In their  network paper, 
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Torralba and Oliva reported a particular difference in the slope of the amplitude spectrum of “natural” 

vs. “man-made” scenes [Torralba, Oliva 2003]. The definition given in their work declares a scene 

“natural” if its contents depict merely naturally occurring objects and areas, whereas “man-made” 

scenes contain any kind of human-built structures or otherwise artificially created environments. We 

analyzed our image categories “animal” and “non-animal” in a similar manner, finding the same 

difference in spectral slope that Torralba and Oliva did, even though our image categories differ in 

their definition. On average, both image classes showed more energy on the horizontal and vertical 

axis than on the oblique angles. This difference in energy distribution is significantly stronger in the 

“non-animal” image class (see Illustrations 19 and 20). For both image classes, the mean slope of the 

amplitude  spectrum approximately  follows  the  well-known  1/f  distribution  commonly  found  in 

natural images.
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Illustration 19: Mean amplitude spectrum of animal images

Illustration 20: Mean amplitude spectrum of non-animal images
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2.4. The Torralba Database

The image database kindly provided by A. Torralba1 contains 1200 images, one half of which show 

various animals, the other half showing no animals (see Illustrations  21 and 22). The images have 

been selected and cropped from the Corel Stock Photo Library, the same library our own “APG” 

image database was selected from. Though this means that most original images that have been used 

in the image collection by Torralba have also been used in our own image database, none of the 

images are truly identical  due to different ways of cropping and resizing (see chapter  2.1).  The 

selection of images has been balanced to include an equal number of images from four distances 

(called “head”, “body”, “medium” and “far”) and two types of environments (“natural” and “man-

made”). Animals, when present, appear to be centered most of the time.

1Antonio Torralba, PhD; MIT CSAIL, MIT 32-D462, 32 Vassar Street,Cambridge, MA 02139, torralba@csail.mit.edu
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2.5. Samples from the Torralba Database

Illustration 21: Torralba database, samples of animal images

Illustration 22: Torralba database, samples of non-animal images
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2.6. General Statistics of the Torralba Database

Not surprisingly, the per-pixel averages of the Torralba image database look very similar to our own – 

though more coarse, due to the smaller number of images used. The difference in luminance and 

overall contrast compared to the images in our own database is a result of the normalization process 

applied to coarser images. We find the mean amplitude spectra of the images to be very similar to 

those of our own APG database as well; they follow the approximate 1/f curve, as has already been 

shown extensively in [Torralba, Oliva 2003].

Illustration 23: Per-Pixel averages of the image database. To the left: animal images, to the right: non-animal images
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Illustration 24: Mean amplitude spectrum of animal images

Illustration 25: Mean amplitude spectrum of non-animal images
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3. COMPUTATIONAL CLASSIFICATION

As the second step in our attempt to understand the black box functionality, we need to develop an 

appropriate emulation function and test it on our image database. Attending this need, we now present 

results from our computer-based classifiers performing the before mentioned task of animal vs. non-

animal discrimination. We start with the simplest form of classifier using only raw pixel information 

as input. Subsequently, more complex data reduction tools are tested and even preprocessing steps are 

applied; also, a more sophisticated classification mechanism is tested. We also compare our own 

image database against the one provided by A. Torralba, and we evaluate the classification procedure 

proposed in [Torralba, Oliva 2003] on our APG database.

Whenever classification performance is to be measured, one usually expects results to be somewhat 

less than perfect. The interesting part is to see how close to perfection the results really are, and, in 

particular, whether one approach can yield significantly better results than another.

In computer vision, the key to successful classification is usually to find a suitable way to reduce the 

dimensionality of the original image data to an amount one can handle with the available resources, 

while retaining as much as possible of the information required for the classification. This is even 

more difficult to realize as the “information required for classification” is not clearly known in the 

type of data  used in this  work.  An important  factor  to  be  considered for  the  adjustment  of  the 

dimensional reduction step is the number of training samples available. The higher the number of 

training  samples,  the  higher  the  number  of  dimensions  that  can  be  learned  successfully.  In  the 

“learnable”  (or  trainable)  classification  mechanisms  applied  in  this  work  (linear  discrimination 

analysis and support vector classification, see chapter 7), the number of training samples required for 

a given number of data space dimensions can not easily be predicted ahead of time, though one will 

usually need at least several times as many samples as there are dimensions. As a baseline, we used 

the pixels of the images directly for classification,  with the only data reduction applied being a 

reduction of image size.

All evaluation of data and all computations were performed in Linux (mostly Debian), using Matlab 7 

Release 14, with varying service packs (No. 1-3) on a variety of x86-32 and x86-64 systems. Some 

computations  were  performed  using  a  number  of  lab  PCs  as  a  computation  farm,  some  were 

performed using the “Two Towers” computation cluster at the Max Planck Institute for Biological 

Cybernetics, Tübingen.
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3.1. Classification and Supervised Learning

The fact that there exist differences in the spectral properties of different image categories suggests 

that  these  differences  could be  used to  determine  the  category  of  an otherwise  unknown scene 

through  an  evaluation  of  its  spectral  profile.  This  leads  us  towards  the  field  of  computer 

classification. With modern machine learning techniques, the general approach is relatively straight 

forward: First, the selected classification algorithm is trained on a known database. “Known” in this 

case means that all the samples (images) in this database have been correctly labeled, maybe by the 

operator  or,  with  artificial  data,  during  their  original  generation.  The  classification  algorithm is 

supposed to derive from the training examples a compilation of the necessary information that can be 

used to tell the different classes of samples apart, so that future, unknown samples can be related to 

the compiled knowledge and therefore be (hopefully) correctly classified, even without carrying a 

preassigned label. This general procedure is called “supervised learning”. One of the advantages of 

this procedure is that the classifier is assumed to automatically recognize the relevant information, 

thereby sorting out irrelevant or misleading portions of the training dataset. The main problem with 

complex types of data, such as images, however is that the amount of data necessary to perform a 

certain classification task can be anything between minimal (e. g. actually requiring just one or very 

few pixels of the image, O1 ) or huge (e. g. requiring every single pixel of the image, O N  , 

N being the  number  of  pixels  in  the  image).  The  minimal  amount  of  training  data  required  to 

successfully  learn a  classifier  is  directly  dependent  on the amount  of  data  necessary to actually 

describe the difference between the classes. At least two samples are required to perform a linear 

discrimination (or to learn a linear classifier on a very low level); however, this would be the ideal 

case were the two sample images would perfectly mark the border between the two subsets, a case 

which is unlikely to happen  with non-synthetic data – and if it would happen, the “learning” of the 

classifier would be unnecessary because the plane of discrimination would have to be perfectly clear 

already in order to pick the right pair of samples. In a realistic scenario, it is much more likely that 

the  samples  will  be  distributed  in  a  pseudo-random  fashion,  with  no  or  very  few  “obvious” 

differences between the classes. In fact, many of the more complex classification algorithms assume 

a Gaussian distribution of the samples. Due to the random-like distribution, one cannot say for sure 

whether a certain number of samples in the training set will be sufficient to successfully learn an 

arbitrary classifier. It is therefore always desirable to have as many samples as possible for training; 

usually, in complex problems at least several times as many samples as there are dimensions in the 

feature space are considered to be appropriate. When working on high-dimensional items such as 

images,  this  can easily  exceed the volume of  even the vastest  of  training data  collections.  It  is 
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therefore imperative to reduce the size of the data that is actually used for classification. This is 

commonly referred to as “dimensionality reduction”.
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3.2. Reduction of Dimensionality

The key issue in dimensional reduction is to leave away only such information that does not concern 

the problem at hand. Simply cutting away an arbitrary number of the pixels of an image is generally 

not a good idea. The main effort in the development of a well-performing classifier is therefor to 

identify the properties of the data samples, called “features”, that are relevant for classification and to 

compile a compact set of these features.

In the kind of classification problems that is to be analyzed in this context, one usually does not know 

the nature of the features relevant to the problem, at least not exactly. As it is therefore impossible to 

simply isolate and extract the desired features in some straightforward, deterministic way, one needs 

to turn to more general, holistic approaches in dimensional reduction. One particularly useful and 

well-known technique is called “Principal Component Analysis” (PCA). PCA is used to recompute 

the axis of the coordinate system of the data space in such way that the first axis will be along the 

direction of the greatest  variance of the data,  the second axis will  be along the direction of the 

greatest variance after the first  axis has been eliminated, and so forth. The result of  a PCA will 

typically be a  set  of orthogonal (and thus linearly independent)  vectors describing the new axis 

system, and a set of weights defining the original data points transformed into the new coordinate 

system. The consideration now is that the higher the number of an axis, the lower the amount of 

variance covered by it, and so the loss of information will also be lower should this axis be ignored in 

the computations to follow. Using the first n principal components is therefore a way to reduce the 

dimensionality of the data to n while maintaining a data representation that still covers most of the 

original information.  PCA has been extensively and successfully used in image compression and 

many other fields of digital signal processing.
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Illustration 26: PCA on a random 2D sample dataset.

Figure A) illustrates a pseudo-random dataset which is not aligned with the axis of the coordinate system. The colored 

lines are the new primary (red) and secondary (blue) axis (the principal components). The primary one clearly covers  

the larger part of the variance within the dataset. Figure B) shows the appearance of the dataset after elimination of  

the secondary axis – the dimensionality has been reduced from 2 to 1, cutting the amount of data to process in half,  

while still retaining the larger portion of the variance within the dataset.

In  datasets  of  higher  dimensionality,  a  printable  representation  of  the  data  space  can  be  very 

confusing.  Likewise,  the representation of the principal components is not always possible in an 

intuitive way. In the processing of 2-dimensional images, however, the principal components can be 

displayed as images themselves.

Illustration 27 shows the first 16 Principal components of natural images (see chapter 3.3.2). Some of 

these principal components of natural scenes exhibit a striking similarity to some of the receptive 

fields discovered in the visual system of primates and humans. The fact that these apparently regular 

structures actually have some kind of meaning can be shown when comparing them to the principal 

components of purely random data, which by themselves appear totally random.
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All or an arbitrary subset of these components may be shown inverted as they represent the axis of a 

coordinate  system;  inversion  of  an  axis  can  easily  be  compensated  by  flipping  the  sign  of  the 

corresponding weight for each data sample. It can be argued what the individual components actually 

represent – or if they even represent one abstract scene aspect at all. For example, it would appear 

plausible that the very first component is a DC component, while the second one could be related to 

the horizon; the third one might actually be a vignette-effect introduced by the lenses of the cameras 

used to capture the images, or it might simply be related to the fact that the core element of the 

depicted scene was centered in most images.

Illustration 28: Images reconstructed from various numbers of principal components

Just  like  images,  the  power  spectra  of  natural  scenes  can  be  decomposed  into  their  principal 

components.  These represent elemental groupings of frequencies and orientations, and unlike the 

image principal components they do not contain spatial information and thus are invariant to the 

position of objects within a scene; they therefore do not resemble anything like the horizon or a 

centered vignette like the image principal components do, but instead they represent general aspects 

of the entire scene. In the example from [Torralba, Oliva 2003] shown below the second and third 

spectral principal components are used to successfully organize images along their “openness” and 
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“naturalness” axes.

Illustration 29: Spectral Principal Components, from [Torralba, Oliva 2003]

Illustration 30: Organization of scenes with spectral principal components, [Torralba, Oliva 2003]
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Employing these techniques, [Torralba, Oliva 2003] have been able to tell images containing animals 

apart from images containing no animals with an average accuracy better than 80% using only the 

first 16 spectral principal components.
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3.3. Classification in the Spatial Domain

When humans classify  images,  they look at  the plain pixels  of  the image.  As humans are  very 

successful  at  classifying  images,  the  information  necessary  for  classification  has  to  be  encoded 

somehow into the intensity values of the pixels of our images. As a baseline for naivety, one may try 

to use these intensity values directly for an attempt at classification. Naturally, the dimensionality of 

the data space will be extremely high, with the largest images (256x256) even exceeding the number 

of sample images available to us by a factor of 6 (10864 images with 65536 pixels each). Considering 

the number of samples usually required to successfully learn a classifier (see chapter 7), it will not be 

surprising to find classification performance to be just above chance level.
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3.3.1. Classification on Plain Images (Raw Pixels)

The only preprocessing applied to our images was a per-pixel scaling of the intensity values to the 

interval [0 1]. Thereafter, the intensity value of each pixel gave one of the dimensions of the input 

space. The dimensionality of the input space was therefore directly dependent on image size. Images 

of  different  sizes  were  tested  as  a  (naive)  means  of  dimensional  reduction  to  at  least  partially 

compensate  for the huge number of  dimensions involved (see  Illustration 31).  We used a  linear 

classifier with a 20-fold cross-validation.

Illustration 31: Sample image in different sizes, as used for classification

Image size in pixels Resulting 

dimensionality

Image size in pixels Resulting 

dimensionality

256x256 65536 48x48 2304

128x128 16384 40x40 1600

96x96 9216 32x32 1024

64x64 4096 24x24 576

56x56 3136

Table 1: Image sizes and resulting dimensionality of data space
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3.3.1.1. Results

Illustration 32: Classification performance on pixel intensity values of various image sizes

Our results show that classification performance reaches just over 61% with the smallest images 

(24x24 pixels), then continuously declines with increasing image size, finally reaching 52.6%, which 

effectively is chance performance, at 96x96 pixels image size.

With image sizes 128 and 256 a computational classification was not possible, as the covariation 

matrix that the linear classifier uses,  differed from zero only to the extent of machine precision, 

prohibiting  the  classifier  from  computing  any  results  –  which  would  have  resulted  in  chance 

performance, for just the same reason, anyway. We therefore added the hypothetical results to the 

above plot, shown in red, for the reader's convenience.

Despite of the poor results, this does not actually prove that the pixel intensity values can not at all be 

used for successful computer classification; it does not even prove that it can not be carried out with 

our linear classifier. The reason for this is the following:
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When assuming that  the  information  necessary  for  classification is  distributed  evenly across  all 

dimensions of the data space, as we must since we have no reason to assume otherwise at this point, 

the number of samples needed for successfully learning a classifier is directly proportional to the 

number of dimensions of the data space. Generally one assumes his data to be approximately of 

normal distribution. The number of data points necessary to reliably estimate the true parameters of 

the  distribution  depends  on  the  mostly  unknown  noise  level  and  can  therefore  not  be  safely 

determined beforehand. At least several samples are required, sometimes several hundred or even 

thousands. Taking that aspect into account, at least several times as many samples as there are data 

space dimensions are required to successfully train a classifier – the more samples, the more reliable 

the results of the training will be. When considering the large variance of our dataset (see chapter ), 

one can not expect successful classification with only a few samples per dimension. It is impossible 

to predict precisely how many dimensions of data space are to be considered feasible, but it seems 

highly  unlikely  that  any  number  above  1000  dimensions  (resulting  in  roughly  10  samples  per 

dimension for training) can be successfully used to classify our dataset; a dimensionality below 100, 

however,  is to be preferred.  We conclude that the raw pixel intensity values will  not allow us a 

successful computational classification with the available sample data.
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3.3.2. Classification on Principal Components of Plain Images

The attempt to classify on the untreated pixels of our natural scenes has not lead us to a successful 

classification, the most obvious reason for this being the huge number of dimensions to deal with.

Whenever  a  dataset  like  our  natural  scenes,  which  could  be  seen  as  being  of  “unexplainable” 

structure, is to be reduced in its dimensionality, one can not simply eliminate individual dimensions 

(meaning pixels in our case) at random: the individual importance of every one of these dimensions is 

unknown.

A commonplace  approach  to  overcome this  challenge  is  to  re-code  the  dataset  into  a  different 

coordinate system, hoping that the new coding will help to understand the nature of the data. One 

such recoding is the well-known Principal Component Analysis,  which recodes a dataset into an 

orthogonal coordinate system with axes chosen by order of occurring variance (see PCA chapter). 

Since principal components are ordered by the amount of variance covered by each component, it is 

possible to cover a large part  of the variance in the dataset  with only the first few components, 

omitting the remaining dimensions and thus reducing the effective dimensionality of the data space 

significantly while still retaining a description for most of the differences between our images. In 

other words, we can greatly reduce dimensionality while only slightly reducing informational content. 

When looking at the principal components of natural scenes (illustrations 33 and 34), we notice that 

they  very  much  resemble  a  Fourier  base  of  the  image  space.  Also,  the  principal  components 

computed from (the same) images of different sizes are of virtually identical  content (except, of 

course, for their sizes), and should therefore also have an almost identical meaning – which in our 

case should manifest through almost identical classification results over the various image sizes (see 

below).
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Illustration 33: The first 32 principal components of all images, size 32x32 pixels

Illustration 34: The first 32 principal components of all images, size 128x128 pixels
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3.3.2.1. Results

Illustration 35: Classification performance on various numbers of principal components of natural images

As predicted from the nature of the principal components, the results for different image sizes are 

virtually identical; the classification results are slightly better than those achieved on direct pixels 

(see previous chapter). We abstained from computing the results on images of size 256x256 both 

because of the prohibitive computational cost and the absence of an expected difference to the other 

image sizes. The slight improvement over the results of the attempt on plain image pixels is assumed 

to be a result of the “concentration” of variance on the first PCs. Also, the number of dimensions 

classified on was never higher than 512, with classification performance peaking when the first 32 

components  were  used.  The  negative effect  of  an insufficient  number  of  samples  was therefore 

significantly  reduced  relative  to  the  previous  chapter.  However,  the  maximum  classification 

performance stayed below 64%, still being largely unsatisfying. Most of the variance covered by the 

first principal components therefore seems to be only loosely correlated to the presence or absence of 

an  animal  within  the  individual  scenes.  The  use  of  principal  components  per  se  thus  can  not 

significantly improve the results of our classifier.
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3.4. Classification with Global Image Statistics

Since we were unable to achieve a  satisfying classification performance using the raw intensity 

values of the pixels of our images, we need to find another way to extract the relevant information 

from our data. As mentioned in the introduction, it  has been suggested that the global amplitude 

spectrum can be used to categorize the content of scenes. In the following chapters we will try to 

exploit this approach in our quest for efficient classification of animal / non-animal images.
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3.4.1. Classification using Spectral Principal Components

It has already been reported that the mean amplitude spectra of “animal” and “non-animal” images 

differ in shape ([Torralba, Oliva 2003], [Johnson, Ohlshausen 2003], see also chapter 2.3). Of course, 

the mean of the pixel intensity values of the images from our database also differ – still we have been 

unable to use this to our advantage in our classification attempts. Between the two mean amplitude 

spectra, however, the difference is much more localized than between the two mean intensity images. 

One more advantage of using the amplitude spectrum is the fact that it is symmetric to the origin, 

requiring only one half of each individual amplitude spectrum to be used for classification. While 

reducing the number of dimensions involved by a factor of two, this will still not allow us to use the 

raw values of the amplitude spectrum for classification due to the number  of dimensions in the 

remaining half. When working with our images at their full size of 256x256 pixels, the number of 

dimensions  in  one half  of  the  amplitude spectrum is  still  32768,  far  too many for  a  successful 

classification with our 10864 examples. We will therefore reduce the dimensionality of our data space 

by  computing  the  principal  components  of  the  amplitude  spectrum  (called  “spectral  principal 

components” or “SPCs” by Torralba et al.), and then use only the first few for classification. The 

structure of the differences in the amplitude spectra should make it possible to find a pattern within 

the loadings of the spectral principal components of the images that will enable us to achieve a better 

classification performance on our dataset than with the raw intensity values. This was previously 

demonstrated by Torralba and Oliva, who used the spectral principal components of their images to 

achieve a classification performance of up to 85% in the “animal” vs. “non-animal” task. On the 

following pages, a reproduction of the results of Torralba and Oliva shall be attempted, both on the 

original image database that Torralba and Oliva used (the “Torralba dataset”) and our own database.
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3.4.1.1. Method

To be able to reproduce the results of Torralba et al. as precisely as possible, it is important to follow 

the same preprocessing steps as the original authors. The steps as reconstructed from [Oliva et al.

1999] and [Torralba, Oliva 2003] are the following:

The original images as used in their work were kindly provided by A. Torralba, a detailed description 

of their general statistics can be found in [Torralba, Oliva 2003]. They are JPEG files, with a size of 

256x256 pixels in RGB color and were transformed to grayscale, thus being represented by their 

individual intensity functions Ix , y  .

After  this,  the  logarithm  was  computed  on  the  intensity  distribution  of  the  images:

I l  x , y , k =log I  x , y , k  , with Ix , y ,k being the intensity value of the image no. k at 

position x , y  .

The next step was the application of a high-pass filter in order to “attenuate the very low spatial 

frequencies”  [Oliva et al. 1999]. This was approximated by multiplying the amplitude spectrum of 

each  image  with  a  narrow,  inverted  Gaussian  mask  (d=256  pixels,   =1.5  pixels),  with  the 

negative  maximum centered  on  the  zero-frequency  component  of  the  amplitude  spectrum.  This 

seemed to produce similar results to the otherwise unreported filter that Torralba et al. used.

Finally, Torralba et al. reported that they applied  “an adjustment of the  local standard deviation at 

each pixel of the image”  [Oliva et al. 1999], yet they did not precisely report in which way. We 

therefore assumed that the standard deviation was adjusted to 1, which is a common practice in image 

preprocessing:  I ls x , y , k =
I l  x , y , k 

std n=1
N

I l x , y , n
,  with N being  the  number  of  images  in  our 

database (10864).

To minimize aliasing in the following Fourier transform, we multiplied the images with a Gaussian 

hamming-window  of  the  same  size  as  the  image  (d=256  pixels,  =1/4d).  Subsequently,  we 

computed  the  DFT of  every  image,  retaining  the  amplitude  spectrum and  discarding  the  phase 

spectrum. As we received only the 600 animal- and 600 non-animal images of the original paper, we 

added these images to our own database prior to the computation of the principal components. This 

achieved two things: on the one hand, the principal component base used to recode the amplitude 

spectra is much cleaner since there are more samples available, and second, both the Torralba images 

and our own database are  encoded with the very same spectral  principal  components (“SPCs”), 

allowing for a direct comparison of the classification performance on the two sets of images. We also 
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performed these steps on the smaller versions of the images in our database to be able to examine the 

effect  of  image size on classification performance.  We evaluated the suitability of the SPCs for 

classification both with  our  already familiar  linear  classifier  and  with a  support  vector  –  based 

classifier (see chapter 7), using a RBF kernel.
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3.4.1.2. Principal Components of the Amplitude Spectrum

The Spectral principal components of different sizes are shown below. While it is obvious that the 

higher resolution version of the SPCs show cleaner, more distinct features, it is also obvious that the 

general shape of the SPCs of various sizes is the same. The similarity is not as unique as with the 

principal components of the plain images, however. Also, the order and the orientation (the sign) of 

the  principal  components  is  not  always  the  same.  Hence,  one  may  expect  the  classification 

performance to differ somewhat over the various image sizes.
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3.4.1.3. Results Using the Linear Classifier

Illustration 37: Classification results on various image sizes and dimensionalities, using the linear classifier

Shown above are the results of the linear classifier, using various numbers of principal components 

on  various  image  sizes,  with  a  200-fold  cross-validation.  Overall,  classification  performance 

increases with image size. As the actual dimensionality of the classified dataset is no longer directly 

dependent on the amount of pixels that comprise an image, this means that the usefulness of the 

information in the first n SPCs actually increases along with the size of the image. This might lead to 

the assumption that there is more useful information in the high spatial frequencies, as larger versions 

(really  meaning  “higher  resolution”  in  this  case)  of  the  same  image  can  contain  higher  spatial 

frequencies than smaller versions (Nyquist's Theorem). Apart from the classification gain correlated 

to image size, the number of SPCs used also clearly has an effect. Classification performance is best 

with relatively few SPCs, the maximum being between 16 and 64. The exact number of maximum 

performance differs between image sizes, but the difference between 16, 32, 48 and 64 is generally 

not  large  enough  to  determine  a  clear  “winner”.  Starting  with  about  128  components,  the 
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classification performance starts to decline, indicating that the number of samples available is not 

sufficient to successfully train the linear classifier on datasets of higher dimensionality. 
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3.4.1.4. Comparison Between Datasets

From the results  shown in  Illustration 37,  it  becomes obvious that  the linear  classifier  performs 

significantly better on the dataset provided by A. Torralba (labeled “T”). The data itself is based on 

the same image sizes (256 pixels), the same preprocessing, even the very same principal components 

as our own dataset. The images are from the same original image database as our own; most of them 

also appear in our own dataset, though most of the time, different areas have been cropped. If we had 

expected our classifier to perform differently on the Torralba dataset at all, we would have expected it 

to perform worse, as there are only 1200 images in the Torralba dataset as opposed to our 10864 

images. This does not allow us to train the classifier as extensively on the Torralba dataset.  The 

increase in classification performance can therefore only result from image content, which again can 

only differ significantly through a “lucky” choice of images. We chose our own images to be as 

diverse as possible in order to be a reliable ground truth; when a classifier performs well on a large 

and  diverse  dataset,  this  suggests  good  generalization  of  the  classifier.  The  Torralba  dataset 

apparently is a less challenging selection of images to classify upon. For the remainder of this work, 

we will therefore continue to use our own image database exclusively.
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3.4.1.5. Results Using the SVM/RBF Classifier

The fact that classification performance increases with image size leads us to the conclusion that it 

makes sense to continue classification experiments with the largest images (256x256 pixels) only. 

This causes the highest computational cost during the principal component analysis, but once this step 

has been performed, computational complexity is no longer dependent on image size. Since we have 

already computed the SPCs of all available image sizes, it would not make sense to continue using 

any but those that  promise the best  results  in our proceedings.  We apply this  conclusion to the 

evaluation of the SVM classifier, testing it only on the SPCs of the largest images (256 pixels). With 

the RBF kernel used for our classification experiments, we generally find the same results as with the 

linear classifier: performance first increases with increasing number of SPCs, then a decrease can be 

seen with SPC numbers over 128. We also notice that despite the much higher computational cost of 

the  SVM/RBF classifier  (see  chapter  7),  the  classification  performance  achieved is  just  slightly 

higher  than  that  of  the  computationally  cheap  linear  classifier  (linear:  76.9%,  200-fold  cross-

validation vs. SVM: 77.5%, 200+200 fold C-search, 50-fold crossvalidation, see Illustration 38). For 

the purposes of the following pages and chapters,  the use of  the linear classifier  shall  therefore 

suffice.

Illustration 38: Classification performance on SPCs of size 256 pixels, linear vs. support vector classifier
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3.4.2. Classification Based on the “Fourier Fingerprint”

3.4.2.1. Motivation of the “Fourier Fingerprint” Approach

In the previous chapters, we showed that classification performance just above 77% can be reached 

when using the first n principal components of the amplitude spectrum. The first few of the principal 

components are those that cover the most variance over the entire set of images, both “animal” and 

“non-animal”. It is usually assumed that the large variance along the direction of the first principal 

components  also  corresponds to  high classification performance  –  due  to  the  higher  amount  of 

variance  covered,  more  difference  between  individual  images  can  be  accounted  for.  There  is, 

however, no computationally feasible way of proving that the first n components are also the best n 

components for classification; in fact, the order of the principal components in terms of variance 

might in theory be quite different from their order in terms of classification relevance. The relatively 

costly  step  of  computing  the  principal  components  might  therefore  be  replaced  with  something 

computationally simpler, without necessarily compromising classification performance.

As found by Torralba et al., and supported also by our own analysis of the general statistics of our 

image  database  (see  chapter  2.3),  the  mean  difference  between the  “animal”  and  “non-animal” 

images are more apparent in the horizontal and vertical orientations than in the oblique ones, and 

while  there  is  significantly  more  overall  energy  in  the  low frequencies,  the  relative  difference 

between oblique and non-oblique orientations appears to be strongest in the higher frequencies. It is 

therefore acceptable to assume that some frequencies and orientations will be more useful to our 

classification task than others. To illustrate this point, we will try to employ a more direct approach 

than before, subdividing the amplitude spectrum into a number of areas by means of frequency and 

orientation, without computing principal components first (or thereafter). If this approach performs 

well enough, the relative importance of each of these areas for the classification might then be used to 

infer the location of the classification-relevant information within the amplitude spectrum.
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3.4.2.2. Method, Data Preparation / Preprocessing

We again accessed our image database (256x256 in 8bit grayscale) and superimposed our images 

with a Gaussian window of the same size (sigma 64pixels≃1/ 4 d ) to minimize boundary artifacts 

in the following Fourier transform (Illustration 39). As our images consist exclusively of real values, 

it is safe to ignore one half of the resulting amplitude spectrum due to the symmetry inherent to it 

(positive  and  negative  frequencies  are  always  center-symmetric  for  real-valued  data,  see  [Butz

1998]). This helps a lot to reduce the amount of data that needs to be processed. In analogy to the 

previous approach by Torralba et al., we discarded the phase spectrum.

To decompose the spectrum into bands of orientation and frequency, the contents of the remaining 

half of the amplitude spectrum of each individual image were then collected in a grid mask, arranged 

as 8 orientations with 6 frequency bands each (see Illustration 40), together forming 48 bins, which 

might  be  regarded  as  the  “Fourier  fingerprint”  of  the  original  image.  All  of  the  values  of  the 

amplitude spectrum that fell into the same bin were then summed up to form exactly one value per 

bin, effectively reducing each image into a matrix of 48 numbers. The size of the bins was chosen in 

octaves  to  compensate  for  the average  1/f  energy distribution found in  natural  scenes  (see  also 

chapter ), so that on average the same overall amount of spectral energy resides in every bin (the area 

covered by any given bin and the 1/f spectral slope compensate each other). The actual sum of values 

in every bin may, however, still be somewhat different than the 1/f slope one might expect. The zero-

frequency-component, equivalent to the DC offset of the image, was ignored, as the mean intensity of 

an image does not really contribute to the actual content of the image. The above preprocessing 

provides us with 10864 images (5432 “animal” images and an equal number of “non-animal” images) 

represented by 48 values (bins) each. Prior to classification, each of the bins was normalized to

[ 0 1 ] over all images.
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Illustration 39: Image preparation and fourier transform

left: The original Polar Bear, size 256x256, 8bit grayscale

center: The same Polar Bear, superimposed with the Gaussian window

right The amplitude spectrum of the Polar Bear

left: One half of the Polar Bear's amplitude spectrum

left center: The grid mask, shown in alternating gray and white for illustration purpose

right center: The grid mask being applied to the Polar Bear's amplitude spectrum

right: The resulting 48 bin (orientation / frequency bands) “Fourier fingerprint”
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3.4.2.3. Classification

Initially, we classified on the entire Fourier fingerprints (all 48 bins) using the linear classifier (see 

chapter 7) with a 200-fold cross-validation. Classification performance in this basic setup exceeded 

74% (74.29% equaling 8071 of 10864 images correctly classified), showing that the replacing of the 

Principal Component Analysis with our simple bin structure did only slightly lower the efficiency of 

our classifier.

The general idea, however, was to discover which of the bins and, thus, which of the frequency / 

orientation bands are  more  or  less important  for  the separation between animal  and non-animal 

images. We therefore need to find a way to put the bins into some kind of ranking. Simply classifying 

on every single lonely bin and later sorting the bins by order of classification performance may not 

lead to  success  because  of  interaction effects  –  sometimes,  the  classification performance  using 

several (e. g. 2) bins simultaneously can be different from the sum of the individual classification 

performances of those bins. The only theoretically correct approach would therefore be to try out all 

possible combinations of any subset of our 48 bins, an undertaking that,  while methodologically 

sound, is not feasible due to the enormous amount of computations necessary to perform this task: we 

would have to perform 48!=1,51⋅1051 classification runs, with 200 cross-validations each if 

we want to stay recent with our single classification run on all 48 bins. This can not be done within an 

acceptable time frame even with the most advanced of todays computers - we therefore need an 

approach that, while still producing a plausible result, will not require quite as many computations.
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3.4.2.4. Iterative Bin Elimination Procedure

Our Approach is as follows:

In an iterative procedure, we will remove exactly one bin per iteration cycle.

We  first  classify  on  all  our  dimensions  (meaning  all  our  bins).  Then,  we  take  all  48  possible 

combinations of 47 bins, and select that combination that shows the best classification performance 

of  all  of  these  48  combinations.  There  now  is  exactly  one  bin  that  was  not  included  in  this 

combination, which is considered the one that can be removed with the minimal loss of classification 

accuracy. This bin is then considered “permanently eliminated” - it will never be used again for the 

remainder of this procedure.

We continue in our next iteration, working on all 47 possible combinations of 46 bins, and so on, until 

there is only one bin left.

The description of the algorithm in pseudo-code is as follows:

N dimensionality of the data (in current iteration)

i number of iteration (the “i-th” iteration is always the current one)

P(x) classification performance of the dataset “x”

for i=1 to 48 do

1. select all N  possible combinations (“ Cn ”) of N-1 bins from Dataset D

2. classify on all of these Cn

3. select the combination k where PCk=maxn=1
N

PCn , with Ck being the 

Combination where the k -th element has been removed

4. store the eliminated element in a storage vector

5. let Ck be the new D

continue

When sorting all bins by the number of the iteration they have been eliminated in, we get the desired 

ranking of the bins. The last n surviving bins are considered to be the most important ones for the 

classification  task.  Computing  this  minimum-loss  ranking  for  our  48  bins  requires  only 
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∑
i=1

48

i=1176 classification runs with varying dimensionality (from 48 down to 1), which could 

have been computed in about 1-2 weeks on a single machine. The process was accelerated by using a 

computation grid. In every iteration, all of the possible combinations can theoretically be computed in 

parallel, as they are completely independent of each other. It has therefore been efficient to distribute 

the individual combinations as one computation job each, accelerating the overall process almost 

linearly with the number of computation nodes available, which varied between 3 an 12 depending on 

the availability of the grid nodes. It becomes apparent from the results of this algorithm that during 

the first few iterations (the ones with still over 40 bins left), the maximum classification performance 

achieved by the classifier is indeed increasing with the number of eliminated bins, even exceeding the 

performance achieved with all 48 bins. This is caused by the harmful effect that a “useless” bin can 

have on the performance of the linear classifier: If one or several dimensions of the dataset can by 

themselves not be classified with a performance significantly higher than chance, then it might be 

optimal for the classifier to actually ignore this particular dimension altogether, as there is no useful 

information coming from it. The linear classifier, however, does not posses the ability of ignoring one 

or several data dimensions, and therefore needs to include this information in its decision despite of 

the  possible  negative  implications:  as  such  a  “useless”  dimension  per  se  only  provides  chance 

performance, it will ill affect the overall performance of the classifier, as if dragging it down.. In 

other words, since the linear classifier can not ignore data dimensions by itself, eliminating one or 

several data dimensions “manually” (through the elimination algorithm used) can actually improve 

classification performance. 

The above algorithm can also be performed in an inverse fashion: We proceed just like before, but we 

select those bins for elimination that will cause a maximum loss of classification accuracy, instead of 

a  minimum loss. In a perfect world,  this would produce exactly the same ranking as would the 

minimum-loss approach, just in reverse order. Due to the interaction effects between bins, however, 

the order may be slightly different. If we look at the classification performance graph in Illustration

41, we see that after the small gain during the first iterations, the classification performance of the 

minimum-loss approach stays very much the same for a long period, forming a plateau. As there are 

only  slight  differences  between  individual  combinations  of  bins  within  this  plateau,  the  true 

“distance” between bins in the resulting ranking will be just as minor. In other words, even very small 

effects may trigger a slightly different ranking, and as we remove the most useful bins at the very 

beginning of the maximum-loss approach, the resulting differences between the “weaker”, less useful 

bins  are  emphasized.  The  general  trend,  however,  will  be  the  same  on  both  approaches:  the 

“strongest”, most useful bins stand out against the majority of “weaker”, less useful bins. If one wants 
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to see only which bins are actually the most important ones, the mean of the two rankings is going to 

be  the  most  reliable  one,  representing  those  bins  that  are  on  average  the  “strongest”  of  both 

approaches.
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3.4.2.5. Results of the Iterative Bin Elimination Procedure

Illustration 41: Classification performance during incremental bin elimination

In the minimum-loss approach we find that at first,  with most bins still  present, there is a small 

increase in classification performance (see above). Then, there is a very long plateau, going from 

about 45 bins down to as few as 6 or 7 bins. During the entire plateau, the performance stays just 

below 75%, only falling below the 74% marker when less than 5 bins are left. This means that when 

using only the last (“strongest”) 5 bins, a little more than 74% classification performance can be 

achieved. The decline in classification performance during the maximum-loss approach varies more 

through the duration of the procedure than the during the minimum-loss approach, with performance 

decreasing  monotonically  until  the  last  3-4  bins  are  left,  after  which  the  performance  actually 

increases  just  slightly.  This  final  behavior  is  similar  to  the  minimum-loss-approach,  where  the 

elimination of the first few bins led to a slight increase in classification performance as well.
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Both on average and in the individual approaches, the bins that represent the highest frequencies in 

the horizontal and vertical orientations are among the very top of the ranking, while the bins on the 

oblique angles play no major role in any of them. This is no surprise, as the high frequencies in the 

vertical and horizontal orientations are the ones that differ the most in the general average of the 

image categories (see Chapter 2.3). The only bin that is located in the lower frequencies is also the 

one closest in terms of ranking to the bins of the plateau and therefore could be exchanged with any 

of  the plateau bins with only very minor  (though,  of course,  not  minimal)  loss in classification 

accuracy.
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3.4.2.6. Ranking vs. Rating

While the order of the most important bins in this ranking is quite reliable, there is no real metric to 

determine the actual distance between two bins. This is a drawback, since it will not allow us to tell 

how much more or less important one bin really is compared with another. To accurately measure 

this,  the  complete  evaluation  of  all  possible  bin  combinations  would  be  necessary,  but  is  not 

computationally feasible, as mentioned before. One might attempt, however, to compute something 

that approximates the complete evaluation on a coarse scale, resulting in a quasi-continuous metric of 

bin importance that includes at least some of the interaction effects between bins. To achieve this, a 

subset of all the possible bin combinations needs to be computed, for example the subset with all 

combinations  of  exactly k bins.  The  resulting  classification  performance  achieved  on  each 

individual combination gets accredited to all of the include bins. This results in a matrix M k of size

N k , each entry representing the classification performance achieved when using the k -tuplet 

specified by the indices of the k axis of the matrix. Populating the matrix will require
 N k 
k !

classifications – the division by k ! is due to the fact that the permutations of each individual bin 

combination do not differ in their classification behavior and therefore need to be computed only 

once. After computing the classification performance on all of the possible subsets, the average of all 

accredited classification performances is computed separately for each bin. The resulting mean value 

is a semi-continuous rating of the bin's general importance for the classification. To keep the number 

of  computations  on  a  feasible  level,  this  was  done  for k=2 ,  thus  requiring
48∗47

2
=1128

classifications with 2 dimensions each, plus an additional 48 classifications with 1 dimension (every 

bin by themselves, located on the diagonal of the resulting matrix), totaling 1176 classifications. By 

its general computational structure, this approach would scale very well on a computation cluster or 

grid, as all the individual k -tuplets can be classified upon independently; however, the individual 

computations are only 2 dimensions wide and therefore complete very rapidly. The computations 

have therefore been done on a single machine, completing in mere minutes.

Jan Drewes Justus-Liebig-Universität Gießen 76/154



Classification of Natural Scenes 3.Computational Classification

3.4.2.7. Results of the Pairwise Ranking Computation

The pairwise classification results show, very much alike the iterative elimination approach, that the 

horizontal and vertical orientations, and within these the higher frequencies are most important for 

classification. When taking the per-column-mean of the above matrix, we get a vector of size 48, 

which we can reshape into the already familiar bin structure. From the rating of the bins we can see 

that the relative distance between the 4-5 most important bins and the rest of the field is actually quite 

large (see Illustration 43), while the distance between the first and the second most important bin is 

rather small (the mean classification relevance of the top 5 bins is 72,2%, whereas the mean of all 

remaining bins is merely 15,3%).

Illustration 43: Results of rating with k=2

To the left, the resulting matrix M 2  of size 48x48, unit is classification performance in % correct.

To the right, reprojection of the mean of the matrix into the bin shape, rating in % importance relative to the 

single most important bin.
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3.4.2.8. Classification on Frequency Bands

The result  of  the evaluation in the  previous  chapter  showed the importance of  the  vertical  and 

horizontal orientations of the highest frequency band for classification. This, of course, also suggests 

that the highest frequency band generally has more meaningful content in terms of classification 

relevance.  To examine how the information relevant  for classification is  distributed amongst the 

frequency bands,  we split  up  our  Fourier  fingerprint  data  into the  6 included frequency bands, 

resulting in 6 datasets with 8 bins each (one for each orientation band). We then classified again using 

the linear classifier, with 200 cross-validations on every classification run. 

Illustration 44: Classification performance on frequency bands

The  results  show that  indeed,  the  highest  frequency band appears  to  contain  the  most  relevant 

information for the classification process.,  exceeding 70% accuracy, while the lowest frequencies 

barely pass the 60% line. The ratio of performance increase over the frequency bands is quite even 
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except for a stronger than average increase between the 4-7cpi and the 8-15 cpi frequency bands. The 

image structures corresponding to the frequencies below 8cpi are therefore the least useful ones for 

classification, while the frequencies above that apparently contain more and more information the 

higher the frequency. 
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3.4.2.9. Selecting Images by Classification Difficulty

The output of the linear classifier is a list of assigned labels and associated probabilities, one for 

being “animal” and one for being “non-animal”. Browsing through this list allows one to select a 

number of images based on their associated probabilities (as a measure of distance from the plane of 

discrimination). The images within the “animal” class that score the highest “animal”-probability and 

the “non-animal” images with the highest “non-animal” probability could be seen as the ones most 

easily classified by the algorithm, the “animal” images with the lowest “animal” probability and the 

“non-animal”  images  with  the  lowest  “non-animal”  probability  could be  seen  as  the  ones  most 

difficult for our classifier. Whenever an image scores less than 50% in its class (automatically scoring 

higher than 50% in the other class), this means that is has been misclassified.

animal probability distractor probability

“easy” animals >>50% <<50%

“difficult” animals <50% >50%

“easy” distractors <<50% >>50%

“difficult” distractors >50% <50%

Table 2: Image selection by classification difficulty

On the following pages, those images are being displayed that the linear classifier, based on all of the 

48 bins, chose to be the 200 most class-typical (“easy”) or the 200 most class-atypical (“difficult”), 

for both classes. All of the atypical images have class probabilities below 50%, while the typical ones 

have probabilities far above 50%, usually above 80%.

As mentioned before, the discrimination plain is located at 50%, so all images labeled “easy” were 

classified correctly, while all images labeled “difficult” were classified incorrectly.
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3.4.2.10. The 200 “Easy” Animal Images

Illustration 45: The 200 "easy" animal images, no. 1-70
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Illustration 46: The 200 "easy" animal images, no. 71-140
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Illustration 47: The 200 "easy" animal images, no. 141-200
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3.4.2.11. The 200 “Difficult” Animal Images

Illustration 48: The 200 "difficult" animal images, no. 1-70

Jan Drewes Justus-Liebig-Universität Gießen 84/154



Classification of Natural Scenes 3.Computational Classification

Illustration 49: The 200 "difficult" animal images, no. 71-140
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Illustration 50: The 200 "difficult" animal images, no. 141-200
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3.4.2.12. The 200 “Easy” Non-Animal Images

Illustration 51: The 200 "easy" distractor images, no. 1-70
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Illustration 52: The 200 "easy" distractor images, no. 71-141
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Illustration 53: The 200 "easy" distractor images, no. 141-200
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3.4.2.13. The 200 “Difficult” Non-Animal Images

Illustration 54: The 200 "difficult" distractor images, no. 1-70
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Illustration 55: The 200 "difficult" distractor images, no. 71-140
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Illustration 56: The 200 "difficult" distractor images, no. 141-200
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4. HUMAN CLASSIFICATION: COMPARING MAN AND MACHINE

The results of the computer classification as presented in the previous chapter are rather promising. 

This  is  especially  true  when considering  the  rather  low computational  complexity  of  the  image 

preprocessing applied in the Fourier Fingerprint approach. In general, our results suggest that the 

global amplitude spectrum may very well be used to classify image content. The Fourier Fingerprint 

classifier therefore seems to be a suitable emulation function in our black box approach. We will now 

compare the input-output relation of our Fourier Fingerprint classifier with the one of the human 

visual system. First, we will compare the effect of image rotation on the computer classifier with the 

performance of human subjects on rotated images. Second, we will compare the image difficulty 

rating found in chapter  3.4.2.9 with the performance of human subjects on a special set of images 

selected by their computed difficulty. Finally, we will test if humans are still able to classify images 

after their amplitude spectrum has been neutralized as a cue to classification. 
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4.1. Experimental Equipment

All  “2AFC” experiments were run on Microsoft  Windows XP,  using customized versions  of  an 

original  program designed for  similar  purposes  by Prof.  Dirk Kerzel1 in  Microsoft  Visual  C++, 

making extensive use of the open-source “SDL” library. All presentation timings were synchronized 

to the screen refresh, which was set to 100Hz or 10ms per frame.

All  eye-movement  measurements  were  performed  using  SR  Research's  EyeLink  II  eyetracking 

system. Images were presented on an Iiyama VisonMaster 513 (MA203DT) 21” CRT screen. The 

viewing area was 40,3cm wide and 30,1 high, with a chin rest 45cm from the screen to stabilize head 

position, making for a usable visual field of 48,2deg by 36,9 deg. A resolution of 1280x960 pixels 

was chosen to best accommodate the 4:3 aspect ratio of the screen, delivering approximately 26,6 

pixels per degree. Ambient lighting was not calibrated to a particular level, but great care was taken 

to ensure that the same lighting conditions were in effect for all subjects. A warm-up period of at least 

1h allowed the CRT to stabilize its mean luminance. For the “Test for effects of image rotation in 

human subjects” (chapter  4.2) the screen was otherwise uncalibrated, for the “Test for effects of 

absence of the amplitude spectrum in humans” the screen was gamma corrected with a separate LUT 

for each color channel to linearize the luminance function.

Illustration 57: SR Research EyeLink II Eyetracker    Illustration 58: Experimental setup

1 Prof. Dr. Dirk Kerzel, Université de Genève, Uni Mail, FaPSE, 40 bd du Pont d'Arve, CH-1205 Genève
Email: dirk.kerzel@pse.unige.ch, Fax: 41 (0) 22 – 3799229, Tel: 41 (0) 22 – 3799132, Bureau: 4134
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4.2. Experiment 1: Test for Effects of Image Rotation in Humans

4.2.1. Motivation

In chapter 3.4.2 we discovered a rating of the bins of the Fourier fingerprint (Illustration 43, page 77). 

When taking a close look at this rating, we can see that the distribution of classification relevance of 

the bins is not rotation invariant (not all of the bins of a given frequency band are rated equally, the 

horizontal  and vertical  orientations outrank all  others).  Any classification mechanism based on a 

similar approach would therefore have to show a significant effect on image orientation. With our 

own algorithm, the effect would be so grave that we do not actually need to compute it – we can 

derive it from the rating of the bins our classifier produced:

The  bins  most  important  for  the  linear  classifier  are  the  ones  representing  the  highest  spatial 

frequencies in both the vertical (0°) and horizontal (90°) orientations, while the bins representing the 

oblique angles (45° and 135°) hardly add anything to the classification performance. If one were to 

test the presented classifier with rotated images whilst the classifier was trained on upright images, an 

effect on classification performance can be expected depending on the angle of rotation.

Illustration 59: Rotation of images and their expected effect on the linear classifier

Illustration 59 shows the effects of several different angles of rotation on the information content of 

the bins. The red color indicates the bins in which the (computer) classifier expects the information 
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relevant for classification. The yellow color indicates the actual location of the expected information.

In the 0° case, both are located in the same place as this, of course, is the very case the classifier was 

trained on. Good classification performance can be expected, as was reported previously.

In the 45° case, however, the relevant information has rotated out of its original location just as far as 

the image was rotated, now residing in the oblique angles. The classifier will thus classify on the 

information that used to go into the oblique angles, and in all likelihood no significant classification 

performance will be achieved.

In the 90° case, the information has moved on by another 45°, now residing in the opposite bin it used 

to be: horizontal and vertical orientations have been exchanged. We recall that in the mean amplitude 

spectra, the differences between animal and non-animal images is that the non-animal images have 

more energy in both the horizontal and vertical orientations. This means that both of the bins have the 

same orientation in our data space: more energy means less animal probability. One can assume that 

this will still produce classification results significantly above chance performance – or at least much 

better results than in the 45° case..

The 135° case is similar to the 45° one, just with the bin contents swapped; one can not expect 

significant classification performance from our classifier.

In the 180° case the symmetry of the amplitude spectrum manifests: the distribution of energy over 

all the bins is identical to the 0° case, causing classification performance to be identical as well.

In order to test if our linear spectral based classifier at all resembles the functionality of the human 

visual system, we decided to test a set of rotated images on human subjects. If the part of the human 

visual system that is used for image classification works on any kind of data similar to our Fourier 

fingerprint, an effect of rotation on classification accuracy or response time should be measurable.
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4.2.2. Methods

To evaluate the performance of human subjects classifying rotated images, we chose to employ one 

of the established paradigms for such a purpose: the “Two Alternatives Forced Choice” gap paradigm 

(“2AFC”). 

In this setup, very trial started with a neutral gray background showing only one fixation marker in 

the exact center of the screen. The subject then needed to push a button while fixating the marker. 

Fixation was checked with an EyeLink II Eyetracker (see chapter 4.1) and the trial was only started 

when good fixation was detected. After the start of a trial, the fixation marker remained on screen for 

a period of time randomly chosen between 500 and 700ms. After this, the fixation marker vanished, 

showing an empty screen for 200ms (gap period). Then, 2 images were briefly flashed (30ms), one on 

either side of the screen center. Images were about 9.5° in diameter (250 pixels), with the eccentricity 

being about  7°  from image center  to screen center.  Images were  vertically  centered.  After  their 

disappearance, the images were replaced by position markers that served as saccade destinations for 
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the subjects' decisions. After another 1000ms, these markers were replaced with a blank screen an the 

trial ended. In order to eliminate image borders as a clue to orientation, images were cut to circles. In 

every trial,  exactly  one image showed an animal  (target),  while  the  other  showed a  non-animal 

(distractor). Both images were rotated in the same random direction by the same randomly chosen 

angle of either 0, 45, 90, 135 or 180 degrees. Target and distractor were randomly distributed across 

the 2 possible locations so that the probability for the target to appear on either side of the fixation 

marker was 50%. Subjects were instructed to fixate the marker before initiating a trial by pushing a 

button, then to keep up fixation until the images appeared, after which they were to make the decision 

where the animal was as quickly as possible by performing a saccade to the position marker on the 

side of the screen where the animal image had been. As the next trial would not start without the 

subject pushing a button again, the overall pace of trials was automatically adapted to the subject's 

preference.
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4.2.3. Results

23 subjects participated in this experiment. All subjects were students of the Justus-Liebig-University 

Giessen and were payed for their participation. Subjects were between 19 and 33 years of age and 

had normal or corrected to normal vision. All subjects were able to perform eye movements adequate 

to achieve calibration accuracy rated as “good” (the best rating) by the EyeLink II system. All 

subjects were naive, and even though some participated in more than one experiment, they were not 

informed about the purpose of the individual experiments until after they had completed all the trials 

they were scheduled for.

Of the 23 participating subjects, 2 were excluded for reasons of exceptionally bad performance, one 

for barely exceeding chance performance in any of the conditions and the other for producing less 

than 50% valid trials. The first subject's general behavior suggested a lack of interest in actually 

conforming with the experimental requirements, the latter reported a long-term medical condition in 

the tracked eye only after completing the experiment. 500 trials were scheduled for each subject, 

resulting in 10500 recorded trials from the remaining 21 subjects. Prior to evaluation, the individual 

results were filtered with the following criteria:

Goodness of fixation:

Fixation between trial start and stimulus onset was not allowed to diverge from the screen center by 

more than 70 pixels, no saccades were allowed prior to stimulus onset; this made certain that the 

subjects did not favor one of the locations where the images would be shown and that no saccades 

were  made  during  the  critical  phases  of  the  experiment,  as  this  might  have  hampered  visual 

perception.  During  this  filtering  step,  333  Trials  were  eliminated,  leaving  10167  for  further 

processing.

Goodness of saccade direction / destination

Decision saccades were required to end in one of the two smallest possible squares covering the area 

that was occupied by the target and distractor images. This ensured that the saccades actually were 

directed into the general area of either of the shown images and eliminated random saccades, e.g. 

from lack of concentration. Only 17 trials needed to be eliminated to fulfill the requirements, leaving 

10150 trials for further processing.

Goodness of response time
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Subjects needed to make their decision no later than 700ms after stimulus onset in order to limit 

conscious thought in the decision process. Responses also had to be slower than 80ms to eliminate 

random and too early eye movements (reaction times faster than 80ms can safely be assumed not to 

be based on stimulus content). 325 trials were removed because they were too fast, none were too 

slow, leaving a total of 9825 valid trials for evaluation. On the valid trials, the mean hit ratio over all 

conditions was 85,5%, the mean response latency (correct and incorrect) was 298,7ms. Clockwise 

and counter-clockwise rotations were treated as one.

Angle of rotation Number of  

valid trials

Correct trials Incorrect trials Mean latency Mean latency 

correct

Mean latency 

incorrect

0° 1962 1705 (86.90%) 257 (13.10%) 296.5ms 299.2ms 285.2ms

45° 1965 1669 (84.94%) 296 (15.06%) 296.0ms 298.0ms 309.0ms

90° 1955 1679 (85.88%) 276 (14.12%) 297.0ms 299.7ms 291.8ms

135° 1977 1675 (83.81%) 320 (16.19%) 301.5ms 302.8ms 305.5ms

180° 1966 1686 (85.76%) 280 (14.24%) 302.2ms 302.8ms 308.1ms

Table 3: General results of the test for rotational effects on classification performance

 

Illustration 61: Response latencies on rotated images (correct trials only)
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Illustration 62: Classification hit ratio on rotated images

Multiple statistical analysis including ANOVA and paired t-tests of the saccade latencies did not find 

a significant effect on the response latencies of our subjects (Illustration 61). However, a repeated-

measures ANOVA showed a significant effect of the factor rotation on the hit ratios (F(4,80)=2.77, 

p=0.033, Illustration 62). Following up on this, we computed a series of correlated t-tests to further 

analyze the statistical relations in the experimental results.

First group of orientations Second group of orientations p-value of correlated t-test

0° 45° 0.064

0° 90° 0.436

0° 135° 0.001

0° 180° 0.209

0°,180° 45°, 135° 0.002

0°, 90°, 180° 45°, 135° 0.004

Table 4: Results of t-tests on grouped orientations

As can be seen from  Table 4, the difference between the cardinal and the oblique orientations is 

significant. This is valid for all of the performed t-tests with an exception in the case of 0° vs. 45°, 
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where the  p-value of the t-test is 0.064, which is not significant per definition, but might still be 

considered a weak effect. We conclude that our measurements generally fulfill our expectations; our 

subjects' classification performance showed a significant dependency on image rotation, even though 

classification still reached high levels of accuracy even on the oblique rotation angles. These results 

support the hypothesis that the global amplitude spectrum does matter during the classification of 

natural scenes in humans.
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4.3. Experiment 2: Test for Effects of Image Difficulty in Humans

4.3.1. Motivation

In chapter  3.4.2.9, we presented a subset of the images in our database selected by their supposed 

“classification difficulty”. The selection process was ultimately based on the expressiveness of the 

individual amplitude spectra of the images. When assuming that the human visual system utilizes the 

global  amplitude  spectrum in  tasks  of  rapid  classification,  one  might  find  a  similar  “easy”  vs. 

“difficult” pattern with the classification performance of humans when exposed to these selected 

images.  The  following  experiment  is  designed  to  analyze  the  hit  ratios  and  response  latencies 

associated with our selected “easy” and “difficult” images for effects of image difficulty in humans.
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4.3.2. Method

We chose a Go/NoGo gap paradigm to evaluate human performance on our set of images selected by 

classification difficulty. Grayscale versions of the images were used for better comparability with 

later experiments. Subjects were instructed to push and hold a trigger button prior to each trial. When 

the button was pushed, a fixation dot appeared on the screen and remained there for a random period 

between 500 and 700 ms, followed by a 200ms gap. A single target (animal) or distractor (non-

animal) image was then shown for 30ms without a subsequent masking. Thereafter, a small fixation 

cross was shown for 1000ms, during which the subjects were to make their decision by either holding 

the button pressed steadily (“NoGo”-response,  signifying a  distractor)  or  releasing the button as 

quickly as possible (“Go”-response, signifying a target). After a “Go”-response, the next trial would 

not start again until the subject pressed the button again to signal readiness, allowing the subject to 

individually pace the trial sequencing. Every of our 800 selected images was shown in random order 

exactly once to each subject, resulting in a total of 800 trials per subject, taking between 40 and 60 

minutes of time depending on the subject's individual pace.

Illustration 63: Design of the "Go/NoGo"-paradigm with images of varying difficulty
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4.3.3. Results

10 subjects participated in this experiment. All subjects were students of the Justus-Liebig-University 

Giessen and were payed for their participation. Subjects were between 19 and 31 years of age and 

had normal or corrected to normal vision. The means of the measurements taken are reported in Table

5. Overall 8000 trials were recorded, 5 of which were discarded because their response time was 

faster than 200ms. The remaining ones were considered valid.

Image type Hit ratio Response latency

all 93,9% 413,2ms

“easy” 96,7% 405,5ms

“difficult” 91,2% 421,1ms

Table 5: General results of the test for effects of image difficulty in humans

Generally, the measured response times and hit ratios were within the normally expected range for 

experiments of this kind. A highly significant effect of image difficulty was found within the subjects' 

hit ratios: “easy” images were classified more accurately than “difficult” ones (repeated measures 

one-way ANOVA,  F(1,10)=68.594,  p<0.0001).  A highly significant  effect  was also found in  the 

response  latencies:  “easy”  images  were  classified  faster  than  “difficult”  ones  (F(1,10)=  37.554, 

p<0.001).

Illustration 64: Classification performance Illustration 65: Response latencies

Summarizing,  our  human  subjects  agreed  with  the  difficulty  assigned  based  on  the  Fourier 

fingerprint; this strongly supports (but does not prove) the idea that the amplitude spectrum actually 
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matters when humans are performing rapid visual categorization tasks.
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4.4. Experiment 3: Test for Effects of Absence of the Amplitude Spectrum 

in Humans

4.4.1. Motivation

In the previous experiments, we have found reasonable evidence that using the clues given in the 

amplitude spectrum of  our natural  scenes can indeed make our computer  classifier  behave quite 

similar  to  what  we  find  in  humans  (when  classifying  the  same images).  What  is  still  missing, 

however, is some hard evidence that either proves or disproves the use of the amplitude spectrum as a 

primary source of information for classification tasks within in the human visual system. It  is a 

known fact that some form of a decomposition into spatial frequency and orientation is computed 

during the early stages of the visual system [Hubel Wiesel 1959] [Field Tolhurst 1986] [Field 1987] 

[Porat Zeevi 1988]. Also, this can be done in a feed-forward neural network, conforming with the 

time constraints associated with image classification during rapid serial visual presentation [Thorpe

Fize Marlot 1996]. In summary, it is known that the information contained in the amplitude spectrum 

is  available; It is not known, however, whether this information is actually  used in the process of 

classification at all, or what the extent of it's use to the classification process is. In Experiments 1 and 

2, our results support the hypothesis that the global amplitude spectrum matters in human rapid visual 

classification tasks, as we concluded from the similarities in classification behavior between man and 

machine. In the following two experiments the use or usefulness of the global amplitude spectrum for 

fast classification within the human visual system shall be analyzed with the goal of producing hard 

evidence to either prove or disprove the necessity of the use of the global amplitude spectrum.
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4.4.2. Method

It can sometimes be quite difficult to prove that one particular cue is used in a decision process. In the 

case of the human visual system, the enormous amount of information involved together with the 

extreme  speed  of  processing  makes  it  even  more  difficult  to  examine  the  different  streams of 

information and their use for individual tasks. In our case, doing the opposite may be simpler and 

more feasible: If one can isolate a particular informational cue, one can test a subjects' behavior with 

and without that cue present and compare the results.  In other words,  it  may not be possible to 

determine whether an information is being used when it is readily available; however, in it's absence, 

an effect may be observed. We therefore need to eliminate the amplitude spectrum as a possible cue 

to classification without making the images unrecognizable to our subjects. It has been shown that 

human vision is much more susceptible to phase noise than to amplitude noise  [Wichmann Braun

Gegenfurtner 2006], so a modification of the global amplitude spectrum does not necessarily destroy 

the image content. We proceeded by decomposing our already introduced selection of “easy” and 

“difficult” images into their individual phase- and amplitude spectra. We completely disregarded the 

latter, replacing it with the mean amplitude spectrum of all the images in our database, thus removing 

all  cues  that  the  global  amplitude  spectrum  might  have  provided  (see  Illustration  66).  Any 

classification  mechanism  based  on  the  global  amplitude  spectrum  would  utterly  fail  after  this 

procedure.  After  recomposition of  the  images  from their  individual  phase spectra  and the mean 

amplitude spectrum, the appearance of the images is somewhat noisy, but the content of the scene is 

still  recognizable  in  every  single  case  (see  Illustration  67).  Wanting  to  evaluate  our  subjects 

performance in oder to analyze both for the effect of filtering per se as well as the effect it might have 

on the previously introduced factor  of  image difficulty,  we designed two experiments.  The first 

(experiment 3a) utilizes a Go/NoGo paradigm very similar to the one from experiment 2, with the 

only difference being that  50% of all  images were shown in their  amplitude-normalized version 

instead of their original, unchanged form (see Illustration 68). The instructions given to our subjects 

included the information that some of the images might look a bit odd, but otherwise the same task 

was required. Every image was shown only once and in only one form (amplitude-normalized or not) 

per subject, alternating between subjects. This setup allows us to examine the effect of the amplitude 

normalization on single images. For the second experiment (experiment 3b) we employed a version 

of the 2AFC gap paradigm (see Illustration 71) similar to the one presented in chapter 4.2, replacing 

rotated images  with pairs  of  (upright)  amplitude-normalized and pairs  of  unchanged images (all 

images  were  normalized  for  RMS  contrast  and  standard  deviation).  Image  pairs  were  evenly 

distributed between the 4 possible combinations of “easy” and “difficult” image types, allowing for 
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an  analysis  of  the  factor  “image  difficulty”  both  in  “unchanged”  and  “amplitude-normalized” 

condition. Every pair of (randomly chosen) target and distractor images was shown exactly once to 

each subject, in such way that every image would appear equally often in it's amplitude-normalized 

or it's unchanged form over the duration of the experiment, but only once and in only one condition 

per subject. 400 trials were scheduled for each subject, taking about 30-45 minutes of time. This 

setup allows us to examine the effect of the amplitude normalization on pairs of images; also, the 

timing of eye-movement based decisions might be more conclusive than button-press responses due 

to the increased speed of the responses.
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Illustration 66: Schematic of the amplitude spectrum normalization process
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Illustration 67: Samples of images before and after replacement of amplitude spectrum
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4.4.3. Results

4.4.3.1. Experiment 3a

12 subjects participated in this experiment. All subjects were students of the Justus-Liebig-University 

Giessen and were payed for their participation. Subjects were between 20 and 31 years of age and 

had normal or corrected to normal vision. The means of the measurements taken are reported in Table

6. Overall 9600 trials were recorded, 53 of which were discarded because their response time was 

faster than 200ms. The remaining trials were considered valid.
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Amplitude spectrum Image type Hit ratio Response time

all

unchanged

all 89.3% 450.6ms

easy 95.2% 437.7ms

difficult 90.5% 451.1ms

all 92.7% 443.5ms

amplitude-normalized easy 90.1% 449.3ms

difficult 81.6% 464.4ms

all 86.0% 457.7ms

Table 6: General statistics of experiment 3a

In the “unchanged” condition, we find the difference between “easy” and “difficult” images to be 

highly significant both in terms of hit ratio (repeated measures one-way ANOVA,  F(1,9)=30.621, 

p<0.001) and response time (F(1,9)=8.569,  p=0.014), reproducing our results from experiment 2. 

When performing the same analysis on the data recorded with the amplitude-normalized images, we 

still find a highly significant effect for both hit ratio (F(1,9)=119.301, p<0.0001) and response time 

(F(1,9)=27.584, p<0.001). We also find a very strong effect for the amplitude-normalization in both 

hit ratio (F(1,9)=131,8567,  p<0.001) and response time (F(1,9)=21,2665,  p<0.001),  as was to be 

expected from the random-like noise added by the spectral equalization procedure. The seemingly 

significant effect of the amplitude-normalization on image difficulty appears in our hit rate data only 

(F(1,9)=10.1406,  p=0.0087);  we believe this to be a ceiling effect,  as hit rates in the unchanged 

condition are well above 90%, even above 95% for the “easy” images. At this high performance 

levels, the difference between the “easy” and the “difficult” images gets compressed – the response 

times, however, have not close enough to their ceiling (or floor, respectively) and therefore do not 

show this effect. This shows that human classification performance on images with non-conclusive 

amplitude  spectra  does  not  work  as  well  as  it  does  on  unchanged  images;  however,  though 

statistically significant, the absolute difference between the two conditions is only about 8%, still 

allowing for a classification accuracy of 86% on average.
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Illustration 69: Classification performance: hit ratio (Experiment 3a)

Illustration 70: Classification performance: latencies (Experiment 3a)
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4.4.3.2. Experiment 3b

10 subjects participated in this experiment. All subjects were students of the Justus-Liebig-University 

Giessen and were payed for their participation. Subjects were between 20 and 31 years of age and 

had normal or corrected to normal vision. All subjects were able to perform eye movements adequate 

to  achieve calibration accuracy rated as  “good” (the best  rating)  by the EyeLink II  system. All 

subjects were naive, and even though some participated in more than one experiment, they were not 

informed about the purpose of the individual experiments until after they had completed all the trials 

they were scheduled for. Prior to evaluation, we applied the same filtering to our measurements as 

explained chapter  4.2. Of the overall 4000 trials recorded, we discarded 129 for not fulfilling the 

“goodness  of  fixation”  criterion,  another  7  because  of  the  “goodness  of  saccade  direction  / 

destination” criterion, and finally 26 more because of the “goodness of response time” criterion, all of 

the  latter  being  too  fast  rather  than  too  slow.  In  Summary,  3738  trials  were  considered  valid. 

Measurements are reported in Table 7.
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Type of image pairing Hit ratio Response latency

all all 81.0% 277.5ms

unchanged all 85.8% 278.4ms

easy - easy 95.3% 269.9ms

easy - difficult 81.9% 281.9ms

difficult - easy 89.7% 269.5ms

difficult - difficult 76.3% 288.8ms

amplitude-

normalized

all 76.3% 276.8ms

easy - easy 89.2% 269.3ms

easy - difficult 74.9% 279.4ms

difficult - easy 80.6% 276.9ms

difficult - difficult 60.5% 282.0ms

Table 7: Statistics of Experiment 3b

As we expected from the results of experiment 3a, the effect of image difficulty on the hit ratios was 

significant; additionally, we can report that the effect of image difficulty is significant both with the 

target  images  (animals,  F(1,9)=32.614,  p<0.001)  and  the  distractor  images  (non-animals, 

F(1,9)=85.685,  p<0.001).  The  general  effect  of  the amplitude-normalization was also significant 

(F(1,9)=58.599,  p<0.001),  as can be seen from  Illustration 72.  The also significant effect  of the 

amplitude-normalization on the effect of image difficulty is likely to be a ceiling effect, similar to 

experiment 3a. With the response times, the results are slightly different: While significant effects can 

be  found with  both  target  images  (animals,  F(1,9)=6.033,  p=0.036)  and  distractor  images  (non-

animals,  F(1,9)=42.174,  p<0.001), the general effect of amplitude-normalization is not significant 

(F(1,9)=0.173, p=0.687, see Illustration 73).
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Illustration 72: Hit ratios on pairs of images (Experiment 3b)

Illustration 73: Response latency on pairs of images (Experiment 3b)
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5. CLASSIFICATION USING LOCAL IMAGE STATISTICS

In the previous chapters it was shown that the human visual system does not depend on the global 

amplitude spectrum for rapid visual classification. The information the human visual system uses 

must therefore be localized. However, a classifier based solely on the global amplitude spectrum can 

behave remarkable similar to the human visual system, a fact that suggests that the key elements of 

the amplitude spectrum – frequency, orientation and amplitude – may still be an appropriate way to 

represent an image in a computer classification task. Our next step will be to apply a filter to our 

images, extracting information about the amount of energy in a number of frequency and orientation 

bands (in this aspect similar to chapter  3.4.2), but retaining information about the spatial location 

within  the  image.  A suitable  way  of  doing  this  is  the  “Steerable  Pyramid”,  as  introduced  by 

Simoncelli and Freeman [Simoncelli Freeman 1995].

5.1. The Steerable Pyramid

The Steerable Pyramid has many possible applications in image processing. In our context, the most 

important aspects are frequency and orientation separation while still retaining local information. This 

is achieved through the use of a set of localized filters designed to optimally represent different 

orientation  and  frequency  bands  at  each  pixel  of  the  image,  while  keeping  both  data  over-

representation and filter aliasing at a minimum. Notably, the resulting values are represented at each 

pixel of the image for every orientation and frequency band, resulting in a much more elaborate and 

very high-dimensional representation of the treated images. A side effect of the filters used is that 

there will be a high-pass and a low-pass version of the treated image that are not orientation-filtered. 

The  details  about  the  mathematical  principles  used  in  the  Simoncelli  Pyramid  can  be  found in 

[Simoncelli Freeman 1995]. The pyramid images as used in this work were computed in Matlab, 

using a  toolbox provided by E.  Simoncelli1.  After  our  standard preprocessing (see chapter  2.1), 

images were scaled to 576x576 to allow for 6 frequency bands, realized through the image sizes of 

576, 288, 144, 72, 26 and 18 pixels. The high-pass image is of size 576 as well, but does not contain 

enough spectral bandwidth for another set of filters; the low-pass image is 9 pixels and therefore too 

small for the filter matrix. Illustration 74 shows the output of the Simoncelli Pyramid computed on a 

simple geometrical sample image to illustrate the filter characteristics, while Illustration 75 shows the 

same computation on a sample animal image.

1 E. Simoncelli, “The Steerable Pyramid”, http://www.cns.nyu.edu/~eero/steerpyr/
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Illustration 74: The Simoncelli Pyramid, computed on an 8-directional star image
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Illustration 74:

A high-contrast, synthetic image of a star has been processed through the Simoncelli Pyramid. The  

original image is located at the center of the top row, the resulting highpass image is at the left of the 

top row, the lowpass image is at the right. The bandpass images are ordered in rows according to  

their spatial size in pixels, then in columns according to the preferred direction of the corresponding  

filter.  The original  star can be recognized in all  of  the bandpass images,  though only with some  

difficulty in the lowest bandpass (18 pixels). In the lowpass image, a single blob in the center of the  

image remains.

When looking at the individual columns, the behavior of the orientation-sensitive filters can be seen.  

In the preferred direction of any of the filters, e. g. the vertical direction in the first column, the  

components of each bandpass image are represented at their full strength, while at the orthogonal  

orientation no components remain. In the area between preferred and orthogonal orientation, the  

strength or energy of the components gradually declines.

A star image as used here has white lines on black background, causing highly complex spectral  

patterns around the edges. This causes frequency energy to be present at all over the spectral range of  

the image and in all orientations, and thus, the star is visible in all bandpass images.

Illustration 75:

In this case, the image of a zebra has been processed through the Simoncelli Pyramid. The general  

layout is the same as in Illustration 74. Again, elements of the zebra can be recognized in all of the 

bandpass images except for the lowest bandpass; the lowpass image is too coarse to be recognizable.  

Due to the mostly vertical orientation of the zebras stripes, they appear most clearly in the first 

column, where the vertical orientation is preferred. Also, the stripes almost disappear when looking at  

bandpass images smaller than 144 pixels, an indication that their spectral bandwidth is located 

closer to the higher end of the available spectrum.
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Illustration 75: The Simoncelli Pyramid computed on the image of a zebra
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5.2. Dimensionality Reduction

The filtered images computed as described above are not well-suited for direct classification. During 

the computation of the Simoncelli-Pyramid, the dimensionality of the image is increased by a factor 

of 6.33, resulting in an enormous 2100897 dimensions:

Level Size

(one edge in pixels)

Dimensions

per image (pixels)

Number of 

images

Dimensions

Highpass 576 331776 1 331776

Bandpass 1 576 331776 4 1327104

Bandpass 2 288 82944 4 331776

Bandpass 3 144 20736 4 82944

Bandpass 4 72 5184 4 20736

Bandpass 5 36 1296 4 5184

Bandpass 6 18 324 4 1296

Lowpass 9 81 1 81

Sum 2100897

Table 8: Dimensionality of the Simoncelli Pyramid

The need for a low-dimensional representation of our data has been explained in chapter  3. In its 

current  form,  our  pyramid  offers  8  frequency  bands  and  4  orientation  bands  at  up  to 

576x576 = 331776  discrete  positions.  The  fact  that  information  is  available  at  discrete 

locations across the image is the most important aspect of our current approach; still, frequency and 

orientation  resolution  are  already fairly  low,  so  further  reduction  does  not  seem practical  here. 

Consequently, we will need to reduce the spatial resolution of our data to a computationally feasible 

level. The smallest sub-images in our Simoncelli-Pyramid aside from the low-pass image are of size 

18x18 pixels; we therefore choose to resize all the higher frequency bands to the same size, once the 

Simoncelli-Pyramid has been computed. 18 by 18 discrete locations with 6 frequency bands and 4 

orientations each result  in 18x18x6x4 = 7776 dimensions  plus  the low-pass and high-pass 

images, totaling 8181 dimensions. This is a significant reduction, even though by itself it will not 

be sufficient to achieve optimum classification performance. It is, however, enough for a first look at 

our data.
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5.3. Spatial Distribution of Classification Performance

As a means to analyze how the information relevant for classification is spatially distributed, we 

classified on our entire APG dataset, employing the linear classifier to use every single dimension 

only by itself. An approach like this will in all likelihood lead to disappointing overall classification 

performance; however, achieving optimum performance is not yet our goal. The intended result of 

this procedure is to discover the relative differences in classification performance at  the discrete 

spatial  positions  of  our  data.  Through  this,  we  hope  to  discover  a  localized  concentration  of 

information,  allowing  us  to  further  reduce  the  dimensionality  of  our  dataset  without  destroying 

information relevant to the classification process. The result (see  Illustration 76) shows a general 

increase in classification performance in the higher frequency bands, in accordance with our findings 

in the previous chapters.  The classification performance reaches about  63%, located both in the 

highest frequency band and the high-pass image. We also see that classification performance in the 

low-pass image as well as the lowest frequency band is very close to chance performance. When 

taking a closer look at the localized distribution of the classification performance, we can see that 

classification performance is better at the top and side of the highest-frequency subimages; in the 

center and towards the bottom the classification performance is lower. The results can be seen in 

Illustration 76.
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The bandpass images are ordered in rows, according to their spatial size in pixels. The 

orientations are ordered in columns, according to the preferred orientation of the corresponding

filter. Brighter color represents better classification performance.

Jan Drewes Justus-Liebig-Universität Gießen 124/154

Illustration 76: Evaluation of the spatial distribution of classification-relevant information
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5.4. Information Where It Should Not Be

Illustration  77 shows  the  average  distribution  of  classification  performance  among  the  highest-

frequency  bandpass  images,  together  with  the  high-pass  image.  Clearly,  the  area  of  the  lowest 

classification performance is localized in the center. The areas of highest classification performance 

are located at the top and at the sides of the image. When we compare this classification image with 

the mean animal image introduced in chapter 2.3, we find a striking similarity: The brownish-orange 

blob, originating from the fact that most animals are centered in the scene, is of almost identical size 

and position as the center-depression in the classification performance image.

Illustration 77: Average classification performance in 

the highest frequency band (incl. the high-pass image)    

Illustration 78: Average animal image (contrast  

maximized for easier comparison)

This points to the fact that in the algorithmic animal detection task, the most useful information is not 

actually  the  animal  itself  –  it  is  the  area  around  it!  At  first,  this  conclusion  seems completely 

unreasonable: if the animal is not the location of the most important information, then it should be 

possible to classify images for their content (animal or no animal) even when the animal is hidden 

from the “view” of the algorithm! However, there may be a very reasonable explanation for this 

effect:  all  of  the  pictures  in  our  image  database  are  photographies  taken  by  professional 

photographers, and have been taken with professional equipment. This professionalism in the image 

capturing process might have influenced the final appearance of the images, especially those with 

animals on them.
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5.5. Preprocessing by Professional Photographers?

When a professional photographer takes pictures, this will usually result in several distinct types of 

images. For this context, we will differentiate only between scenic views with no particular object 

(landscapes, city scenes etc.) and views with animals as the center object of the scene. In a typical 

landscape view, the image will be taken using a wide-angle lens, with the focus set so that most of the 

view is  well  in  focus  (see  Illustration  79,  and  the  manually  estimated  distribution  of  focus  in 

Illustration 80).

Illustration 79: A city scene, as found in the APG 

database   

Illustration 80: Approximate distribution of focus: areas 

in focus are shown in white.

When taking pictures of animals in their natural surrounding, there are a number of factors to be 

considered. First, most animals have a certain radius of proximity, which, when intruded, will cause 

them to flee. The photographer will therefore need to stay far enough away from the animal, and will 

therefore have to use a rather long lens.  Second, many animals will  usually move around a lot, 

making it difficult to take a sharp picture without motion blur. This requires the photographer to set 

his camera for a short exposure duration, which, especially with a long lens, will usually require a 

rather large aperture. A large aperture is also considered desirable because it will help to produce a 

rather slim focal plane, segmenting the (focal) target object from the background. This segmentation 

is  commonly  perceived  as  aesthetically  pleasing;  due  to  the  lack  of  high  spatial  frequency the 

background will be perceived as “quiet” and therefore not distracting.
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5.6. Aperture Size and Depth of Field

A point within the scene depicted by a photography is considered “sharp”, in-focus, when its circle of 

confusion does not exceed a certain diameter. The circle of confusion is the disk (or blob) resulting 

from the projection of a (theoretical) point of light through the lens (or optical array) onto the film / 

sensor plane. The acceptable diameter of the circle of confusion depends on a number of factors such 

as the post-capture magnification (desired print size) of the captured image data and, important but 

variable, the optical acuity of the observer. When using 36mm film, commonly used in the most 

popular consumer cameras, the acceptable diameter of the circle of confusion is usually specified to 

be no more than 0.03mm, based on a desired printing size of 30cm. The connection between the 

acceptable circle of confusion and depth of field can be illustrated by following the rays of light from 

the focal plane to the sensor plane: rays originating from a single  point on the focal  plane will 

converge in a  single point at  the sensor plane (assuming a perfect optical  array),  their  circle  of 

confusion will be zero. Extending from this distance of perfect focus, objects that are not too far 

away from the focal plane will appear focused as well: While they are not as sharp as objects on the 

focal  plane,  their  circle  of  confusion is  still  below the assumed visibility threshold,  and so one 

projected point will still be perceived as one point. However, objects far away from the focal plane 

appear blurry, as their circle of confusion is of much larger diameter. The maximum distance from the 

focal  plane  within  which  an  object  still  appears  focused  depends  not  only  on  the  size  of  the 

acceptable circle of confusion, but also on the maximum angle at which a ray of light will still be 

projected by the optical array onto the sensor plane. This maximum angle depends on the distance 

from the optical array and on the diameter of the optical array (the aperture). At the time of capture of 

any given scene, the distance of the target object from the camera can be considered to be fixed, yet 

the aperture can be modified by the photographer, varying the depth of field. As mentioned before, 

when taking pictures of animals in nature, usually large apertures will be used, leading to a slim depth 

of field. The connection between aperture size and depth of field can be seen in Illustrations 81 and 

82.
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Illustration 81: Shallow focal depth with large aperture setting

With a wide open aperture, the area of good focus is rather slim (shown by the two red markers near the focal

point and the dotted black lines near the label “Focal depth”). Symbolic light rays are shown in red.

Film
(Sensor)

Optical
elements Aperture

Focal
plane

Focal depth

Illustration 82: Extended focal depth with small aperture setting

With a small aperture, the optical diameter of the lens is reduced, and the depth of focus is extended
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Illustration 83: A zebra, as found in the APG database.  

The animal is in focus, the surroundings are not    

Illustration 84: Approximate distribution of focus: areas 

in focus are shown in white

The effect of a slim focal plane on a typical animal image can be seen in Illustration 83. The zebra is 

perfectly in focus, resulting in a clear and sharp representation, with a significant amount of high-

frequency energy (see also Illustration 75). The same is valid for the grass around the place where the 

zebra is standing – the distance from the grass to the camera is about the same as the distance from 

the zebra to the camera, so the grass is within the area of good focus. The areas of the picture that are 

to the sides and above the animal, however, are located beyond the focal area, and appear blurry, out 

of focus. This essentially represents a low-pass filtered image area, with next to no high-frequency 

components.  The  manually  estimated  distribution  of  focus  amongst  the  image  can  be  seen  in 

Illustration 84; clearly, the shape of the animal is recognizable.
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5.7. Localized Computer Classification

We have postulated that the professionalism of photographers effected a local concentration of high-

frequency energy around the center of typical animal images. While this may be very convincing on 

selected images, it is not at all clear whether this effect was intense enough to unintentionally aid 

computer classification. If it was, it remains uncertain if it affects a number of images within our 

APG database sufficient to affect average classification accuracy. In order to test this, we need to 

further  reduce  the  dimensionality  of  our  data  space  to  allow for  a  higher  general  classification 

performance.  We will  therefore  reduce  the  spatial  resolution of  our  Simoncelli-Pyramid;  in  this 

reduction we will account for the shape of the center region found in the above examination. We will 

design a center region of circular shape, with an equal distribution of area (and thus, dimensionality) 

between the  center  region and the  surrounding outer  region.  The  subimages  of  our  Simoncelli-

Pyramid are of size 18x18, resulting in 324 pixels. The center circle shall therefore cover 162 pixels. 

Our  arrangement  of  pixels  within  both  the  center  region  and  the  outer  region  can  be  seen  in 

Illustration 85. 

Illustration 85: Bin mask design: center region vs. outer region

The subimages have been divided into quadrants, measuring 81 pixels each. As these 81 pixels cannot 

be divided evenly into two sectors, 41 pixels have been assigned to the center region from each of the 

top  quadrants,  and  40  from  each  of  the  bottom  quadrants.  The  result  is  a  center  region  that 

approximates a circular shape in a way optimally suited for our purpose. Through this procedure, the 

dimensionality of each subimage is reduced from 324 to 8. While we went to great lengths to produce 

data that represents information at discrete locations, we have now reduced these discrete locations to 
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the absolute minimum required by our task. Further, based on our previous results, we do no longer 

include the lowest frequency bandpass images or the lowpass image. In its new form, the Simoncelli-

Pyramid now measures 168 dimensions, or 84 dimensions for either the center region or the outer 

region. With this kind of dimensionality reduction, it should be possible to perform a highly efficient 

classification. Also, we are able to split the image evenly into center region and outer region. The 

number  of  dimensions involved,  especially  when classifying using the entire  image area,  is  just 

within the feasibility limits of our incremental elimination procedure (see chapter 3.4.2.4), which we 

will  use  to  determine  the  best  possible  classification  performance.  If  our  hypothesis  holds,  the 

classification  performance  based  on the  outer  regions  alone  will  not  be  significantly  below the 

performance based on the center regions alone, while both may be slightly below the performance 

based on the entire images.
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5.8. Results of Iterative Bin Elimination

On the newly configured dataset developed in the previous chapter, we employed our iterative bin 

elimination  procedure,  with  200  cross-validations  (see  chapter  3.4.2.4).  The  elimination  was 

computed separately first  for  the entire images,  then only the center region,  then only the outer 

region. The maximum classification performance reaches 77,9%, achieved on the entire images. The 

performance on the circular inner region of the images reaches 74%, while the maximum on the outer 

region reaches 73,7%. All three of the elimination procedures exhibit the plateau typical for this kind 

of evaluation. 

Illustration 86: Result of iterative bin elimination

The difference in classification performance between the inner and outer region is negligible; 0.3% 

represent a mere 33 images, out of 10864. It is possible to detect the presence of an animal in an 

image without actually seeing the animal!  These results strongly support  the hypothesis  that the 

photographers camera setting has an influence on the frequency distribution within the images and 

that this influence does affect classifiability. As this influence is not truly related to the content of the 
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image, but only to the photographers intended content, we must call this influence an artifact (or bias) 

of the image capturing process.
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5.9. Experiment 4: Test for localized differences in classification 

performance

Our computer algorithm found strong evidence for an artifact in the image capturing process. It is 

therefore  theoretically  possible  that  humans  tasked  with  the  classification  of  image  content 

incorporate the same artifact into their decision process. Humans are known to be able to detect a 

multitude  of  object  classes,  many of  which  would  be  captured  with  the  same  camera  settings. 

However, rapid visual classification is possible when two classes of discrete objects (e. g. vehicles 

and  animals)  are  to  be compared  [VanRullen  Thorpe  2001],  a  case  in  which the  photographers 

settings will be the same for both classes. We therefore strongly doubt that such an artifact could 

influence human visual  classification in a  significant  way.  In  order  to find out  whether  humans 

incorporate such artifact-based information in their  classification decision,  we need to design an 

experiment to test human classification performance on the same image regions as our localized 

computer classifier.
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5.9.1. Method

To test human classification performance on image regions analog to those specified in chapter 5.7, 

we selected a random subset of 800 images from our APG database. Following the same general 

principle as in the computer classification, we created a circular mask in such way that the resulting 

inner region consists of equally as many pixels as the outer region. The subimages of our Simoncelli 

Pyramid are of size 18x18 pixels, and so the circular mask applied was rather coarse. With our human 

subjects, we used the full image size (256 pixels). Our circular mask hat a diameter of 204 pixels, 

totaling 32904 pixels or 50,2% of the image surface. The outer region consequently totaled 32632 

pixels or 49,8% of the image surface. A perfect distribution of pixels would have required us to 

slightly alter the shape of the mask, as within the given pixel grid no perfect disk can account for 

precisely 50,0% of the image surface. We refrained from altering the shape of the mask; instead, to 

reduce the possible distraction that the sharp border between cut-out image and background might 

have caused, the sharp edge was transformed into a Gaussian transition, with a total width of 32 

pixels between minimum and maximum. The resulting mask (and its inverted form) was then used to 

cut images into “inner region only” and “outer region only”, blending the eliminated part into neutral 

gray. The mask and its opacity profile can be seen in Illustrations  87 and 88, the resulting cut-out 

images can be seen in  Illustration 89. As a result of this procedure, most (but not quite all) of the 

animals were invisible on the “outer region” images. On some images, a few pixels of the animal 

extended into the outer region and were not eliminated. While these might account for a performance 

slightly better than random, we would still expect humans to achieve a performance level far below 

that of the entire images, or even the “inner region” images. To test this, we employed a version of 

the 2AFC paradigm (see Illustration 90), showing all 800 images in 400 pairs. Every image pair was 

shown in each of the 3 variations (see Illustration 89), with both images being of the same variation. 

The resulting 1200 trials for one complete run were split into 3 sets of 400 to ensure that each subject 

would  not  spend much longer  than  30  minutes  in  this  experiment.  The  experimental  setup and 

equipment used was the same as described in chapter 4.1, and we used the same timing constraints 

that we also employed in Experiment 1 and 3b (200ms gap time, 30ms presentation time and 1000ms 

maximum response time).
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Illustration 87: Mask used to blend between inner and 

outer region

Illustration 88: Opacity/Blending profile of the mask used to 

blend between inner and outer region (horizontal cut)

Top row: entire images. Second row: inner region only. Third row: outer region only.
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Illustration 90: Experiment 4: 2AFC-paradigm for complete images, circular inner regions and outer regions
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5.9.2. Results

12 subjects participated in this experiment, 4 on each of the 3 sets of images. All subjects were 

students of the Justus-Liebig-University Giessen and were payed for their  participation.  Subjects 

were between 19 and 31 years of age and had normal or corrected to normal vision. All subjects were 

able to perform eye movements adequate to achieve calibration accuracy rated as “good” (the best 

rating) by the EyeLink II system. All subjects were naive, and even though some participated in more 

than one experiment, they were not informed about the purpose of the individual experiments until 

after they had completed all the trials they were scheduled for.

3941 trials were scheduled for each subject, resulting in 4728 recorded trials from the 12 subjects. 

Prior to evaluation, the individual results were filtered with the following criteria:

Goodness of fixation:

Fixation between trial start and stimulus onset was not allowed to diverge from the screen center by 

more than 70 pixels, no saccades were allowed prior to stimulus onset; this made certain that the 

subjects did not favor one of the locations where the images would be shown and that no saccades 

were  made  during  the  critical  phases  of  the  experiment,  as  this  might  have  hampered  visual 

perception. During this filtering step, 150 Trials were eliminated, leaving 4578 for further processing.

Goodness of saccade direction / destination

Decision saccades were required to end in one of the two smallest possible squares covering the area 

that was occupied by the target and distractor images. This ensured that the saccades actually were 

directed into the general area of either of the shown images and eliminated random saccades, e. g. 

from lack of concentration. Only 9 trials needed to be eliminated to fulfill the requirements, leaving 

4569 trials for further processing.

Goodness of response time

Subjects needed to make their decision no later than 700ms after stimulus onset in order to limit 

conscious thought in the decision process. Responses also had to be slower than 80ms to eliminate 

random and too early eye movements (reaction times faster than 80ms can safely be assumed not to 

be based on stimulus content). 278 trials were removed because they were too fast, none were too 

slow, leaving a total of 4291 valid trials for evaluation.

1 Due to technical problems, 6 of the original 400 trials had to be discarded.
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Image area shown Hit ratio Response time

Entire images 84,4% 294,6ms

Center region 78,4% 294,9ms

Outer region 53,7% 324,8ms

Table 9: General results of the test for localized differences in classification performance

Illustration 91: Experiment 4: Classification accuracy   Illustration 92: Experiment 4: Response times

Classification performance on the subset of entire images averaged 84,4%, with a mean response 

time of 294,6ms. This is in the general range of results to be expected in this kind of experiment (see 

also chapter  4).  When showing only the center  region of the images,  classification performance 

averaged 78,4%,  a  rather  modest  decline.  The  mean response  time remained almost  unchanged 

(294,9ms).  Classification accuracy drops to chance performance (53,7%) when showing only the 

outer regions of the images, with the mean response time increasing to 324,8ms. A statistical analysis 

on  hit  ratio  data  shows  a  highly  significant  effect  overall  (repeated  measures  ANOVA, 

F(2,22)=183,713, p<0.001). Individual t-tests between the 3 conditions show a significant difference 

between each of the 3 conditions:

Condition 1 Condition 2 p value

Entire images Center regions 0.03

Entire images Outer regions <0.01

Center region Outer regions <0.01

Table 10: T-test results on hit ratio data (Bonferroni corrected)
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With the mean response times, the results are a bit different. The ANOVA shows a highly significant 

effect (repeated measures ANOVA, F(2,22)=17.806, p=0.001). Due to the very similar means of the 

response times with entire image regions and with center regions, the degrees of freedom have been 

corrected as  proposed by Huynh and Feldt;  we report  the original  degrees  of  freedom with the 

corrected p-value. Individual t-tests show that while the difference between the outer region and each 

of the two other image areas is highly significant, the difference between entire images and center 

regions is not.

Condition 1 Condition 2 p-value

Entire images Center regions 2.487

Entire images Outer regions <0.01

Center regions Outer regions <0.01

Table 11: T-test results on response time data (Bonferroni corrected)

Illustration 93: Comparision of human and machine on image regions

We conclude that while our computer classifier was affected by an artifact in the image capturing 

process, our human subjects apparently did not incorporate this information in their decision process 

(see Illustration 93). This may be because of the temporal constraints of the experimental paradigm.
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6. SUMMARY AND CONCLUSION

In this thesis, several aspects of human visual classification have been analyzed. We attempted to 

model the critical properties of the mechanism humans employ in tasks of rapid visual classification. 

More specifically, we tried to identify the kind of information that might be used by the human visual 

system to  achieve  its  superb  performance.  The  global  amplitude  spectrum has  repeatedly  been 

suggested as a suitable way of information representation, and so we based our first series of tests and 

experiments on it. We found that indeed the information contained in the global amplitude spectrum, 

even at a rather coarse scale, is quite adequate for successful computer classification. We were able to 

classify almost 75% of our images correctly, despite of the very high degree of variability within our 

database. With an image collection chosen by more rigid criteria (as the one provided by A. Torralba), 

higher  classification  performance  can  be  achieved.  We  believe,  however,  that  a  classification 

algorithm of true merit will have to stand its ground even (or especially) against  difficult image 

databases. The computational cost of our Fourier Fingerprint classification algorithm is rather low 

and would allow for an efficient implementation, e. g. to search image databases.

In our black box approach,  we identified two very distinct properties of the Fourier  Fingerprint 

classifier that show a very high degree of similarity with the properties of the human visual system:

First, the sensitivity to image rotation, represented by the classification accuracy on rotated images, 

follows the same profile that we measured in our human subjects. This supports the idea that the 

global  amplitude  spectrum  is  used  by  the  human  visual  system,  as  this  would  explain  the 

rotation/accuracy pattern. This would, however, be a typical property of any mechanism utilizing the 

global amplitude spectrum – it does not tell us in which way the global amplitude spectrum would be 

used.

Second, the order of the images in terms of classification difficulty as computed by our algorithm is 

very  similar  to  the  performance  that  human  subjects  exhibit  on  the  same  images.  If  the  first 

experiment supports the idea that the global amplitude spectrum might be used by the human visual 

system,  then  the  second  experiment  supports  the  idea  that  the  individual  aspects  of  the  global 

amplitude spectrum are weighted similarly by both our computer algorithm and the human visual 

system.

Together, these two findings make a very strong case for the global amplitude spectrum hypothesis. 

The fact remains that individual humans can identify images at better than 90% correct, while our 

computer  classifiers  max  out  at  almost  15%  less.  When  ignoring  the  findings  from  our  third 

experiment, however, this difference might be attributed to a deficiency in our preprocessing, some 

hidden secondary mechanism in the human visual system, or even a limited top-down influence. The 
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performance advantage of our human subjects alone does not diminish the credibility of our findings. 

Yet still, all these aspects are led ad absurdum by the findings from our third experiment: when the 

amplitude spectrum is “wiped out”, our computer algorithm is completely blinded, and would be 

limited to chance performance. Humans, however, can still classify images almost as good as before. 

From the view of our black box approach, this means that we have found a condition under which the 

input-output mapping of any classifier based solely on the global amplitude spectrum will differ from 

the human visual system. The match between the input-output relations of the Fourier Fingerprint 

classifier and the human visual system is therefore only partial, and not sufficient to claim equivalent 

functionality. Through this, the question whether the global amplitude spectrum plays a critical role in 

human visual classification has been answered: it does not.

While our Fourier Fingerprint classifier may not be a perfect solution, it does have some merit. The 

results presented in experiments 1 and 2 show that representing an image by means of frequency and 

orientation  can  be  useful  indeed.  We  went  along  with  this  knowledge  and  evaluated  a  new 

representation of our image data, also based on frequency and orientation. In our previous approach, 

the use of the global amplitude spectrum caused us to abandon any and all locality of information. 

Our Simoncelli-Pyramid approach retained locality in order to find out if this newly added piece of 

information  changed the  behavior  of  our  classification  algorithm.  Surprisingly,  we  discovered  a 

concentration  of  classification-relevant  information  in  image  regions  where  we  would  not  have 

expected it:  around the animal, instead of  inside the animal. While we were able to use the new, 

localized representation of our images to achieve even slightly better classification performance than 

before (our absolute maximum being almost 78%), we also discovered a strong artifact of the image 

capturing process: low depth of field hints at the presence of an animal in our scenes. This is truly a 

stunning discovery: many researchers have used the same original image library in their research, yet 

until today, no report of such an artifact has come to the authors attention.

Concluding, we have successfully eliminated the hypothesis that the global amplitude spectrum might 

play a critical role in human visual classification. Also, we have identified a strong potential artifact 

in the Corel Stock Photo Library, one of the most frequently used image databases in vision research. 

To discover the inner workings of the human visual system, especially the mechanisms used in rapid 

visual classification, further research is required; this research should emphasize localized ways of 

information representation.
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7. ADDENDUM: CLASSIFICATION ALGORITHMS

In this context, “classification” is the process of assigning a given data sample of a priori unknown 

group membership to one of usually at least two groups by means of evaluation of the individual 

attribute values associated with the sample. All classifications in this context are binary (there exist 

exactly two groups, exactly one of which a sample belongs to) due to the nature of the analyzed data. 

Classification is generally done in two steps: 

First, a number of samples with known group memberships (“labeled data”) is used to learn two 

classification equations, one for each group. These equations actually form the “classifier”. Second, a 

number of samples is used to test the learned classifier. The learned equations are evaluated on each 

of the testing samples, and the sample is assigned to the group corresponding to the equation that 

resulted  in  the  highest  score.  Classification  performance  is  measured  in  terms  of  classification 

accuracy: how many of the samples are being assigned correctly, such that the assigned group is the 

same as the group the sample actually belongs to. It is important to test a classifier on samples that 

were not included in the learning set, as it is possible that a (falsely!) learned classifier predicts the 

learning (or training) dataset very well, even perfectly, but performs very poorly on new data. This 

phenomenon is called “overlearning” or “overfitting”. The possibility of erroneously mistaking an 

overlearned classifier for a well-working one can be eliminated by keeping the samples used for 

training strictly separate from the ones used for testing. This way the learned classifier can not be 

overfitted to the testing data. In most situations, one will want to keep the training set as large as 

possible, necessarily reducing the size of the testing dataset (usually, as in this context, the overall 

number of samples available is quite finite and needs to be spent wisely). This can make for rather 

small testing samples, which again would produce rather unreliable measurements of classification 

accuracy. Commonly, a procedure called “cross-validation” is used to circumvent this limitation: for a

k -fold cross-validation, the entire available data is arranged in k equally sized subsets. Then,

k−1 of these are  used for  training,  and the remaining 1 is  used for testing.  The particular 

subset used for testing is cycled through exactly k times, so that every subset has been tested once. 

Classification accuracy is then reported as the mean of all of the classification accuracies on the k

testing subsets. Result reliability increases with larger k , but so does the computational complexity 

due  to  the  number  of  training  /  testing  cycles.  The  demand  for  more  reliable  results  and 

computational feasibility therefore need to be balanced out, limiting the amount of cross-validations 

used to values that are usually far below the theoretically possible maximum (which would be N , 

the number of samples available).
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7.1. Linear Classifier

The majority of classification evaluations performed in this context make use of the linear classifier, 

similar to a discriminant analysis. For a given sample S , the score of the classification function

C j for one of  the two possible groups j={1∣2} is  found by multiplying the values in each 

dimension of the data space by their associated, learned coefficients c jn :

C j=c j0∑
n=1

N

c jnSn ,

with n=1 :N iterating the dimensions of the data space. The coefficients c jn are learned from 

the means and the pooled covariance matrix of the data dimensions.

This classifier can be thought of as a N-dimensional hyperplane separating the dataset into 2 parts. 

The advantage is a comparably low computational cost and good performance on linearly separable 

datasets; the disadvantage, however, is that there can be only one flat hyperplane, which can cause 

this classifier to perform poorly on datasets with several “islands” of data belonging to the same 

group. A detailed introduction to (not only) linear classification can be found in [Tabachnick Fidell]. 

For this context, the implementation given in Matlab's “classify” function was used, with auxiliary 

extensions designed to provide for cross-validation support.
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7.2. Support Vector Machine Classifier

The second classification mechanism used in this context is the Support Vector Machine (SVM). 

Based on work by Vladimir Vapnik and colleagues, the general is to find a hyperplane that separates 

the data points in our dataset in an optimal fashion. The original algorithm as proposed by Vapnik 

was a linear classifier, which was modified later using the so-called “kernel trick”  [Boser Guyon

Vapnik 1992],  introducing a  transformation of  the  feature  space.  This  transformation  allows the 

classifier to yield a non-linear result in the original feature space even though it is a hyperplane in the 

transformed feature space. This allows also for several unconnected planes in the original feature 

space, which can be a huge advantage over the linear classifier as introduced in the previous chapter. 

In this work, the only kernel used is the Gaussian radial basis function,

RBF: k x , y =e
−∥x−y∥2

2
2 .

For the practical requirements of this work, optimum classification performance will be achieved 

through the optimization of the two relevant parameters of the RBF kernel, the penalty parameter

C and a measure of the size of the Gaussian,  . For practical reasons, the search for an optimal 

pair of parameters can be reduced to assigning a fixed value to one parameter and then performing a 

search on the other parameter.

In this context, the computations were done in Matlab, using the OSU SVM1 toolbox. Our procedure 

to find an optimal set of parameters was implemented as a two-stage interval search testing C

parameters ranging from e−20 to e20 . The first stage consisted of  200 logarithmically spaced 

steps s distributed over  the  entire  search  interval.  This  stage  will  result  in  a  maximum found 

somewhere  in  the  searched  interval  at  position Cmax .  As  the  second  stage,  the  interval

[Cmax−s Cmaxs] is searched in another 200 steps, resulting in a reasonably high search 

accuracy. The whole process is then wrapped in a cross-validation, with the result reported being the 

maximum of the means of the cross-validations of the second stage. For demonstration purposes the 

following data have been computed with 10 cross-validations.

1 OSU SVM for MATLAB, by Junshui MA and Yi Zhao. http://svm.sourceforge.net
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Illustration 94: Exemplary result of a C-value search, first stage. A significant maximum close to 

zero can be seen

Illustration 95: Magnification of the near-zero end of the previous plot
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Illustration 96: Further magnification of the near-zero area; differences can be seen between 

different dimensionalities (see chapter 3.4.1.5 for details)

Illustration 97: Magnification of the area around the maximum; dashed lines are from the first  

stage, solid lines from the second stage of the C-search
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