An evolving view of duplex vision: separate but interacting cortical pathways for perception and action
Melvyn A Goodale*,1 and David A Westwood2

In 1992, Goodale and Milner proposed a division of labour in the visual pathways of the primate cerebral cortex between a dorsal stream specialised for the visual control of action and a ventral stream dedicated to the perception of the visual world. In the years since this original proposal, support for the perception–action hypothesis has come from neuroimaging experiments, human neuropsychology, monkey neurophysiology, and human psychophysical experiments. Indeed, some of the strongest support for this hypothesis has come from behavioural experiments showing that visually guided actions are largely refractory to perceptual illusions. Although controversial, the findings from this literature both support the original hypothesis and suggest important modifications. The ongoing challenge for neurobiologists is to map these behavioural findings onto their corresponding neural substrates.

Addresses
1Department of Psychology, University of Western Ontario, London, Ontario, N6A 5C2, Canada
2School of Health and Human Performance, Dalhousie University, 6230 South Street, Halifax, Nova Scotia, B3H 3J5, Canada
*e-mail: mgoodale@uwo.ca

Current Opinion in Neurobiology 2004, 14:203–211
This review comes from a themed issue on Cognitive neuroscience
Edited by John Gabrieli and Elisabeth A Murray
0959-4388/$ – see front matter © 2004 Published by Elsevier Ltd.
DOI 10.1016/j.conb.2004.03.002

Abbreviations
AIP anterior intraparietal sulcus
area LO lateral occipital area
fMRI functional magnetic resonance imaging
LOC lateral occipital complex
MRI magnetic resonance imaging
RF rod-and-frame
ST simultaneous tilt
TMS transcranial magnetic stimulation

Introduction
Visual systems first evolved not to enable animals to perceive the world but to provide distal sensory control of their movements. Vision as ‘sight’ is a relative newcomer on the evolutionary landscape, but its emergence has enabled animals to carry out complex cognitive operations on mental representations of the world — operations that greatly increase the potential for flexible, adaptive behaviour. According to a proposal put forward by Goodale and Milner in 1992 [1], the operating character-
istics of the more recently evolved ‘vision-for-perception’ system are quite different from those of the more ancient ‘vision-for-action’ system. Indeed, according to Goodale and Milner [1,2,3*], it is this duplex nature of vision that drove the emergence of distinct visual pathways in the primate cerebral cortex (Figure 1). They argued that the dorsal ‘action’ stream, which projects from early visual areas to the posterior parietal cortex, provides flexible control of more ancient subcortical visuomotor modules for the control of motor acts. The ventral ‘perceptual’ stream, which projects from early visual areas to the temporal lobe, provides the rich and detailed representation of the world required for cognitive operations, such as recognition and identification. The division of labour between the two streams posited by Goodale and Milner has not only helped to organise a broad range of data from monkey neurophysiology to human neuropsychology but it has also stimulated a great deal of research on predicted differences between vision-for-action and vision-for-perception. In this review, we highlight some of this research, particularly studies carried out over the past two years, and show that the perception–action distinction has stood the test of time remarkably well.

Neuropsychology meets functional magnetic resonance imaging
Patients with lesions in the dorsal stream, in the superior regions of the posterior parietal cortex, can have problems using vision to direct a grasp or aiming movement towards objects (optic ataxia) even though many of these patients can describe the orientation or relative position of those objects quite accurately [4]. The opposite pattern of deficits and spared visual abilities has been reported in patients with visual form agnosia, in which the brain damage is assumed to be in the ventral stream [5,6*]. The most compelling example of such a case is patient DF, a young woman who suffered irreversible brain damage in 1988 as a result of anoxia from carbon monoxide poisoning [5]. Even though DF is unable to indicate the size, shape, and orientation of an object, either verbally or manually, she shows normal anticipatory opening of her hand and rotation of her wrist when reaching out to grasp that object [5,7]. A recent high-resolution structural magnetic resonance imaging (MRI) study [8**] revealed that the lateral occipital complex (LOC), a structure in the ventral stream that has been implicated in object recognition [9,10*], is severely damaged in DF (Figure 2). The damage is largely localised to the lateral occipital area (area LO) [11], in the more lateral aspect of LOC. In addition, functional MRI revealed that none of the LOC, even the regions in the fusiform gyrus outside
the lesion in area LO, was activated when DF was presented with line drawings of common objects, even though healthy participants showed robust activation in the same area (Figure 3). The lack of activation with line drawings, stimuli that she identifies more accurately than line drawings, DF did show some ventral-stream activation, particularly in the fusiform gyrus although the activation was more widely distributed than that seen in controls, and did not include area LO (Figure 3).

In DF’s dorsal stream, the structural MRI revealed shrinkage of cortical tissue within the intraparietal sulcus (IPS), a region that has been implicated in visuomotor control [12,13,14*,15,16]. Nevertheless, as can be seen in Figure 3, when DF grasped objects that varied in size and orientation, she displayed relatively normal activation in the anterior intraparietal sulcus (AIP), an area that plays a crucial role in the visual control of grasping in both humans [17–20] and monkeys [21–23]. Taken together, these findings provide additional support for the idea that perception and action are mediated by separate visual pathways in the cerebral cortex, and confirm the respective roles of the ventral and dorsal visual streams in these functions.

Different visual processing for perception and action

According to the Goodale and Milner model, the dorsal and ventral streams both process information about the structure of objects and about their spatial locations, but they transform this information into quite different outputs [1,2,3*,12,24*,25*]. Because the visuomotor systems of the dorsal stream are responsible for the control of highly skilled actions, it is imperative that these systems compute the absolute metrics of target objects in a frame of reference centred on specific effectors (i.e. egocentric coding) [14*,26*]. Visual perception has no such requirement for absolute metrics, or egocentric coding. Indeed, object recognition depends on the ability to see beyond the absolute metrics of target objects in a frame of reference; for example, one must be able to recognise an object independent of its size and its momentary orientation and position [3*,12]. Many recent psychophysical findings support the general notion that perception and action are mediated by independent visual systems that carry out quite different computations on the information present on the retina.
Early evidence that visuomotor control depends on processing distinct from that underlying conscious perception came from a study by Goodale et al. [27], in which participants reached to visual targets that changed position during a concurrent saccadic eye movement (i.e. a double-step reaching task). Although participants demonstrated no conscious awareness that the target had changed location, the endpoints of the reaching movements reflected the new rather than original target position [28]. Interestingly, awareness of the target perturbation does not influence the kinematics of manual adjustments [29]. This is consistent with the proposal of Pisella et al. [30] that fast corrections to reaching movements are under the guidance of an ‘automatic pilot’ in the posterior parietal cortex [31–33] that operates on a different time scale than the visual mechanisms underlying conscious perception and volitional motor control. Fast, automatic manual adjustments can be elicited by changes in the target’s location but not changes in its colour, which suggests that the visuomotor networks of the dorsal stream do not process colour, but rather receive this input indirectly through the perceptual mechanisms in the ventral stream [34*]. Using a variety of tasks and responses, other investigators [35,36,37**,38–40] have shown important differences between the perception of visual stimuli and the control of actions towards those stimuli, underscoring the view that perception and action engage quite different visual mechanisms. (At the same time, there is evidence that the machinery our brain uses to understand actions in others is also used to generate those actions in ourselves [41*]. But even in this case, object-based perceptual machinery has to be initially engaged to parse the scene in which the action is embedded.)

Visual illusions: demonstrating a dissociation between perception and action

A particularly intriguing but controversial line of evidence in support of the perception–action hypothesis comes from studies that investigate the influence of perceptual illusions on the control of object-directed actions such as saccades, reaching movements, and manual prehension [42]. Over twenty years ago, it was shown that saccadic endpoints are insensitive to a dot-in-frame illusion in which the perception of a target’s location is shifted opposite to the displacement of a large visual frame [43,44]. This suggests that location is processed differently by the visuomotor and perceptual systems. In a widely cited study, Aglioti et al. [45] demonstrated that the maximal opening of a grasping hand is insensitive to the robust perceptual illusion that a target disk surrounded by smaller circles is larger than the same disk surrounded by larger circles — despite the fact that grip opening is exquisitely sensitive to real changes in the size of the target disk. Peak grasping aperture is refractory
to a size-contrast illusion even when the hand and target are occluded during the action [46], which indicates that on-line visual feedback during grasping is not required to ‘correct’ an initial perceptual bias induced by the illusion. These seminal findings implicate different object-processing mechanisms for the perceptual and visuomotor systems, consistent with the perception–action model [1,2,3,12]. It is important to note, of course, that the model does not depend on these illusion findings, because it was originally derived from extensive neuropsychological and neurophysiological evidence.

Indeed, several recent findings have challenged the notion that perceptual illusions do not impact the control of object-directed actions. These challenges fall into several categories including, non-replication [47], the contention that early studies did not adequately match action and perception tasks for various input, attention and output demands [48–50], or the idea that action tasks involve multiple stages of processing from purely perceptual to more ‘automatic’ visuomotor control [51,52]. Most of these challenges can readily be accommodated within the basic framework of the perception–action hypothesis, yet each provides important new insight into the nature of the processing mechanisms underlying perception versus action.

Franz and co-workers [47] have failed to replicate the early results of Aglioti et al. [45] and have argued that visually guided actions and perceptual judgements access the same visual processing mechanisms. Such an account, however, cannot explain why the majority of illusion studies find evidence for a dissociation between perception and action [42]. In addition, it cannot explain the dissociations observed in patients with optic ataxia or visual form agnosia — nor for that matter, the extensive neurophysiological and behavioural work on the ventral and dorsal streams in the macaque monkey that support a distinction between vision-for-perception and vision-for-action [1,2,3,12].

Smeets and co-workers [49,53] have argued that the control of grasping is formed on the basis of the computed locations of points on the object’s surface, whereas judgements of object size are formed on the basis of a computation of extent. According to this view, dissociations between judgement and action occur because pictorial size illusions affect the perception of extent but not location (e.g. [54]). Although reasonable, this argument is difficult to separate from Goodeal and Milner’s original proposal [1,2,3,12] that the visuomotor system computes absolute (i.e. Euclidean) object metrics, whereas the perceptual system utilizes scene-based (i.e. non-Euclidean) metrics.

Glover and co-workers [51,52] have reported that visual illusions have a larger effect on the early rather than late stages of action, which suggests that on-line movement control is refractory to perception, whereas movement planning is not. Recent attempts to replicate these findings using conventional tasks and data analyses have failed [55], and neuropsychological evidence does not support the contention that the early and late stages of actions access different visual processing systems [56]. Nevertheless, as we will argue later, there is good reason to believe that perceptual mechanisms are important for the guidance of action in clearly circumscribed situations; Glover’s notion of ‘action-planning’ can be easily subsumed under this framework.

Visual illusions: refining the perception–action hypothesis

Two recent lines of evidence have helped to clarify the relation between object perception and object-directed action in the context of visual illusions. Dyde and Milner [57,58] have shown that the orientation of the grasping hand is sensitive to a simultaneous tilt (ST) illusion — similar to that used by Glover and co-workers [51] — but not a rod-and-frame (RF) illusion, even though the two visual displays have equivalent effects on judgements of target orientation. Dyde and Milner [57,58] argue that the sensitivity of action to a perceptual illusion can be understood in terms of the illusion’s presumed neural origins. Illusions that presumably arise from ‘early’ (i.e. area V1, area V2) stages of visual processing, such as the ST illusion, should affect both action and perception as the dorsal and ventral visual pathways share this input. Illusions like the RF that presumably arise from later stages of processing (i.e. in inferotemporal cortex) should not affect action, as the dorsal stream does not have direct access to this processing. Similar accounts have been put forward to explain the fact that there are reliable directional anisotropies in the perception of the direction of motion even though such anisotropies are not present in smooth pursuit eye movements [37], and the observation that fast reaching movements are sensitive to target mislocalisation errors induced by distant visual motion signals [40].

Several recent studies have highlighted the importance of timing in dissociations between perception and action [59]. Thus, in normal observers, perceptual illusions influence the control of action when the programming of those actions was formed on the basis of a memory of the target stimuli [44,60–65]. These findings suggest that the control of action after a delay depends upon a memory trace of the target object that was originally delivered by the perceptual mechanisms in the ventral stream. Recently, Westwood and Goodeal [66] found that a size-contrast illusion influenced the peak opening of the grasp when vision of the target was occluded at the same time the response was cued, even though the illusion had no effect on grip aperture in trials in which target vision was occluded at the moment of movement.
initiation (Figure 4). This finding strongly suggests that the visuomotor networks in the dorsal stream operate in ‘real time’: these networks appear not to be engaged unless the target object is visible at the exact moment the response is required. In other situations (e.g. memory-driven actions or advance movement preparation), the control of action passes to other systems that access a representation of the target object laid down by the perceptual mechanisms of the ventral stream.

Neuropsychological evidence from visual form agnosia [67] and optic ataxia [68,69,70*,71*] provides important converging support for the contention that there are two distinct modes of control for object-directed action: a real-time mode of control that depends on the visuomotor networks in the dorsal stream, and an off-line mode of control that depends, at least in part, on the perceptual mechanisms in the ventral stream. Presumably, such interactions between the ventral and dorsal streams are also responsible for the results of several neurophysiological experiments that have found parietal neurons that are sensitive to stimulus features such as colour [34*], shape [72], duration [73], or motion [74] when these are arbitrarily mapped to object-directed actions.

Conclusions
In summary, there is a wealth of psychophysical evidence that is consistent with the general view that in specific situations, particularly where rapid responses to visible targets are required, visuomotor control engages processing mechanisms that are quite different from those that underlie our conscious visual experience of the world.
The ongoing challenge for neurobiologists is to map these behavioural findings onto the brain and reconcile them with what we already know about the dorsal and ventral streams from primate neurophysiology and human neuropsychology. Preliminary efforts have been made in this regard in primate neurophysiology [75] and human transcranial magnetic stimulation (TMS) [76*], but much more work remains to be done. In particular, we anticipate that important advances in understanding the interactions between the dorsal and the ventral streams will be made using TMS to disrupt neural processing at precise points in a temporal sequence [77]. For example, recent findings from TMS studies point to the importance of recurrent projections from extrastriate to striate cortex in conscious perceptual experience [78**,79]. The role of such recurrent projections in the visuomotor networks of the dorsal pathway is much less clear, and might represent a fundamental difference between perception and action systems.

Update

Two recent papers provide additional evidence to the debate about the differential effects of visual illusions on perception and action. Stone and Krauzlis [80**] showed that, on a trial-by-trial basis, there was a close correspondence between the perceived direction of motion and the control of pursuit eye movements. This result supports the idea that the differences between perception and action in motion processing that have been previously demonstrated [37**] could arise after common processing in early motion areas. A second paper by McCarley et al. [81*] found that voluntary but not reflexive saccades were sensitive to the Müller-Lyer illusion, supporting the idea that perceptually driven responses are more likely to be affected by scene-based relational cues than are more automatic reflexive responses [66*]. Finally, the search for the neural substrates of perception–action differences continues. In a recent paper, Schwartz and co-workers [82*] provide evidence from single-unit work in the monkey that activity in primary motor cortex reflects the actual trajectory of a monkey’s hand movement, whereas activity in the ventral premotor cortex codes the perceived trajectory of that movement.

Acknowledgements

The authors are indebted to the Canadian Institutes of Health Research and the Canada Research Chairs Program for financial support.

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

The authors studied the visual abilities of a 30-year old man with visual agnosia arising from extensive bilateral damage to ventral occipito-temporal cortex, and unilateral damage to right parietal cortex due to childhood meningencephalitis (age 3). Residual perceptual abilities are consistent with a visual system primarily driven by magnocellular inputs to the dorsal stream (e.g. largely preserved motion and space perception, intact visuomotor abilities; severe deficits in form, colour and texture perception). This pattern of behavioural and neurological findings mirrors accurately that seen in DF, the woman with visual form agnosia, whose case was seminal in the original formulation of the perception-action hypothesis.

This represents the first functional magnetic resonance imaging (fMRI) investigation of the neural substrates underlying the behavioural deficits observed in DF, the visual-form agnosia patient whose case was seminal in the original development of the action–perception hypothesis. Structural MRI revealed loss of neural tissue at the occipito-temporal junction (area LO). fMRI indicated greatly reduced functional activity in ventral stream regions normally activated during viewing of line drawings, consistent with DF’s inability to recognize these drawings. Similar to healthy controls, normal activity was observed in the AIP region during visually guided grasping, consistent with DF’s ability to direct accurate grasps at visual objects.

Using fMRI, the authors explored the functional topography of ventral stream areas. Two face-related regions, three object-related regions, and two building-related regions were identified. Moreover, the different categorical object-sensitive areas appeared to show large-scale dorso-ventral mirror symmetry within a unified eccentricity map. The authors propose that higher-order object areas could have evolved through specialisation of a single ‘proto-representation’.

The authors provide an exceptionally clear exposition of how the posterior parietal cortex might transform sensory information into the appropriate
coordinates for different kinds of motor acts. They argue convincingly for a common eye-centered reference frame that is modulated by eye-, head-, body- or limb-position signals. Such a reference frame would facilitate communication between different areas that are involved in coordinating the movements of different effectors and might also permit sensory targets in different modalities to share the same spatial coordinates.

The authors propose a new view of dorsal stream organization in which it is argued that the superior regions of the posterior parietal cortex are involved in the on-line control of action, whereas the more inferior regions of the posterior parietal cortex play a crucial role in space perception and understanding action.
The authors found that two orientation illusions, the simultaneous tilt (ST) illusion, and the visual illusion on action can be understood in terms of the presumed neural mechanisms dependent on consciously perceived object features. Effects of perception on action can be understood in terms of the presumed neural mechanisms dependent on consciously perceived object features. Effects of perceiving the ST illusion in optic ataxia is apparent even in the early stages of a delayed movement task. This result provides additional support for the idea that the dedicated visuomotor mechanisms in the posterior parietal cortex work only in real time and that memory-dependent actions are driven by other visual information—presumably derived from ventral-stream processing.

Revol P, Rossetti Y, Vighetto A, Rode G, Boisson D, Pisella L: Pointing errors in immediate and delayed conditions in unilateral optic ataxia. J Cogn Neurosci 2003, 15:171-179. The authors tested a patient with lateralized optic ataxia from a unilateral parietal lesion and demonstrated that the patient’s visuomotor performance showed improvement with delayed (memory-dependent) responses — but only in the contralesional visual field. This result provides additional support for the idea that the dedicated visuomotor mechanisms in the posterior parietal cortex work only in real time and that memory-dependent actions are driven by other visual information — presumably derived from ventral-stream processing.

Rossetti Y, Pisella L, Vighetto A: Optic ataxia revisited: visually guided action versus immediate visuomotor control. Exp Brain Res 2003, 153:171-179. On the basis of a series of studies, the authors argue that the deficit in optic ataxia is not so much one of programming a target-directed movement as it is one of controlling that movement on-line. On the face of it, this claim appears to be counter-evidence presented by Danckert et al. [55]. In any case, this is an important issue that needs further empirical investigation.

implicating a shared motion input for perception and action. These responses even when performance was near chance levels, strongly indicated a high correspondence between judgements and motor accessed for motion perception and control of eye movements. Results direction and pursuit eye movements on a trial-to-trial basis, the authors By examining the correspondence between perceptual reports of motion encoding through feedback (re-entrant) projections from higher visual stimulus can in

over, TMS suppression of the annulus was greater when a disk followed when perception of the annular mask was suppressed with TMS, an Using a meta-contrast masking paradigm, the authors demonstrated that contributions to visual awareness in human occipital cortex. Curr Opin Neurobiol 2003, 10:232-237.

Using a meta-contrast masking paradigm, the authors demonstrated that when perception of the annular mask was suppressed with TMS, an otherwise imperceptible target stimulus (a disk) became visible. Moreover, TMS suppression of the annulus was greater when a disk preceded it than when the annulus was presented alone. This suggests a prior visual stimulus can influence subsequent perception at early stages of visual encoding through feedback (re-entrant) projections from higher visual areas.

By examining the correspondence between perceptual reports of motion direction and pursuit eye movements on a trial-to-trial basis, the authors sought evidence for a common representation of visual motion that is accessed for motion perception and control of eye movements. Results indicated a high correspondence between judgements and motor responses even when performance was near chance levels, strongly implicating a shared motion input for perception and action. These findings are consistent with other work by Churchland et al. [37] cited in this review, and add to a growing body of evidence suggesting that the segregation between vision-for-action and vision-for-perception occurs downstream of motion processing regions.

This study compared the effects of a Muller-Lyer illusion on the accuracy of saccadic eye movements generated under reflexive (i.e. a visual onset at the vertex of the illusion cued the response) and voluntary (i.e. a saccade to the vertex of the illusion was cued by a verbal instruction) conditions. Illusory biases were observed only in the voluntary condition, suggesting that the generation of voluntary (i.e. endogenous control) but not reflexive (i.e. exogenous control) responses accesses a perceptual representation of the intended target. These results are consistent with our real-time model of sensorimotor function. This model suggests that advance movement preparation (i.e. endogenous control) accesses a perceptual representation of the environment, whereas real-time movement programming (i.e. exogenous control) engages a dedicated set of sensorimotor mechanisms that compute the absolute metrics of the target object at the moment the action is required.

Using a virtual manual-tracking task in which the mapping between actual and displayed hand position was gradually altered, the authors created a dissociation between the perceived (elliptical) and the actual (circular) trajectory of the limb in both humans and monkeys. Humans reported no awareness of the illusion, suggesting that the visual feedback of their virtual limb dominated conscious perception of action. Using the same task, single-unit recordings in monkey ventral premotor cortex (PMv) and primary motor cortex (M1) were used to explore neural representations of the hand’s trajectory. Activity in M1 reflected more closely the actual trajectory, whereas activity in PMv was more closely linked to the perceived trajectory. The authors suggested that a sub-population of neurons in PMv play a leading role in ‘vision-for-perception’, at least in the context of perceiving and monitoring one’s own actions. Although it is not yet clear how these findings relate to the perception-action model (which focuses on the visual processing of objects rather than actions), this study is noteworthy for attempting to identify the neurobiological basis for differences between conscious perception and control of action.