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We investigate whether observers take into account their visual uncertainty in an optimal manner in a perceptual estimation
task with explicit rewards and penalties for performance. Observers judged the mean orientation of a briefly presented
texture consisting of a collection of line segments. The mean and, in some experiments, the variance of the distribution of
line orientations changed from trial to trial. Subjects tried to maximize the number of points won in a “bet” on the mean
texture orientation. They placed their bet by rotating a visual display that indicated two ranges of orientations: a reward
region and a neighboring penalty region. Subjects won 100 points if the mean texture orientation fell within the reward
region, and subjects lost points (0, 100, or 500, in separate blocks) if the mean orientation fell in the penalty region. We
compared each subject

,
s performance to a decision strategy that maximizes expected gain (MEG). For the nonzero-penalty

conditions, this ideal strategy predicts subjects will adjust the payoff display to shift the center of the reward region away
from the perceived mean texture orientation, putting the perceived mean orientation on the opposite side of the reward
region from the penalty region. This shift is predicted to be larger for (1) larger penalties, (2) penalty regions located closer
to the payoff region, and (3) larger stimulus variability. While some subjects

,
performance was nearly optimal, other subjects

displayed a variety of suboptimal strategies when stimulus variability was high and changed unpredictably from trial to trial.
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Introduction

Actions have consequences, and humans take those
consequences into account in making decisions and
planning actions. This issue pervades all human activity,
whether it means choosing a curved path in reaching for
the newspaper to avoid spilling the glass of juice that
blocks the direct path or leaving 10 min earlier to reduce
the possibility of missing a plane flight. In choosing the
optimal course of action, one must combine uncertain
sensory data, prior knowledge, variability in the outcomes
of planned actions, and the costs and benefits of potential
outcomes (Berger, 1985; Blackwell & Girshick, 1954;
Ferguson, 1967).
In many experimental contexts, the subject’s task is

estimation (of depth, slant, location, orientation, etc.). In
the absence of prior information or explicit consequences,
subjects may attempt to maximize the percentage of correct
responses, resulting in the adoption of a maximum-

likelihood (ML) estimate to make optimum use of noisy
sensory data (implicitly assuming a flat prior distribution).
If one has prior information as to the probability of
occurrence of different stimuli, one should combine that
information with the sensory data (a Bayesian calculation)
and use the maximum a posteriori (MAP) estimate
(Kersten, Mamassian, & Yuille, 2004; Knill & Richards,
1996; Maloney, 2002; Mamassian, Landy, & Maloney,
2002). Finally, if there are known consequences (gains or
losses) of different outcomes of the participant’s decision
or action, the optimal strategy (instead of optimizing
percentage correct) is one that maximizes expected gain
(MEG).
In rapid motor tasks under risk, subjects adopt strategies

that are frequently indistinguishable from the optimal MEG
solution. Trommershäuser, Maloney, and Landy (2003a,
2003b) asked subjects to point rapidly at targets while
avoiding nearby penalty regions. Hits on each region led to
gains and losses that were known to the subject, and
feedback was provided. Subjects were required to complete
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the movement in a short period of time, resulting in rapid,
variable movements. Subjects adopted an aiming strategy
that matched the MEG solution. They also modified their
aim points appropriately when fingertip end point feedback
was artificially altered to have increased variance, suggest-
ing subjects estimated the uncertainty of their own move-
ment outcomes (Trommershäuser, Gepshtein, Maloney,
Landy, & Banks, 2005).
The movement task under risk just described is

analogous to traditional paper-and-pencil tasks (Maloney,
Trommershäuser, & Landy, 2007; Trommershäuser,
Landy, & Maloney, 2006). In these latter tasks, partic-
ipants are presented with a set of lotteries and asked
which they would prefer. Each lottery consists of a set of
mutually exclusive outcomes, their values (e.g., in
monetary gains, or losses), and probability of occurrence.
As an example, subjects might be asked to choose
between lottery A: “You will receive /4 with probability
.8, /0 otherwise,” and lottery B: “You will receive /3 for
sure.” Participants often do not choose the lottery
corresponding to MEG (Bell, Raiffa, & Tversky, 1988;
Kahneman, Slovic, & Tversky, 1982; Kahneman &
Tversky, 2000). These failures of the MEG model are
often consistent with subjects having an exaggerated
aversion to losses (Kahneman & Tversky, 1979) and
exaggerating small probabilities (Allais, 1953; Attneave,
1953; Lichtenstein, Slovic, Fischhoff, Layman, & Coombs,
1978; Tversky & Kahneman, 1992).
Why do humans behave in a MEG-optimal fashion in a

speeded reaching task, but suboptimally in a paper-and-
pencil decision-making task? Weber, Shafir, and Blais
(2004) suggest that human behavior (in particular, risk
sensitivity) differs between tasks in which probabilities
are implicit and learned from experience versus tasks in
which probabilities are given explicitly (e.g., as a number,
pie chart, etc.). In paper-and-pencil tasks, people generally
overweight rare events, leading to the nonlinear mapping
from probabilities to decision weights in Prospect Theory
(Kahneman & Tversky, 1979). Hertwig, Barron, Weber,
and Erev (2004) show that when probabilities are instead
learned implicitly, subjects tend to underweight rare
events due to undersampling (specific to their particular
task) and recency effects. In the reaching task, the
stochastic nature of outcomes is implicit (in the partic-
ipant’s sensory and motor uncertainty) whereas in the
paper-and-pencil tasks, the probability is communicated
explicitly. The experiments of Maloney et al. (2007) lend
further support for this distinction. They added an explicit
stochastic component to the speeded reaching task: The
penalty and/or the reward were only awarded to the
participant on 50% of the trials in which the correspond-
ing regions were hit. This minor change to the procedure
led to suboptimal aiming strategies.
In this paper, we present experiments that are formally

analogous to those of Trommershäuser et al. (2003a,
2003b), but in which subjects performed a purely
perceptual task with no time constraints. In the movement

task, movement variability limited performance. Here,
visual estimation variability limited performance. Proba-
bilities of each outcome were implicit (as they depended
on the observer’s sensory uncertainty), so that one might
predict MEG-optimal behavior. However, this is not a
rapid motor task; it is a slow, deliberate task. Thus, the
cognitive nature of the task might instead result in
suboptimal strategies as seen in paper-and-pencil deci-
sion-making tasks. We will determine whether subjects
respond appropriately to changes of stimulus variability,
which affects the MEG strategy. We find that some
subjects did change strategy in response to changes in
stimulus variability in a nearly optimal manner. However,
unlike in the motor tasks, we found that many subjects did
not adopt an ideal, MEG strategy when stimulus varia-
bility was high and varied from trial to trial.

General methods

Apparatus

Most experiments were run at NYU on a Dell PC using
a 17-in. Dell Ultrascan P780 flat screen Trinitron monitor
viewed from a distance of 57 cm. The data for subject RG
(an author) were collected at the University of Glasgow on
an Apple G3 computer using a 21-in. ViewSonic G220f
monitor calibrated so that stimulus dimensions were
identical. Experiments were run using the psychophysics
toolbox (Brainard, 1997; Pelli, 1997).

Stimuli

The stimuli (Figures 1A–1C) were textures consisting of
a set of white line segments (0.7- long, anti-aliased) on a
gray background, randomly placed using a uniform dis-
tribution over a circle (diameter: 4.6-) at the center of the
screen. The number of line segments was chosen randomly
on each trial (mean: 39.4, SD: 6.3 lines). All lines fit
entirely within the circular aperture. Lines that overlapped
were summed and clipped at a contrast of 100%.
Line segment orientations were chosen randomly and

independently based on a vonMises distribution (Batschelet,
1981), a standard distribution on a circular variable (e.g.,
line orientation) analogous to the Gaussian distribution. It is
defined as

M 8; .l; Elð Þ ¼ e.lcos 2 8jElð Þð Þ

: I 0; .lð Þ ; ð1Þ

where 8 is the line orientation, El is the circular mean
orientation, .l is the concentration parameter, and I is the
modified Bessel function. Note that this expression is
slightly modified from the usual definition because the
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range of line orientation is from 0- to 180- while the usual
formulation ranges from 0- to 360-. The concentration
parameter .l is roughly analogous to inverse variance; the
distribution is flat when .l = 0 and becomes narrower as .l
increases. We will find it convenient to describe the
distributions in terms of orientation variability or spread
sl = 1/.l. Figure 1 shows stimuli with spreads of 0.002
(Figure 1A), 0.02 (1B), and 0.2 (1C), spanning the entire
range of sl values used in this study. Treating this circular
variable as if it were linear, these values of spread
correspond to standard deviations of 1.3-, 4.1-, and
13.7-, respectively. On each trial, the mean orientation El
was chosen randomly and uniformly (from 0- to 180-).
The manner in which sl was chosen was different for each
experiment and is described later.

Procedure

The task was a gambling game in which subjects “bet”
on the mean orientation of stimulus textures. Each trial
began with a fixation point displayed for 500 ms followed
by the 1-s display of the stimulus. After the stimulus, a
response display was shown (Figures 1D–1G). The
response display consisted of a pair of opposing white
circular arcs delimiting the range of rewarded orientations,
and outside and offset from that, a pair of black arcs
delimiting the range of penalized orientations. The
subject’s task was to rotate the response display in
increments of 1- using a pair of response keys until the
mean line orientation El fell within the reward range, but
not within the penalty range. Subjects indicated they were
satisfied with the setting by a key press. When El fell
within the reward range (i.e., a line with orientation El
through the center of the display intersected the white arcs
as illustrated in Figure 2A), the subject was awarded 100
points. If El fell within the penalty range, 0, 100, or 500

points were deducted (the penalty value was fixed within a
block of trials but varied across blocks). If El fell within
both the reward and penalty ranges, the subject received
both the reward and penalty. Subjects were asked to try to
win as many points as possible, that is, to win rewards
while avoiding penalties.
Both the reward and penalty ranges were 22- wide.

There were two “Far” configurations (penalty range
rotated 22- clockwise or counterclockwise from the
reward range; Figures 1D–1E) and two “Near” config-
urations (penalty offset 11- clockwise or counterclockwise
from the reward; Figures 1F–1G).
After indicating satisfaction with the setting, visual

feedback was provided as to whether the mean orientation

Figure 2. Optimal task strategy. (A) For trials in which the penalty
value was 0, the optimal strategy was to rotate the payoff display
so that the center of the reward region was aligned with the mean
orientation of the texture (indicated here by the black arrow). (B) In
nonzero-penalty conditions, as the task became more difficult due
to higher penalty, increased spread sl of stimulus line orientations,
and/or decreased distance between the payoff and penalty
regions, the optimal strategy required the observer to rotate the
payoff display so as to move the penalty region further away from
the mean texture orientation.

Figure 1. Example stimuli and the four payoff displays. The top row contains example stimuli with sl = 0.002 (A), 0.02 (B), and 0.2
(C). After a brief display of the stimulus, subjects were shown one of four possible payoff display in which the black, penalty region was
either far from the white reward region (D–E) or near (F–G).
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fell within the reward and/or penalty ranges. Subjects
were never shown the mean orientation itself. Each block
of trials began with a set of practice trials that resulted in
visual feedback, but the points for these trials were not
added to the cumulative score for the subject. At the end
of each block of trials, the subject’s cumulative score and
earnings across blocks was displayed. In Experiment 3,
most subjects ran three practice blocks with penalty set to
zero to get used to the task.

Subjects

In Experiments 1 and 2, the subjects were either authors
(MSL, JT, and RG) or other members of the lab. These
subjects merely competed for the best score. One under-
graduate, DG, took part in Experiment 2 and was unaware
of the purposes of the experiment or the specific optimal
strategy appropriate for this task. In Experiment 3, one
subject was aware of the conditions of the experiment
(MSL). The other subjects in Experiment 3 were naive as
to the purposes of the experiment. The naive subjects in
Experiment 3 were paid /10/hr for participation plus a
bonus of .025 cents/point. These performance bonuses
ranged from a gain of /23.20 to a loss of /9.30 for one
subject (we did not actually deduct this from the base
pay for this one very suboptimal subject, but the subject
was not aware of this while performing the task). Each
block of trials took approximately 15 to 20 min to
complete.

Data analysis

For each trial, we recorded the mean orientation E used
to generate the stimulus, the orientation = of the payoff
display chosen by the subject, and the score for that trial.
The payoff display orientation was coded as the orienta-
tion of the line joining the centers of the two white reward
arcs (which passed through the center of the display).
When the penalty value was zero, the optimal strategywas

to rotate the payoff display to center the mean orientation
of the stimulus in the reward region (Figure 2A). However,
in the nonzero-penalty conditions, as the task became more
difficult due to increased penalty, increased spread sl or
decreased distance between the penalty and reward regions,
subjects needed to rotate the payoff display to move the
penalty further away from the mean stimulus orientation
(Figure 2B). We recorded the shift % of the setting = away
from the mean orientation E used to generate the texture.
This shift was coded so that positive values indicate the
subject set the orientation of the center of the penalty
region on the opposite side of the reward region from the
mean texture orientation (i.e., they “played it safe”). Thus,
for the displays in Figures 1D and 1F, % = E j =, whereas
in Figures 1E and 1G, % = = j E.

Circular statistics

In this paper, we use circular statistics (Batschelet,
1981) to describe both the generation of the stimuli and
the distribution of subject responses. These are distribu-
tions of orientations that we model as a von Mises
distribution just like our definition of the stimulus
(Equation 1). The estimate of the mean of the distribution
of shift settings, %

^
, was computed using the usual sample

circular mean (Batschelet, 1981). The estimate of the
concentration parameter .^s was calculated using the
procedure of Schou (1978). Schou showed that his
procedure (a marginal ML estimate) has lower bias than
the ML procedure. The estimate of spread s^s shown in the
figures is simply 1/.^s. This is not the ML or marginal ML
estimate of ss, but bias should be low for the large number
of trials contributing to each estimate.
In Experiments 1 and 2, for each value of sl we used an

estimate of .^s (and s^s) that was pooled over the six
conditions (three penalty levels and two types of config-
uration, Near and Far). Note that results were always
pooled over the two mirror-symmetric payoff displays by
mirroring the data as discussed above in the definition of
%. Typical tests for equality of variance are based on the
assumption that the underlying distributions are normal
and are known to be sensitive to failures of the normality
assumption (Keppel, 1982). Therefore, we devised a
resampling method (Efron & Tibshirani, 1993) to test for
the equality of the spreads over the six conditions based
on an analogy to Hartley’s Fmax statistic (Keppel, 1982).
We calculated the range of the six observed .^s values
(i.e., Fmax = .^s,max j .^s,min). Then, we simulated the
experiment 1,000 times, assuming the pooled estimate of
.^s to be correct, and computed Fmax for each set of six .^s
values. The p value was estimated by determining the
percentile of the observed Fmax value in the distribution of
simulated Fmax values.

MEG predictions

In each experiment, we compare human performance to
that of the MEG strategy. On each trial, the observer
viewed a stimulus S that was generated based on line
orientation distribution parameters El and sl, and one or
both of these varied from trial to trial (with distributions
that varied across the three experiments). The payoff
displays in Figures 1D–1G resulted in three regions with
nonzero payoff: R1 (reward only), R2 (reward–penalty
overlap), and R3 (penalty only). The gain associated with
the reward region Gr = 100 points; and the gain associated
with the penalty region Gp = 0, j100, or j500 points
(depending on the block of trials).
The subject could not determine the precise value of El;

any estimate was corrupted by line segment orientation
sample variability as well as any additional imprecision
due to the observer’s own sensory uncertainty or noisy
calculations. The best the observer could do was, in each
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trial, to compute an estimate E
^
l based on the stimulus and

rotate the payoff display by an appropriate amount %
away from that orientation E

^
l. Similarly, the subject could

not know the value of sl. The expected gain for any
particular value % was

EG %ð Þ ¼
ZZ

G %jElð Þp El; sljSð ÞdEldsl

¼
ZZ

G %jElð Þ p SjEl; slð Þp El; slð Þ
p Sð Þ dEldsl; ð2Þ

where the gain depended only on % and El in our task. The
MEG strategy was to choose the value of % that
maximized EG.
The strategy based on Equation 2 is an ideal MEG

strategy in the sense that it presumes the subject can
perfectly account for the likelihoods of various values of
El and sl. However, subjects’ settings were far more
variable than this would predict. This was likely due to
imperfect calculation of the mean orientation of the
stimulus, variability in the calculation of the shift,
imperfect memory of the mean stimulus orientation, and/
or variability due to imperfect adjustment of the response
display. As one would expect, the spread of observer shift
settings was a function of the spread of line orientations in
the stimulus sl. Thus, we were interested in a MEG model
of performance based on a subject hampered by the
setting variability s^s we estimated from the subjects’
settings. Once we had an estimate of observer setting
spread s^s, we had sufficient information to calculate the
MEG settings. That is, the MEG model was determined
entirely by the data and had no free parameters.
The calculation of this MEG strategy was analogous to

that described by Trommershäuser et al. (2003a, 2003b)
except that here it took place on the circular domain of
line orientation. The MEG strategy for this imperfect
observer was analogous to that suggested by Equation 2
with the addition of subjects’ setting variability beyond
that implicit in the stimulus.
To determine the performance of this MEG model, we

computed the performance of two simpler models. One
was a supra-ideal model. It was supplied with more
information about the stimulus than the subject could have
known. Thus, its performance had to be as good or better
than the MEG model. The other was a subideal model.
The performance of these two models brackets the
predictions of the hard-to-compute MEG strategy.
For the supra-ideal strategy, we assumed that the model

subject knew the correct value of the line orientation
spread sl used to generate the stimulus, and hence also
knew the setting spread ss. For this supra-ideal observer,

EG %ð Þ ¼ GrP R1j%; ssð Þ þ Gr þ Gp

� �
P R2j%; ssð Þ

þ GpP R3j%; ssð Þ: ð3Þ
The conditional probabilities in Equation 3 are simply
integrals of the von Mises distribution over the intervals

corresponding to each region for the candidate shift value
%. Again, the MEG strategy was to use the value of %
maximizing EG.
The subideal observer was similar, except that rather

than using the correct value sl (that it could not have
known), it used an estimate based on the spread of the line
orientations in the stimulus shown on that trial s^l.
Otherwise, the computations were identical (i.e., it used
s^l instead of sl to determine the value of ss in Equation 3).
We call this model subideal because it effectively skipped
the step of integrating over sl in Equation 2 using the
estimate s^l instead.
We simulated both the supra- and subideal observers for

all subjects for the results of Experiment 3 (with 1,000
replications of the simulation for each observer). The
performance of the two models was indistinguishable
(data not shown here) and hence also indistinguishable
from the optimal MEG performance bracketed by them.
That is, any differences were clearly within the sampling
noise of the simulations. Below, we use the supra-ideal
model to compute the performance of the MEG strategy.

Efficiency

We define each observer’s efficiency as the ratio of the
number of points earned by the observer and the expected
number of points that would have been earned had the
observed used the MEG strategy in all conditions. This
latter value was computed using estimated values s^s
based on that observer’s data. This MEG observer model
was simulated in the same experiment as the observer
1,000 times to estimate a 95% confidence interval for the
range of efficiencies the MEG observer was likely to
generate (an interval that, by definition, was centered on
1.0). An observer was deemed significantly suboptimal if
efficiency fell below this range. Note that here and
elsewhere we do not perform Bonferroni corrections for
multiple tests in computing error bars in each figure. Thus,
the error bars reflect the variability of the simulations of
that data point (i.e., they act like a typical standard error).
Also, this leads to smaller error bars than would result
from using the Bonferroni correction and thus makes it
more likely that we will reject the null hypothesis that a
subject is behaving optimally (i.e., in a sense, this is a
conservative approach).

Deviation of mean settings from MEG predictions

In Experiments 1 and 2, we determined whether the
mean shift for each condition was significantly different
from the MEG shift for that subject in that condition. To
do so, we performed 1,000 simulations of that condition
using the pooled value of s^s (pooled over all penalty
levels and Near/Far configurations for a given orientation
spread and experiment; see the Circular statistics section)
and the MEG strategy, and we determined a 95%
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confidence interval of MEG shift from the resulting
distribution of mean shifts. The observer’s mean shift
value was deemed significantly different from the MEG
strategy if it fell outside that interval (a two-tailed test).
We also plot error bars on the individual shifts. These
were computed in the same way, using the observer’s
mean shift rather than the MEG shift for the simulations.

Deviation of points earned from MEG predictions

In Experiments 1 and 2, we also determine, for each
subject and condition, whether the number of points earned
was significantly different from that expected from the
MEG strategy. To do so, we calculated a 95% confidence
interval of points earned from the same simulations
described above (i.e., using the pooled setting spreads
and MEG strategy for that condition). The points earned by
the observer in that condition were deemed significantly
different from those expected from the MEG strategy if
they fell outside that interval (a two-tailed test). We also
plot error bars on the individual numbers of points earned.
These were computed similarly, using a new set of 1,000
simulations using the observer’s mean shift rather than the
MEG shift. The position of these error bars is not
guaranteed to be centered around the data points and may
even miss the data point completely. This happens if the
distribution of settings used in the simulations differs
substantially from the distribution of the setting data that
led to that particular data point (especially in the high-
penalty conditions, in which a small change in the number
of penalties can lead to a large change in the score).
Therefore, in the simulations used to compute these error
bars, we used the setting spread estimated from the data in
that condition alone rather than the pooled setting spread.
Nevertheless, in some conditions below the data points lie
near or even beyond the ends of the error bars. This
occurred when the raw shift data for that condition were
skewed and hence poorly fit by the von Mises model of
setting spread used in the simulations.

Experiment 1: Blocked design

In this first experiment, both the penalty value and the
orientation variability (i.e., sl) were constant within a
block. As shown below, subjects were highly efficient in
terms of maximizing the number of points earned,
although significantly suboptimal.

Methods

In this experiment, there were four conditions within
each block of trials, corresponding to the four different

reward/penalty configurations (Figures 1D–1G). The
reward value was 100 points; the penalty was 0, 100, or
500 points, varied between blocks. There were three levels
of orientation variability corresponding to sl values of
0.002 (least variable), 0.02, and 0.2 (most variable) that
also varied across blocks. Each block consisted of 20
practice trials (5 repeats of each configuration in random
order), which did not impact the subject’s cumulative
score, followed by 80 trials (20 repeats of each config-
uration) that did add to the total score. Subjects ran three
sl = 0.002 blocks, then three sl = 0.02 blocks, and finally
three sl = 0.2 blocks. Within each variability level,
subjects ran one block with penalty 0, then one with
penalty 100, and finally one with penalty 500. In other
words, the blocks were run approximately in order from
easiest to most difficult.

Results

For each subject and level of texture orientation
variability, we examined the six concentration parame-
ters .s of the six distributions of setting shifts %
corresponding to the different penalty values and the
Near/Far configurations. For any given value of texture
orientation variability, there was no pattern to the
variation in the concentration parameters (i.e., subjects
did not become more variable for more difficult con-
ditions). The Fmax statistic was significant (p G .05) for
only 3 of the 15 such tests (5 subjects, 3 levels of sl, no
Bonferroni correction was applied). Thus, we feel justified
in computing a single pooled estimate of setting spread s^s
(the reciprocal of the pooled estimate .^s) for each subject
and texture orientation variability sl. These pooled setting
spread values are shown in Figure 3. Clearly, increased
stimulus variability led to increased setting variability.

Figure 3. Pooled setting spread s^s as a function of texture
orientation spread sl for five subjects. Each value of s^s was
pooled across the three penalty levels and Near/Far configura-
tions. Error bars are T1 standard error computed using the six
individual setting spreads that contributed to that pooled spread.
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Also note that the setting spreads are far higher than the
spread of the sample circular mean orientation from the
ca. 40 lines in each stimulus since the spread of the sample
mean should be substantially smaller than the spread of
the distribution used to select any single line orientation (i.
e., the value on the abscissa). Thus, we are justified in
including observer variability in the MEG model
(Equation 3).
By and large, performance was good but significantly

suboptimal. Figure 4A shows mean setting shifts (%) as a
function of the shift predicted by the MEG model for a
typical subject (all other individual subject data are
shown in Supplementary Figure A1). The MEG predic-

tions were based on the variability of each subjects’
settings (the pooled s^s values) estimated from the data
with no free parameters (Equation 3). Note that in most
conditions, mean settings were not significantly different
from MEG predictions (those that differed significantly
are displayed with filled symbols). The horizontal and
vertical lines on the plot represent the edge of the
reward region (11- rotated from a zero shift, where zero
represents the center of the reward region). The obvious
suboptimal results (the two rightmost points) are con-
ditions in which the MEG strategy required the subject
to “aim” outside of the target region. All subjects were
reticent to aim outside of the reward region when it was

Figure 4. Results of Experiment 1. (A) Mean shift away from the penalty region is plotted as a function of the shift predicted by the optimal,
MEG model for each condition (three penalty levels, Near and Far configurations, three level of stimulus orientation spread) for subject
HB. The conditions are indicated by the symbol size (small symbols: Far penalty; large symbols: Near penalty), shape (squares: low
orientation variability; circles: medium variability; diamonds: high variability), and color (red: penalty = 0; green: penalty = 100; black:
penalty = 500). Filled symbols indicate conditions in which the shift was significantly different from the MEG prediction. Error bars indicate
95% confidence intervals computed by bootstrap simulations. The diagonal line indicates perfect correspondence of data and prediction.
The horizontal and vertical lines at a shift of 11- indicate the edge of the reward region. The inset shows the same data with expanded
range on the axes to show the outlier. (B) Average number of points won per trial is plotted as a function of the MEG prediction for subject
HB using the same conventions as in panel A. (C) Efficiency in the two zero-penalty conditions for five subjects. Error bars indicate the
range of performance (95% confidence interval) expected from the MEG model. (D) Efficiency in the four nonzero-penalty conditions.
Individual data for the other subjects are shown in Supplementary Figure A1.
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in their best interest to do so. This particular suboptimal
strategy has also been noted in the reaching task
(Trommershäuser et al., 2005).
As a result of generally near-optimal aiming strategies,

subjects’ performance (in terms of the average number of
points earned per trial) was also optimal or nearly so
(Figure 4B). Note that occasionally an error bar in
Supplementary Figure A1 does not overlap the point with
which it corresponds. As pointed out in the General
methods section, this can occur because the distribution of
settings in that particular condition was skewed and not
well modeled by the von Mises distribution used in the
simulations that generated the error bars.
The number of penalties awarded was highest when the

penalty value was zero (Table 1). In this condition, there
was no cost to hitting the penalty region, and so the
optimal strategy was to aim at the center of the reward
region, resulting in a relatively large number of penalties.
As penalty value increased, subjects aimed further away
from the penalty, reducing the number of penalties
awarded. As orientation spread decreased, setting spread
also decreased, resulting in fewer penalties.
Overall, efficiency was high (Figures 4C–4D; the error

bars are based on simulations of the MEG strategy).
Figure 4C shows efficiency for the zero-penalty conditions
alone, in which the MEG strategy was always to aim at
the center of the reward region. Subjects successfully
judged the mean orientation of the reward region in these
conditions (Figure 4A). Unsurprisingly, for these con-
ditions all subjects were optimal. Omitting these con-
ditions and concentrating only on conditions requiring a
nonzero shift, subjects all had high efficiency values
(ranging from 61% to 81%; Figure 4D), but all were
significantly suboptimal.

Experiment 2: Interleaved design

In Experiment 1, subjects responded nearly optimally.
That is, they shifted further away from the penalty range
for large penalties and for textures with larger orientation
variability. Inherent in such near-optimal behavior is the
idea that subjects had a representation of their uncertainty

in estimating the mean orientation of the texture stimulus
and relied on this representation to set the orientation of
the response display. It might be argued that this behavior
was learned in the early trials of each block. In each block
of trials, there were only two reward/penalty configura-
tions (pooling mirror-symmetric pairs together), and thus
subjects were required to determine only two shift values.
In Experiment 2, this strategy was made more difficult by
changing the orientation variability trial by trial, thus
mixing the three levels of orientation variability within
each block of trials.

Methods

In this experiment, there were 12 conditions within each
block of trials, corresponding to combinations of the four
different reward/penalty configurations and the three
levels of orientation variability. The reward value was
again 100 points; the penalty was 0, 100, or 500 points,
varied between blocks. Each block consisted of 24
practice trials (2 repeats of each condition in random
order), which did not impact the subject’s cumulative
score, followed by 120 trials (10 repeats of each
condition) that did add to the total score. Subjects ran
six blocks with penalty set to 0, 100, 500, 0, 100, and 500,
respectively.

Results

Again, we examined the individual .s values. This time
there was some hint that setting spreads increased with
task difficulty, but the Fmax test was significant for only 5
tests out of 18 (six subjects, three texture orientation
spreads, no Bonferroni correction was applied). Results
for a typical subject are shown in Figures 5A–5B in the
same format as Figure 4 (all other individual subject data
are shown in Supplementary Figure A2). The mixed-block
design of Experiment 2 presented no additional difficulty
for this subject. The proportion of penalties awarded in
each condition is shown in Table 2 and is similar to the
results in Experiment 1. Efficiency values are shown in
Figures 5C–5D in the same format as Figure 4. Again, all
subjects were optimal in the zero-penalty conditions. For

Penalty

Near penalty Far penalty

Overall0 100 500 Average 0 100 500 Average

Spread
0.002 59.0 29.0 10.5 32.8 7.0 2.0 2.5 3.8 18.3
0.02 57.5 21.5 13.5 30.8 7.0 4.0 3.5 4.8 17.8
0.2 48.5 26.0 16.5 30.3 16.5 11.0 13.0 13.5 21.9
Average 55.0 25.5 13.5 31.3 10.2 5.7 6.3 7.4 19.4

Table 1. Penalties in Experiment 1. Entries are the proportion of trials in each condition in which the setting fell within the penalty region,
averaged over subjects.
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most subjects, efficiency was also high in the nonzero-
penalty conditions (Figure 5D), except for the most
variable subject (DG).

Experiment 3: Continuous visual
variability

In Experiment 2, we varied stimulus variability ran-
domly on a trial-by-trial basis and found that most

subjects were again good at compensating for the amount
of stimulus variability, resulting in task strategies with
high efficiency. Thus, they reacted to changes in the
amount of penalty and the degree of orientation variability
appropriately, shifting away from the penalty region more
(in nonzero-penalty conditions) with increasing penalty,
increased stimulus variability, and closer penalty regions.
In Experiment 3, we decided to test further whether

subjects accurately account for the amount of stimulus
variability. In Experiment 2, there were three discrete

Penalty

Near penalty Far penalty

Overall0 100 500 Average 0 100 500 Average

Spread
0.002 54.6 24.2 10.0 29.6 9.6 3.8 3.8 5.7 17.6
0.02 53.8 25.8 14.6 31.4 11.2 5.4 5.8 7.5 19.4
0.2 52.1 24.2 17.1 31.1 22.1 14.2 6.7 14.3 22.7
Average 53.5 24.7 13.9 30.7 14.3 7.8 5.4 9.2 19.9

Table 2. Penalties in Experiment 2. Entries are the proportion of trials in each condition in which the setting fell within the penalty region,
averaged over subjects.

Figure 5. Results of Experiment 2. All plotting conventions as in Figure 4. (A) Setting shifts. (B) Performance in points per trial.
(C) Efficiency in the two zero-penalty conditions. (D) Efficiency in the four nonzero-penalty conditions. Individual data for the other subjects
are shown in Supplementary Figure A2.
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levels of orientation variability (Figures 1A–1C), and
these were easily discriminable. On each trial, subjects
recognized immediately whether it was a difficult or an
easy trial (in terms of accuracy at estimating mean
orientation). In Experiment 3, the orientation variability
was chosen from a continuous, uniform distribution of
spread values over the same range used in Experiments 1
and 2. Thus, subjects were forced to account for the
particular amount of uncertainty on each trial to
determine the appropriate shift. We mainly used naive
subjects in Experiment 3 that were new to the task, that is,
they had not participated in Experiments 1 or 2, so they
could not have been extending strategies learned in those
experiments.

Methods

In this experiment, there were four conditions within
each block of trials, corresponding to the four different
reward/penalty configurations. The orientation variability
was chosen randomly on each trial. In a pilot experiment,
we determined that estimated setting spread s^s was
approximately a linear function of line orientation spread
sl. Therefore, in the experiment the line orientation spread
sl was chosen uniformly over the range [0.002, 0.2]. This
procedure led to a fairly uniform distribution of difficulty,
and hence of optimal shift. The reward value was again
100 points; the penalty was 0, 100, or 500 points, varied
between blocks. Each block consisted of 24 practice trials
(6 repeats of each condition in random order), which did
not impact the subject’s cumulative score, followed by
120 trials (30 repeats of each condition) that did add to the

total score. Most subjects ran three full practice blocks
with penalty 0, followed by 12 blocks with penalty taking
the values 0, 100, and 500, repeated in sequence. Subject
MSL ran 9 scored blocks.

Results

In the nonzero-penalty conditions, no subject used an
optimal strategy. We begin by examining the data of the
one nonnaive subject (MSL) to indicate what nearly
optimal performance would look like. We then discuss
how the performance of the naive subjects differed from
this.
Figure 6 shows the raw data for subject MSL (an

author; the full raw data sets for the nine naive subjects
are shown in Supplementary Figure A3). There are six
panels corresponding to the three penalty levels (varied
between blocks) and the Near/Far configurations (mixed
within each block). Setting shift is plotted as a function of
stimulus orientation spread. On each plot, the horizontal
colored bars indicate the range of orientations correspond-
ing to the reward (light green) and penalty (dark red)
regions. These regions overlapped in the Near configu-
ration, as indicated by the light green/dark red stripes.
Thus, when a setting landed in the light green, there was a
reward. When it landed in the red, a penalty was incurred.
When it fell in the striped region, both the reward and
penalty were given. The variability of responses increases
with increase in stimulus spread (i.e., from left to right in
each plot) as in Experiments 1 and 2 (e.g., Figure 3). The
amount of shift upward (away from the penalty region)
was zero in the zero-penalty conditions, but increased

Figure 6. Settings in Experiment 3 for subject MSL. Individual shifts are plotted as a function of stimulus orientation spread for the six
conditions (three penalty levels, Near and Far configurations). The light green bar indicates the reward region. The dark red bar indicates
the penalty region. The striped area for the Near configurations indicates the range of orientations where the penalty and reward regions
overlapped. Data for the other subjects are shown in Supplementary Figure A3.
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with increasing penalty, with increasing stimulus orienta-
tion spread, and with the Near configuration. All of this is
qualitatively consistent with Experiments 1 and 2 and the
MEG predictions.
The spread of responses for subject MSL is shown in

Figure 7 (other subjects’ data are shown in Supplementary
Figure A4). The setting spread was computed by binning
the data (bin width = 0.04). Again, there was a tendency
for increasing setting spread with increasing stimulus
orientation spread, as expected. We fit a line to the data
pooled over the two zero-penalty conditions, plotted as the
dashed line in all six panels. There was a tendency for
setting spread to increase above this line in the 500-penalty
conditions.
Figure 8 shows the setting shifts (solid line) and theMEG

predictions (dashed line) as a function of stimulus orienta-
tion spread (binned with bin width 0.04; all other subjects’
data are shown in Supplementary Figure A5). The MEG
predictions were derived based on the straight line fit to
the zero-penalty conditions in Figure 7 as this yielded the
best estimate of the lowest setting spread of which this
subject was capable. That is, the increase in setting spread
with higher penalties must have been a result of a variable
strategy rather than sensory variability. The mean shifts
were close to the optimal strategy, although there was a
tendency to undershift in the high-penalty conditions.
Figure 9 shows the overall efficiency for MSL and for

the nine naive subjects in the zero- and nonzero-penalty
conditions. MSL’s strategy was nearly optimal (Figure 8),
and hence his efficiency was close to one. Although a few
of the other subjects achieved high efficiencies in the
nonzero-penalty conditions, several subjects’ efficiencies
were substantially lower than those in Experiments 1 and
2. Four out of nine naive subjects lost points in the
nonzero-penalty conditions, and one subject (SMN)

managed to lose points overall. (Note that subject AVP’s
efficiency for the zero-penalty case was significantly
greater than one due to outliers in the setting data leading
to an inflated estimate of AVP’s setting variability.)
This large range of efficiencies was apparently due to

differences in the strategies subjects adopted. The four
strategies that we found are illustrated in Figure 10, which
shows raw data for four subjects in two conditions
(penalty 0, Far; penalty 500, Near). Subject AT used a
near-optimal strategy in the penalty 0 and penalty 100
conditions. But when the penalty value was 500, this
subject played it safe by simply shifting so as to avoid the
penalty (all trials with the Near configuration, fewer with
the Far configuration). This turned out to be an excellent
strategy, as the possible MEG in these conditions is low,
and suboptimal strategies can be costly. As a result (and
with some luck), AT achieved a fairly high efficiency.
Subject AVP (along with AEW, AKK, and ST) responded
with random shifts (that appear to be uniform over the
entire range of possible shifts) whenever the task became
difficult (high penalty, Near configuration, and/or high
stimulus orientation spread). Subjects MHF and MMC
used a bimodal strategy for which shifts were either near
zero (aiming at the target) or 80–85- (aiming away from
the penalty), with the avoidance strategy predominating
for the more difficult conditions (leading to high efficiency
for MMC, who avoided the penalty primarily in the most
difficult conditions). Finally, subjects SMN and SF never
figured out how to handle the penalty region and always
aimed at the center of the target region, although their
setting spread increased substantially in the more difficult
conditions. These differences in strategy led to very
different proportions of penalties awarded (Table 3).
These proportions are consistent with the observers’
efficiency at performing the task.

Figure 7. Setting spreads in Experiment 3 for subject MSL. Setting spreads are plotted as a function of stimulus orientation spread for the
six conditions, computed using bins of width 0.4. Dashed lines show a linear fit to the data pooled over the two zero-penalty conditions.
Data for the other subjects are shown in Supplementary Figure A4.
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In summary, although two subjects (MSL, MMC) chose
strategies nearly indistinguishable from the MEG-optimal
solutions, themajority of subjects failed to do so. Instead, they
adopted a variety of strategies including the effective, avoid-
the-penalty strategy of subject AT as well as other, more
costly approaches.

Discussion

We have presented data from three experiments in
which subjects made perceptual judgments under risk. We

find that subjects varied their strategy as a function of
stimulus (and hence sensory) variability. In some cases
and for some subjects, strategies were used that were
MEG-optimal or nearly so over a wide range of stimulus
conditions. However, performance dropped below optimal
under conditions of high stimulus spread or if stimulus
spread varied from trial to trial over a continuous range of
spread values.
In the latter conditions (Experiment 3), there was a

great deal of intersubject variability. Subjects adopted a
variety of suboptimal strategies. In these conditions, some
subjects aimed at the center of the target region despite the
nearby, high-cost penalty region. Others switched between
aim-at-the-target and avoid-the-penalty strategies. Other

Figure 8. Average setting shifts in Experiment 3 for subject MSL. Setting shifts are plotted as a function of stimulus orientation spread for
the six conditions, computed using bins of width 0.4 (solid lines). Dashed lines indicate the MEG predictions based on the linear fit to the
setting spread data shown as the dashed lines in Figure 7. Shaded areas indicate the reward and penalty regions as in Figure 6. Data for
the other subjects are shown in Supplementary Figure A5.

Figure 9. Efficiency values for all subjects in Experiment 3. (A) Zero-penalty conditions. (B) Nonzero-penalty conditions. Note that panel B
has a different y axis scale and a break in the axis to accommodate the poor performance of subject SMN. Error bars indicate the range of
performance (95% confidence interval) expected from the MEG model.
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subjects never figured out a useful strategy at all, and
their settings became random in these more difficult
conditions.
What are the conditions under which nearly optimal

behavior is obtained? Consistent with the results of our
previous reaching studies, it seems that subjects perform
worse when optimal behavior includes aiming outside of
the reward region (Trommershäuser et al., 2005) or the
stochastic nature of the task is made explicit (Maloney
et al., 2007; see also Hertwig et al., 2004; Weber et al.,
2004). The current task was also more difficult due to its
memory requirements. Subjects had to remember the
mean orientation of the stimulus after it disappeared while
adjusting the response display.
Optimal behavior in our task required subjects to choose

a shift that depended on both the mean and the spread of
orientations in the stimulus. Actually, this optimal shift
depended on the setting spread, which resulted from line
orientation spread as well as response variability due to
errors in calculating the mean orientation or in adjusting
the payoff display.
There is evidence from the literature on visual texture

perception that stimulus orientation variability is repre-
sented in the human visual system. Two line textures
differ in appearance when the mean orientations or
orientation spreads differ sufficiently. Two such neighbor-
ing textures segregate perceptually. Dakin (2001) ana-
lyzed the sources of uncertainty in the coding of mean
orientation, and Dakin and Watt (1997) also noted
observers’ ability to discriminate textures based on
orientation variability. A region-based mechanism is used
for segregating textures based on differences in orientation
spread as if one were, indeed, calculating the orientation
spread of each constituent texture (Wolfson & Landy,
1998). A better understanding of the mechanisms and
sources of noise in coding texture orientation would help
refine models of performance in tasks such as ours.

Figure 10. Settings in Experiment 3 for four subjects in two
conditions (penalty 0, Far; penalty 500, Near). Plotting conven-
tions as in Figure 6.

Penalty

Near penalty Far penalty

Overall0 100 500 Average 0 100 500 Average

Subject
AEW 46.2 48.3 32.1 42.2 18.8 17.1 20.4 18.8 30.5
AKK 51.7 28.3 8.3 29.4 24.2 12.1 8.3 14.9 22.2
AT 47.5 26.7 0.8 25.0 17.1 13.8 6.2 12.4 18.7
AVP 52.1 52.1 14.2 39.4 8.8 12.5 10.4 10.6 25.0
MHF 44.2 36.2 15.4 31.9 20.4 13.3 7.9 13.9 22.9
MMC 47.1 36.7 9.6 31.1 14.6 9.6 3.8 9.3 20.2
MSL 56.1 30.6 9.4 32.0 12.2 8.3 4.4 8.3 20.2
SF 31.2 30.8 21.2 27.8 17.5 12.5 15.8 15.3 21.5
SMN 45.8 39.6 48.4 44.7 23.8 30.8 25.4 26.7 35.7
ST 46.2 35.8 19.6 33.9 21.7 19.6 19.6 20.3 27.1
Average 46.6 36.7 18.2 33.8 18.0 15.1 12.4 15.2 24.5

Table 3. Penalties in Experiment 3. Entries are the proportion of trials in each condition in which the setting fell within the penalty region,
averaged over subjects and noise levels.
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Maloney, L. T., Trommershäuser, J., & Landy, M. S.
(2007). Questions without words: A comparison
between decision making under risk and movement
planning under risk. In W. Gray (Ed.), Integrated
models of cognitive systems (pp. 297–315). New
York, NY: Oxford University Press.

Mamassian, P., Landy, M. S., & Maloney, L. T. (2002).
Bayesian modeling of visual perception. In R. P. Rao,
B. A. Olshausen, & M. S. Lewicki (Eds.), Proba-
bilistic models of the brain: Perception and neural
function (pp. 13–36). Cambridge, MA: MIT Press.

Pelli, D. G. (1997). The VideoToolbox software for visual
psychophysics: Transforming numbers into movies.
Spatial Vision, 10, 437–442. [PubMed]

Schou, G. (1978). Estimation of the concentration param-
eter in von Mises–Fisher distributions. Biometrika,
65, 369–377.
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