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Questions Without Words

A Comparison Between Decision Making Under Risk
and Movement Planning Under Risk

Laurence T. Maloney, Julia Trommershéiuser, & Michael S. Landy

If you want answers withoul words, then ask questions without words.

—Augustine of Hippo (translation, Wills, 2001, p. 139)

We describe speeded maovement tasks that are formally equivalent to decision making under risk. In these
tasks, subjects attenmpt to touch reward regions on a touch sereen and avoid nearby penally regions, much
as a golfer aims to reach the green while avoiding nearby sand traps. The subject is required to complete
the movement within a short time and, like the goller, cannot completely control the outcome of the
planmed action. In previous experimental work, we compared human performance to normative (opti-
mal) models of decision making and, in marked contrast to the grossly suboptimal performance of human
subjects in decision-making experiments, subjects’ performance in these experiments was typically indis-
tinguishable from optimal. We conjecture thal the key dilference between our tasks and ordinary dectsion
making under risk is the source of uncertainty, implicit or explicit. In the movement tasks, the probuabil-
ity of cach possible outeome is implicit in the subject’s own molor uncertainty, In classical decision making,
probabilities of sutcomes are chosen by the experimenter and explicitly communicated to the subject. We
present an experimental study testing this conjecture in which we introduced explicit probabilities into
the movement task. Subjects knew that some regions (coded by color) were stochastic. 17 they touched a
stochastic reward region, they knew that the chances of receiving the reward were 50 pereent and simi-
larly for a stochastic penalty region, Consistent with onr conjecture, subjects’ optimal performance was
disrupted when they were confronted with explicit uncertainty about rewards and penalties.

Many evervday decisions are wordless. We slow down  kind of decision making we engage in while attempting

in navigaling a narrow doorway. We speed up while
crossing the street with an eye to oncoming traffic. We
swerve to avoid a colleague on the stairs. These deci-
sions likely depend on several factors, notably expecta-
tions of pain or embarrassment, but we would be hard
pressed lo justify our “choices” in words or explain
exactly what those factors are. The range of similar
“wordless” decisions is endless and much of our day is
taken up with them. Yet, as important as these every-
day decisions may be, it is not even clear that we are
aware that we have made a particular decision or are
awarce of the factors that led to it. The reader may even
hesitate to classify such wordless decisions with the
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to fatten a stock portfolio or play out a hand of poker,
Morcover, even if we aceept that these wordless
decisions are decisions, we cannot be sure that we are
at all good at making then. If we did not slow down in
approaching the doorway, is there any appreciable
chance that we would hit either side of it instead of
passing through? Or are we being reckless in not slowing
even more? The information needed to make this sort
of deciston well is, on the one hand, the gains and
losses that are possible and, on the other, accurate esti-
mates of the possible diserepancy between how we
intend to move and how we actally do move. IHwill tum
out to be the latter sort of information that distinguishes
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ordinary decision making from the wordless decision
making considered here,

Inn this chapter, we discuss results from experiments
on human movement planning in risky environments
in which explicit monetary rewards are assigned to the
possible outcomes of a movement. We will show that
these conditions create movement tasks that are formally
equivalent Lo decision m:lking under risk—if subjects
can anlicipale the stochastic uncertainty inherent in
their movements. To anticipate our conclusion, we
find that they can do se and that their performance in
what we lerm niovement planning under risk is remark-
ably good. These tasks form a promising alternative
domain in which to study decision making, and they
are distinguished by the fact that the uncertainties sur-
rounding possible outcomes are intrinsic to the motor
system and, so far as we can judge, difficult to articu-
late: These lasks are questions without words where
stochastic information is available but not explicitly so.

We first review basic resulls on decision making
under risk and then present experimental results con-
cerning movement planning under risk. We end with
a description of an experiment in which we ask sub-
jects to carry oul a movermnent task in an environment
where the uncertainties surroimding possible outcomes
are a combination of implicit motor uncertainty and
explicit uncertainties imposed by the experimenter. As
we will see, subjects who accurately compensate for
their own implicit motor uncertainty fail to compen-

site currt'cll)' for added cx|)|icit nn(:crlninl}'_

Decision Making Under Risk:
A Choice Among Lotteries

Imagine that, when vou turn this page, you will find a
51,000 bill waiting for you. It's yours lo keep and do
with as you like. What alternatives spring to mind? A
banquet? Part payinent on a Hawaiian vacation? Opera
tickets? Fach possible outcome of the choice you are
about to make is appealing, to some extent, bul sadly
they are mutually exclusive. You have only one $1,000
bill, and vou can only spend it once. Decision making
is difficult m part becanse, by making one choice, we
exclude other, desirable ]mssi])ilili:_':i.

There is a further complication, though, that makes
decisions even harder. You can choose how lo dispose
of yOur windfall, but vou can't be L‘l)lﬂ])]ﬁl(“]_\' sure of
the outcome. You can plan to have a superb meal in
a famous restaurant—and fall ill. You may schedule a
vacation —and spend a week in the rain, Not every opera

performance is brilliant. What you choose in making
a decision is rarely a certain outcome but typically a
probability distribution across possible outcomes. If the
possible outcomes associated with a particular choice

are denoted O,,..., O, the effect of any decision is to
assign a probability p; to each possible outcome O,
The resull is called a lottery and denoted (py, Oy; pa,
0505 P, O,), where

2 B L.
=l

Decision making is, stripped lo its essentials, a
choice among lotteries. In choosing a plan of action,
the decision maker, in effect, selects a pzlrlicnlnr ](UH‘L‘]'}-’.
In the previous example, we did not assume that the
decision maker knows what the probabilities associated
with any plan of action are. Decisions without knowl-
edee of the probabilities associated with each outcome
are referred to as decision making under uncertainty.
When decision makers lave access to Lthe probabilities
induced by each possible plan of action, they are
engaged in decision inaking under risk. Our focus here
is on the latter sort of decision. In Table 21.1, we enu-
merate four possible plans of action that assign proba-
bilities to each of four possible monetary outcomes. If
the decision maker selects Lottery 1 (L1}, for example,
there will be an §0% chance of winning $100 and a
20% chance ()H(Jsiug S100. i contrast, L3 guarantees
a gain of $50. The key problem for the decision maker
is to select among lotteries such as those presented in
Table 21.1.

For the decision maker who prefers more money to
less, certain of these lotteries dominate others. 13 evi-
dently dominates 1.4. Comparison of the probabilities

rapre 2101 Four Lotteries

Possible Outcomes

S0 5100 550 S0
Probabilities
Lottery 1 .5 0.2 () 8}
Loltery 2 3 (1.5 0 ]
Loltery 3 1] {) 1 {)
Lottery 4 {0 { 0 |

Four possible monetary outcomes are listed in the first row. The
renaining rows specity a lottery with the given probabilities assigned
to the corresponding ontcomes above. I the decision maker selects
Lottery 4 (141, for example, $0 will be reeeived with certainty, 1f the
decision maker selects L3, $50 s received with certamty, With 1.2, 1l
is equally likely that the decision maker will win or lose 5100



associated with each outcome in L1 and L2 shows that
L1 gnarantees a higher probability of gain and a lower
probability of loss in every case. L dominates 1.2, That
is, the decision maker intent on winning money should
never select L2 i 1.1 is available or L4 iF L3 is available.
But the choice between 1.1 and L3 is nol obvious: with
L1, there is an evident tension between the high prob-
ability of winning $100 with lottery L1 and the 20%
chance of losing $100. With 1.3, in contrast, the maxi-
mum possible gain is £30, but it is also the minimum:
1.3 offers S50 for sure. Which will we pick, given the
choice? Which should we pick?

Decision Making Under Risk:
Normative Theories

The classical decision-making literature distingnishes
between deseriptive and normative theories of decision
making (Tversky & Kahneman, 1988). A descriptive
theorv of decision making attempts to predict what
choice a decision maker would make if confronted with
any collection of lotteries such as Table 21.1. Currently
no descriptive theory is widely accepted (Birnbaum,
2004). We will briefly describe previous atlempts to
develop descriplive theories in the next seclion.

A normative theory is a rule that orders any set of
lotteries from best to worst. We saw that we could order
some of the alternatives m "lTuble 21.1 by dominance
(L1 =12, 13 > I4). Any normative rule allows us to
complete this ordering. The lottery highest in the
resultant ordering is then the “best” lotery according
to the normative rule. The two oldest normative rules
are maximum expected value (MEV) and maximum
expected utility (ML),

If the outcomes are munerical (e.g., money), then
the expecled value of a lottery L = (- ()]: Pz, Ostes
£, O,) is the sum of the values weighted by the cor-
responding probabilities.

EV(L)=Y p0.. (1)
=l

The lottery selected by the MEV rile is the lottery
with the highest expected value (Amaunld & Nichole,
1662/1992). In "Table 21.1, for example, the MIEV lottery
is 1.1 with expected value $60,

Some decision makers may not agree with the
recommendation of the MEV rule for 'Table 21.1 and
instead prefer the sure win of 1.3 (with EV $50) to L1
with IV 560, 1f we were lo multiply all of the outcomes
by 100 so that
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LI'= (0.5, $10,000;0.2,~510,000) (2)

and
L3"=(1,5%5,000), (3)

then almost all will choose 1.3 with 1EV 55,000 rather
than 117 with £V $6.000. Decision makers are often
risk averse in this way, especially when confronled with
single decisions involving large values.

Danicl Bernoulli (1738/1954) proposed an alterna-
tive normative rule based on expected ulility, mtended
lo justify risk aversion. [f any monctary outcome O, is
assigned a mumerical utility denoted U(O),), then we
can assign an expected ulility (Bermoulli, 1738/1954)
to each lottery

EUL) =Y p,UO, +W), (4)
=1

where W is the total initial wealth of the decision
nuker. The decision maker who seeks to maximize
expecled ulility chooses the action whose corresponding
lottery has the MEU. When oulcomes are mumeric
and the utility lunction is a linear transformation with
positive slope, MEU includes MEV as a special case.

Bermoulli praposed MEU as both a normative and
a deseriptive theory, intended to explain risk aversion.
If the utility function U(O) is concave (the utility of
cach successive dollar is less than the preceding dol-
lar), then risk aversion is a consequence of MEU. In
addition, the concepl nf_ulilil'\' lias the great ;i(l\';mtugc
that we can potenlially deseribe decision imaking among
outcomes thal are nonnumerical by assigning them
numerical ulilities.

Decision Making Under Risk:
Descriptive Theories

Research in human decision making under risk during
the past forty vears is a catalog of the many, patterned
failures of narmative theories, notably MEU, to explam
the decisions humans actually make (Bell, Raiffa, &
Tversky, 1988; Kahneman, Slovie, & Tversky, 1952;
Kahneman & Tversky, 2000). These failures include
a lendency to frame outcomes in terms of losses and
gains with an aversion to losses (Kahneman & Tversky,
1979) and to exaggerate small probabilitics (Allais,
1953; Attneave, 1953; Lichtenstein, Slovie, Fischhoff,
Layvman & Coombs, 1978; 'I'versky & Kahneman, 1992)
as illustrated by the two examples in Figure 21.1.
Figure 21.1A shows data [rom Altneave (1933). In
this study, subjects were asked lo estimate the frequency
of occurrence of letters in English text. Itis evident that



several orders of magnitude and the same pattern of
exaggeration of small probabilities emerges. stimates
of the smaller probabilities are occasionally off by fac-
tors of 100 or more.

Studies that examine subjeets” use of probabilities
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frequencies. (A) A plot of estimated frequency of
occurrence of letters in English text versus actual
frequency (redrawn from Attneave, 1953). Subjects
overestimated the frequency of letters that ocenr rarely
relutive Lo the frequency of letters that oceur frequently.
(B) A plat of estimaled frequencies of lethal events
versus actual frequencies (redrawn from Lichtenstein
el al, 1978). Subjects markedly overestimated the
frequency of rare events relative to more frequently
oceuring events,

they overestimated the frequency of letters that occur
rarely compared with those that occur more frequently.
In Figure 21.1B, we replot data from Lichtenstein et al.
(1978). These data are the estimated frequencies of lethal
events plotted versus the true frequencies. The data span

in decision making under risk draw similar conclusions
(Gonzalez & Wi, 1999; Tversky & Kahneman, 1992;
Wu & Gonzalez, 1998, 1999): subjects’ use of proba-
bility or frequency information is markedly distorted
and leads to suboptimal decisions, a phenomenon we
will return to below.

There are other well-documented deviations from
MU predictions, and the degree and pattern of devi-
ations depends on many factors. How these [aclors
interact and affect decision making is controversial.
What is not in dispute is that it takes very litile to lead
a human decision maker to abandon an MEU rule in
decision making tasks and that, in the terminology of
Kalimeman and Tversky, human decision makers are
given to “cognitive illusions.”

Movement Planning Under Risk:
A Different Kind of Decision

The typical tasks found in the literature on decision
making under risk are paper-and-pencil choices with
no time limit on responding. Full information about out-
cornes and probabilities is explicitly specified, and there
are usually only two or three possible choices (lotteries).
In these tasks, both probabilities and values are selected
by the experimenter and are connmunicated to the sub-
ject through numeric representations or by simple gra-
phical devices. It is rare that any justification is given for
why a particular probability should be attached to a parti-
cular outeome. These sorls of decisions are very far
from the everyday, wordless decisions discussed in the
introduction.

Here, we introduce a movement planming task that
is formally equivalent to decision making under risk,
and we deseribe how subjects perforin in these sorts of
tasks. As will become evident, one major difference
between these tasks and more traditional examples of
decision making under risk is that the source of uncer-
tainty that determines the probabilities in each lottery
is the subject’s own motor variability. No explicit spec-
ification of probability or frequency is ever given to the
subject. Information about probability or frequency is
implicit in the task itself.

Trommershiiuser, Maloney, and Landy (20034,
2003h) asked subjects to make a rapid pointing move-



ment and touch a stimulus configuration on a touch
screen with their right index finger. The touch screen
was vertical, directly in front of the subject. A typical
stimulus configuration from Trommershiiuser et al.
(20034} is shown in Figure 21.2A. This stimulus con-
figuration or its mirror image was presented at a ran-
dom location within a specified target area on the
screen. A trial started with a fixation cross. The subject
was required to move the index Ainger of the right hand
to the starting position (marked on the space bar of a
keyboard). The trial began when the space bar was
pressed. The subject was required to stay af this starl-
ing position until after the stimulus configuration
appeared or the trial was aborted. Next, a blue frame
was displayed delimiting the area within which the tar-
get could appear and preparing the subject to move.
IFive hundred milliseconds later the target and penalty
circles were displayed. Subjects were required to touch
the sereen within 700 ms of the display of the circles or
they would incur a “timeout” penalty of 700 points. If
a subject hit within the green' target in time, 100 points
were camned. If the subject accidentally hit within an
overlapping red circle, points were lost. If the subject
hit in the region common to the two circles, both the
reward associated with the green and the penalty asso-
ciated with the red were incurred. If the subject hit the
screen within the time limit, but missed both circles,
no points were awarded.

The penally associated with the red cirele varied with
experimental condition. In one condition, the penalty
associated with the red circle was zero (i.e., there were
no consequences for hitting within the red circle). At the
other extreme, the penalty for hitting within the red cir-
cle was 500 points, five times greater than the reward for
hitting the green circle. Subjects were always aware of
the current penalty associated with the red circle.

FICURE 21.2 Possible movement strategies. (A) Stimulus
configuration from Trommershiuser et al. (2003a).
The reward circle is gray; the penalty cirele is black.
The reward and penalty associated with hitting within
each region are shown. (B) The black dots represent
simulated movement end points for a subject with
motor variability o=4.83mm who has adopted a
movement strategy with mean end point marked by
the diamond, at the center of the reward region. The
expected value (see text) is shown and is negative. This
maximizes the chances of hitting the reward region.
{C) The mean end point is shifted horizontally by
7 mun and the expected value is now positive. (D) A shift
upward from the axis of symmelry. The expected value
is also positive but less than that of B.
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They also knew that the summed points they earned
over the course of the experiment would be converted
into a proportional monetary bonus. At the end of every
trial, the subject saw a summary of that trial (whether
the subject had timed out, hit within the green and/or
red, and how much was won or lost on that trial). The
cuimulative total of low much the subject had won or
lost so far in the experiment was also displayed.
[Fsubjects conld perfectly control their movements,
they could simply touch the portion of the green circle
that did net overlap the red whenever touching the
red region incurred any penally, However, because of
the time limit, any ])]amncd movement resulted i a
movermnent endpoint on the sereen with substantial
scatter from trial to trial (Fitts, 1954; Fitts & Peterson,
1964; Mever, Abrams, Kornblum, Wright, & Smith,
1988 Murata & Twase, 2001: Plamondon & Alimi,
1997). In Figure 21.2B, we show a hypothetical dislri-
bution of endpoints. These points are distribuled
around a mean endpoint marked by a diamond which,
in Iigure 21.2B, is at the center of the green circle,
In Figure 21.2C-21.2D, we illustrate endpoint dislri-
butions wilh different mean endpoints. We return to

[I]L'.SL' illll.‘itl’il“[.llis ])L‘]f]\\'.
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The uncertainty in the actual location of the end-
point on each trial is the key problem confronting the
subject in these tasks, and if we want to model the sub-
ject’s behavior, we must have an accurate model of the
subject’s movemenl uncertainty. In all of the experi-
ments reported by Trommershiuser et al. (2003a, 2003h),
the distributions ol endpoints were not diseriminable
from isotropic Gaussian and the distribution for each
subject could therefore be characterized by a single
mumiber, o, the standard deviation of the Gaussian in
both the horizontal and vertical directions.

In Figure 21.3A, we plot 1080 endpoints for one
lypical naive subject together with quantile—quantile
plots of the deviations in the horizontal and vertical
directions. 'The quantile—quantile plots in IMigure 21.3B—
21.3C compare the distributions to a Gaussian distri-
bution, Estimated values of g varied from subject (o subject
by as much as a factor of 2. Trommershiiuser et al.
(2003a, 2003Dh) verified that the value of o did nol vary
appreciably across the conditions of each experiment
and across the range of locations on the sereen where
stimuli could be presented. Thus, if the subject dis-
places the mean endpoint by a small amount, the dis-

tribution of endpoints is simply shifted by that amount.
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picure 21,3 The distribution of endpoints. (a) Deviations Ax, Ay of 1,050
mean end points from the mean of the corresponding condition for a
subject with motor variability ¢ = 3.62mm. The distribution is close lo
isotropic and Gaussian. (b) Quantile—quantile plot (Gnanadesikan, 1997)
of the deviations in the horizontal {x) direclion compares the distribution

of these deviations to the Gaussian distribution. (¢) Quantile—quantile plot of

the vertical (v} deviations. The linearily of these plots mdicates that the

distributions are close to Gaussian.



What should a subject do to maximize his or her
winnings in the task just deseribed? The subject can
choosc a particular imovement strategy s, i.¢. a plan of
movenent that is then executed. The relevant outcome
of the planned movement in a given trial is the point
where the subject touches the sereen. Even if the subject
excented the same plan over and over, the outcomes
would not be the same as illustrated in Figure 21.2. By
selecting a movement plan, the subject effectively selects
an isotropic bivariate Gaussian density function ¢,(x, v;

X, ¥,, o) of possible endpoints on the touch sere

€11 Cetl-

tered on the point (x,, y,) with standard deviation g,

=2 5 "

e 20’ a (] )

q.')_\_(x, YiXes ,"c,ﬂ')

= 2
2o’

Subjects learn the task by performing more than 300
practice trials so that o has stabilized before data collec-
tion starts. Therefore, the choice of movement strategy
is the freedom to choose a mean cudpoinl f_,\"_, )’l,}. In
the following, we identify a movement strategy s with
its mean movement endpoint (x, v, ) and we denote the
distribution more compactly as ¢(x, y; s, 5).

Under these experimental conditions, the subject’s
choice among possible movement strategies is pre-
cisely equivalent lo a choice among lotteries. To see
this, first consider the possible ontcomes of their move-
ment when there is one penalty and one reward circle
present on the screen as in Figure 20.2A, with values
of =500 and +100 points, respectively. A movement
that hits the touch sereen within the time limit could
land in one of four regions: penalty only (region Rga»
value Vg =—500), the penaltvireward overlap (region
Ry value Vi, =—400), reward only (region Ree
value Viae=100), or outside of both circles (Region
Rz, value Vig =10). The probability of each of these
outcomes depends on the choice of mean endpeint.

lor exan |p]e,

pre(s)= _[ b(x, y;5,0)dxdy, (6)

e

is the portion of the probability mass of the distribution
that falls within the region Ry, when the mean endpoint
is (X, ¥,)-

The diamonds in Figure 21.2B-21.2DD mark possible
mean endpoints corresponding to different movement
strategies s. l'or each movement strategy, we can com-
pute the probability of each of the four outcomes,

denoted pyg, ..., pre by Monte Carlo integration. Any
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such choice of movement strategy s corresponds to the
lottery:

Li(s) = (fpe Vi Pres Veoi Press Vieibrar Via) (7)

The expected values of movement endpoints are given
in Figure 21.2B-21.2D. In Figure 21.2B, for example,
the mean endpoint is al the center of the green circle.
Pursuing this strategy leads to the highest rate of hit-
ting within the reward eircle. However, if the penalty
associated with the penally cirele is 300 as shown, the
expected value of this stralegy is markedly negative, In
contrast, the strategy illustraled in Figure 21.2C has
positive expected gain, higher than that corresponding
to Figure 21.2B and 21.2D. However, we cannot be
surc that any of the movement strategies illustrated in
Figure 21.2B-21.2D maximizes expected value with-
out evaluating the expected value of all possible move-
ment endpoints.

Many other lotteries are available to the subject,
cach corresponding to a parlicular movement strategy
or aim point and each with an associated lottery and
expected value. In choosing among these possible motor
strategies and all others, the subject effectively selects
among the possible sets of probabililies associated with
each outcome and an expected value associated with
the associated lottery. This is illustrated in Figure 21.4,
which shows the expected value corresponding to cach
possible mean endpoint as a surface plot (upper row)
and as a contour plot (lower row) for three different
penalty values (0, 100, and 500}, The reward value is
always 100, The maximum expected value (MLEV)
point is marked in each of the contour plots by a dia-
mond, When the penalty is 0, the MEV point is at the
center of the reward circle, As the penalty increases,
the MEV point is displaced farther and farther from
the center of the reward region. For a mean endpoint
closer to the center of the reward region, the probability
of reward is higher, but the probability of hitting
within the penalty region is also higher. This inerease
in expected penalty more than cancels the increase in
reward, i.e, the resulting expected value thal corresponds
to this mean endpoint is suboptimal, Alternatively, if the
MEWV point were farther from the center of the reward
region, then the probability of hitling the penalty
region would decrease but so would the probability of
hitting the reward region. The MEV point strikes
exactly the correet balance between risk and reward.

The MEV point depends on the geometry, number,
and locations of the penalty and reward regions; the
magnitudes of rewards and penalties; and the subject’s
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picURE 214 The expected value landscape. The expeeted value for each possible mean end point in the xy-plane
is shown as surface plots (upper row) and corresponding contour plots (lower row) for three different penalty
values (0, =100, =500). The maximum expected value (MEV) points in cach contour plot are marked by
diamonds. The MEV point is the center of the reward circle when the penalty is 0. It shifts away from the penalty
circle as the penalty increases. Note that the penalty cirele in the rightmost contour plot is coded as white rather

than black so as to be visible.

own motor variability o. These factors combine to cre-
ate an infinite set of possible lotteries that the subject
must choose among. Given the evident complexity of
the decision 1|1£|ki1|g task impli(‘.it in Figure 21.2, it
would be surprising if subjects chose strategies that
maximized the expected value in these tasks.
Mareover, the kinds of failures in decision making
tasks that we discussed in the previous section should
lead lo particularly poor performance in these tasks.
[f, for example, subjects interpret the penalty and
reward regions in terms of loss and gain on cach trial,
then the loss aversion documented by Kahneman,
Tversky, and others should lead them to move their
mean endpoint further from the penalty region than the
MEV point. Moreover, when the penalty is large rela-
tive to the reward, the probability of hitting the penalty
region is very small for mean endpoints near the MEV
point. If the subject overestimates the magnitude of
this probability (as subjects did in the experiments illus-
trated in Figure 21.1), the subject will also tend to
move loo far away from the penalty region to be optimal.

In summary, we have very liltle reason to expect
that subjects will approach optimal performance in
movement planning tasks of the kind just described.
They are very complex in comparison to ordinary deci-
sion tasks. The subject has little time to decide. Known
patterns of failure in decision making should lead to
poor performance. Given these expectations, the results
of the experiments of Trommershiuser et al. (2003a,
2003D), presented next, are remarkable.

Movement Planning Under Risk:
Initial Experimental Results

Method and Procedure

In this section we deseribe the results of Lixperiment 2
in Trommershiiuser et al. (2003b). This experiment
included four one-penalty configurations consisting of
a reward circle and a single overlapping penalty circle
(Figure 21.5A) and four two-penalty configurations
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ricure 21.5 Stimulus configurations. The stimulus configurations emplo}-‘cd in
Experiment 2 of Trommershiuser el al. (2003b). The reward region {(gray circle)
was always assigned a reward of 100 points. The penalty assigned to the penalty regions
(black circles) was either 0 {no pen;l“_\-') or 500. The different spalizl| Conl—ignmli(ms
were interleaved but the penalty values remained constant within a block of trials.
(A) The one-penalty configurations. (B) The two-penally configurations.

consisting of a reward circle and two overlapping
penalty cireles (Figure 21.5B). Trials were blocked with
32 trials per block (four repetitions of each of the eight
configurations in Figure 21.5). The reward value was
always 100 points and the penalty value was either () or
500 points (varied between blocks). If subjects hit a
region shared by two or more cireles, the subject
incurred all of the rewards and penalties associaled with
all circles touched. In particular, if the subject touched
within the region shared by two penally circles, as
many as 1000 points were lost, 500 for each penalty
circle.

Subjects completed 24 trials in total for each of the
16 conditions of the experiment (two penalties crossed
with eight stimulus configurations), a total of 354 exper-
imental trials, Subjects were well prucliccd, 1|e1\-‘i1|g
completed a similar experiment involving only conhig-
urations similar lo those in Figure 21.2A. Before that
first experiment, subjects carried out several training
sessions. The purpose of the training trials was to allow
subjects Lo learn lo respond within the timeoul limil of
700 ms and to give them practice in the motor task. A
subject did not begin the main experiment until move-
ment variability o had stabilized and the timeoul rate
was acceptably low (see Trommershiuser et al., 2003,
for details).

Results

Figure 21.6A shows the MEV points for one of the
one-penalty configurations and a particular subject
with o= 2.99mm, the least variable subject in this
experiment. These points of maximum expected value
are computed by first estimating the expected-value
landscape numerically (as in Figure 21.4) for each
subject (i.e., each value of o) and stiulus configura-
tion and picking the mean endpoint that maximizes
expected value. When the penalty is 0, the MEV point
is the cenler of the reward circle, marked by the open
circles i Iigure 21,6, When the penalty is 500, it is
displaced from the center of the reward circle, marked
by the xs. Sinee all of the remaining one-penally con-
fgurations are rolations of the first (Figure 21.5A), the
MEV points for all four configurations are also rota-
tions of the first. Subjects with higher values of o had
MEV points in the penalty 500 conditions that fell on
the same radii but were displaced further from the cen-
ter of the reward cirele. In Figure 21.6B, we show the
MEV point for one of the two-penalty configurations
(for the same subject).

In Figure 21.7A, we summarize the results of Lixperi-
ment 2 for the one-penalty conditions in Trommers-
hiuser et al. (2003D), plotling each subject’s mean
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prcure 21,6 Maximum  expected  value (MEV)
predictions. {A) The predicted MEV point for a
one-penally configuration in  Experiment 2 of
Trommershiuser et al. (2003h), for subject S5 for
whom o= 2.99mm. These predictions are obtained
by computing the expected value landscape as in
IMigure 21.4 for each combination of values, spatial
configuration, and subject’s motor variability. The
mean end point that maximizes expected value is
the MEY point. (B) The predicted MEV point for a
two-penalty  configuration in Experiment 2 of
Trommershiuser et al. (2003b), for subject S5 with
motor variabilily o= 2.99mn.

endpoint in cach condition of the experiment. The pre-
dicted MEV points when the penalty value was 500 are
indicated by the xs. The mean endpoints of the subjeets
are shown as solid cireles. The subjects” mean endpoints
lie close to the predicted values and there is no patterned
deviation across subjects. Figure 21.783 contains the
corresponding results for the lwo-penalty conligurations,

Trommershiuser et al. (2003b) also computed a
measure of the efheiency of each subject’s performance.
For each subject and each condition, we computed
the expected winnings of an ideal subject that used a
moverent strategy corresponding to the subject’s MEV
point and had the same movement variability as the
actual subject. We computed the ratio between the
subject’s actual carnings and the expected earings of
the ideal and refer to this ratio (expressed as a percent-
age) as the subjeet’s efficiency. Note, that, if the subject
were 100% efficient, then we would expect the meas-
ured efficiencies of the subject to be both greater than
and less than 100%, since the actual carnings on any
one repetilion of the experiment could be grealer than
or less than the expected earning (just as 100 tosses of
a fuir coin could result in more or less than 50 heads).
These calculations of efficiency are specific to the
subject. An ideal subject with a larger iotor variability
than a second ideal subject would be expected o cam
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less. Efficiencies are noted in Figure 21.7. They are nol
significantly different from 100% except far Subject S1
in the two-penalty configurations. Thus, subjects effi-
ciently solve movement planning problems that are
equivalent to decision making under risk with an infinite
number of four term lotteries (the one-penally case) or
an infinite number of seven- or eight-term lotteries (the
two-penally case). They solve these problems in under
700 ms with estimated efficiencies exceeding 90%.
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micurt 217 Results, (A) The predicted maximum
expected value (MEV) points and actual mean end
points for five subjects for Experiment Z of Trommer-
shituser et al. (2003b). The one penalty configurations.
(B) The two-penalty conﬁgl_:r:ltimm, Open circles rep-
resent zero-penalty trials for which the MEV point
is the center of the circle, Closed circles represent
penalty =500 trials for which the MEV locations are
indicated by the xs. The numbers to the right of each
configuration indicate efficiency, compuled as actual
score divided by the MIEV score (see Trommershiiuser
et al., 2003b, for details). Only one subject had an
efficiency that was significantly different from 100% or
optimal (italicized).



Trommershiuser et al. (2003b) considered the pos-
sibility that subjects only gradually learn the correct
mean endpoint as a result of feedback. If this were the
:ase, then we might expect to see trends in the choice of
mean endpoint across the earliest trials in a condition.
Subjects trained to hit within the center of the green
circle during the preexperimental training phase might
only gradually adjust their mean endpoints away from
the penalty cirele when the penalty is 500. Or, alterna-
tively, a subject who is loss averse and given to exagger-
ating the (small) probability of hitting within the penalty
circle might choose a mean endpoint that is initially
too far from the penalty circle and only gradually adjust
it toward the center of the reward region. lu cither case,
we would expect Lo see a trend in mean aim point along
the axis juining the center of the reward region and the
centroid of the penalty region.

Trommershiuser et al, found no significant trends
acrass subjects or conditions and concluded that sub-
jecls select movement strategies that maximize expected
value almost immediately when confronted with a par-
ticular stimulus configuration. There is no evidence for
learning in the data. Further, Trommershiuser,
Gephstein, Maloney, Landy, and Banks (2005) have
demonstrated that subjects can rapidly and suceess-
fully adapt to novel levels of movement variability
imposed by the experimenter.

Explicit and Implicit Probabilities:
An Experimental Comparison

Several factors may have contributed to the near-optimal
performance of snbjects in Tronumershiiuser et al.
(20034, 2003b). The movement planner makes a long
series of choices and over the course of the experiment
winnings inerease. Decision makers faced with a series of
decisions tend to move closer to MEV (Redelmeier &
Tversky, 1992; Thaler, Tversky, Kahneman, & Schwartz,
1997; “the house money effect:” Thaler & Johnson,
1990). Further, the gain or loss associaled with each
trial is small. Studies of risky choice find that subjects
are closer to maximizing expected value for small stakes
(Gamerer, 1992; Holt & Laury, 2002) and when sub-
jects receive considerable feedback over the course of
the experiment (Barron & Lirev, 2003).

However, the most evident difference between
movement planning under risk and ordinary decision
making under risk is that, in the former, the subject is
never given explicit information about probability dis-
tributions across outcomes associated with cach possible
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movement plan. He or she must in effect “know” the
probability of hitting cach region of the stimulus con-
figuration in order to plan movements well. The results
just presented suggest that human movement planning
has access to such fmplicil probabilily information. We
note that we do not elaim that the subject has conscious
access, but only that this information seemns to be avail-
able for planning movement.

In the study reported next, we introduce an element
of explicit probability information into the movement
task of Trommershiiuser et al. (2003a, 2003b). In explicit
probability conditions, the outcome of cach irial not
only depended on where the subject touched the com-
puter screen but also on an element of chance unre-

lated to motor performance.

Method

As in Trommershiiuser etal. (2003a), the stimulus con-
figuration consisted of a reward circle and a penalty
circle (I'igure 21.8A). The color of the penalty region
varied between trials and indicated the penalty value
for that trial (white: 0, pink: =200, red: =400 points).
The reward cirele was always green (drawn here as
medium gray) and the reward value was always 100.
The target and penalty regions had radii of §.4mm.
The target region appeared in one of four possible posi-
tons, horizontally displaced from the penalty region
by =1 or =2 multiples of the target radius (“near” and
“far” in Figure 21.8A). The far configurations were
included to keep subjects motivated through easily
scored points, but were nol included in the analysis. As
in previous expernments, the stimulus configuration
was displayed al a random location within a specified
targel region on each trial to prevent subjects from
using preplanned strategies.

Explicit-tmplicit Manipulation

"The key manipulation concerned the certainty or lack
of certainty of receiving a reward or penalty when a
reward or penalty cirele was touched. Either the reward
or penally cirele could be stochastic. If a circle was
stochastie, then the reward or penalty was obtained
only 50% of the time when the circle was touched. The
four probability conditions and the ferms we use in des-
cribing them are shown in Figure 21.8B.7 The certainty
condition was similar to the experiment of 'Trommer-
shiuser et al. (2003a).

The case Both 50% is of special interest. In this
case, we scaled both the probability of gelling a reward
and the probability of incurring a penalty by 50%.
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FIGURE 21.8 Fxperimental conditions. The configurations used in the final experiment. (A) 'The
spatial conditions. (B) The probability conditions. In each condition, the subject received the
reward or penalty associated with the region with either probability 1 (solid) or probability 0.5
(dashed). In the actual experiment, the penalty values were coded by color and the different
probability conditions were constant across blocks and communicated to the subject at the start
of each block.

The net result is to scale the expected value landscape
by a factor of one-half. In particular, the location of the
MIEV point is unaffected. This condition is also of
interest since not only should an ideal MEV mover
choose the same mean aim point in both conditions,
but also the performance of an MEU (utility-maximizing
subject) should be invariant as well. To see this, we
need only write down the conditions for the MEU
subject to prefer lottery Lis)=(p,, Op...; p,, O,),
over lottery L{s) = (p[, 0.5 p,.0,),

Y pUO,+W)> > pUO,+W) (8)
i=1 i=l
A Implicit Condition Explicit Condition
e X
Case 1 L 7
400 "= 100} =20 ’ 100
Case 2 O : 05 g (
=200 > 100 -400 100

and noke that mulliplying both sides of the inequality
by a positive factor Lo scale all of the probabilities does
not affect the inequality. The ideal MEU subject will
still prefer s even with all probabilities scaled by a com-
mon factor,

There are other connections between the conditions
of the experiment that are summarized in Figure 21.9.
Consider, for example, the Penalty 50% condition with
penalty 400. The MEV subject should choose the same
mean aim poinl as in the certainty condition with
penalty 200 since the net effect of the stochastic
penalty 1s to reduce the expected value of the penalty
by a factor of 2. We refer to the conditions in which the

B Implicit Condition

4 A
Case 3 \ ,-I O 5 X )
400> ==~ - 100 400 100
r, i l
) 0.5 %
-200™ ==~ ~ 100 -200

Explicit Condition

Case 4
100

ricuke 21.9 Equivalent conditions. (A) For the maximum expected value (MEV) movement planner, there are
four pairs of probability conditions (“cases”) where the expected value for any mean movement end point of the
first configuration in the pair is either identical Lo that of the second or ene-half of that in the second. The first
condition in each case is explicit (either the reward or penalty or both is stochastic) and the second is implicit.
Two cases are shown that are equivalent for an MEV movement planner but that might not be equivalent for an
maximum expected utility (MEU) movement planner (with a non-linear utility function). Two cases are shown
that would remain equivalent for an MISU movement planner as well as an MEV movement planner. For an
MEV plamner (A or B) or an MEU planner (B only), the predicted mean movement end points would be the
same for the two configurations in each case.



probabilities are all implicit as implicit conditions, the
conditions wilh explicit probabilities as explicit condi-
tions. Figure 21.9 lists four equivalences belween an
implicit condition and an explicit condition that should
hold for the MEV subject. We will refer to these pairs
of equivalent conditions as “cases.” We emphasize that
the computations mvolved in carrying oul the MEY
strategy wilh added explicil probabilities are very sim-
ple. The subject need only replace =400 by —200,
=200 by —100, or 100 by 50, depending on the pat-
tern of explicit probabilities and payoffipenally values
in each session, to translate from the explicil condition
of cach case in Figure 21.9 to the equivalent implicit
condition.

Procedure

Fach session began with a test Lo ensure the subject
knew the meaning of cach color-coded penalty cirele.
The subject received feedback and had to correctly
identify each penally type twice. After a subsequent
calibration procedure, there was a short block of 12
warm-up trials with zero penalty. The score was then
resel lo zero and dala collection began. The time
course of cach trial was as deseribed for previous
experiments and the same feedback was given after
every trial except as described below. The experi-
ment comprised five experimental sessions of 372
trials each, 12 warm-up trials (not included in analy-
ses), and 10 DBlocks of 36 trials. Blocks alternated
between blocks containing configurations with
penally values of 0 and 200, and blocks with penalty
values of (0 and 400, A penalty 200 block consisted of
six repetitions of penalty 200 and three repetitions of
penally zero for each of the four spatial configura-
tions, and the penalty 400 block was organized simi-
larly. Each session corresponded to a stochastic
condition in the order: certainty, Penalty 50%,
Reward 50%, Both 50%,
condition was repeated al the end (in the fifth ses-

certainly. The certainty

ston) to make sure that subjects” reaction to certain
rewards and penalties remained stable across the
course of the experiment.’ Trials in which the sub-
ject left the start position less than 100 ms after stim-
ulus display or hit the screen after the time limit
were excluded from the analysis. Lach subject con-
tributed approximately 1,800 data points; that is, 60
repelilions per condition (with data collapsed across
spatially symmetric configurations; 120 repetitions
in the certainty conditions).
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Results

Mean movement endpoints for cach condition were
compared with optimal movement endpoints as pre-
dicted by the optimal movement planning model of
Trommershiuser et al. (2003a) based on each subjecl’s
estimated motor uncertainty a. Subjects’ efficiency was
compuled as previously described: the ratio between a
stibject’s cumulative score in a condition and the cor-
responding expected optimal score predicted by the
model. We used bootstrap methods to test whether
ach subject’s measured efficiency differed from the
optimal performance possible for that subject. In
Figure 21,10, we plot actual points won for each sub-
ject and for each of two penalties in the certainty con-
ditions, Iive out of six subjects’ scores were statistically
indistinguishable from optimal (their efficiencies were
indistinguishable from 100%) replicating previons
findings (Trommershiuser et al., 2003a, 2003b). Only
one subject (data indicated by the dashed cireles)

Certainty condition
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preure 21,10 Results for the certainty conditions.
A plot of points won versus the expected
maximum expected value MEV points expected
for each of the six subjects in the Certainty
“near” condition. Different symbols correspond
to individual subjects. Open symbols indicate
the Penalty 400 condition, and filled symbols the
Penalty 200 condition. Data points for which
performance was significantly worse than
predicled are indicated by the dashed circles.
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reure 2111 A plot of the outcomes of equivalent
configurations, For each subject the mean number of
points carned per trial for explicit probability
conditions are plotted versus results for equivalent
implicit probability conditions, for each of the cases in
IMigure 21.9. Ior the optimal maximum expected value
observer, the expected values for the corresponding
conditions (where one condition’s results are doubled
if necessary: see |"ig11re 21.9) are identical. Thus, we
would expect the plotled results to be distributed
symmetrically around the 45-deg line. Instead, 19 out
of 24 plotted points fall below the line. We reject the
hypothesis that performance in explicit probability
conditions equals thal in equivalent implicit proba-
bility conditions (binomial test, p = 0.003).

differed significantly from optimal performance because
the subject did not shift far enoug]'l away from the
penalty region.

Next, we consider the pairs of conditions that should
be equivalent for the MEV movement planner. We
emphasize that the introduction of explicit probabili-
tics impuosed very little computational burden on sub-
jects. One subject (JM) spontaneously reported after
the experiment that she had followed the optimal strat-
egy deseribed above: a penalty of 400 that was ineurred
50% of the time in the Penalty 50% condition should
be treated exactly as the corresponding certainty con-
dition with penalty 200, and so on. As we will see, how-
ever, her resulls are not consistent with the strategy she
claimed to follow,

Figure 21.11 shows the winnings of each subject
for each of the equivalent probability conditions shown
in Figure 21.9 (doubling the winnings where one
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condition is predicted to resull in one-half the winnings
of the other). In each case, the winnings from the
implicit probability condition are plotted on the hori-
zontal axis, the wilmings from the equi\-'u]cnt :-:xplicit
probability condition on the vertical axis. For the MEV
movement planner, the plots should be randomly dis-
tributed above and below the 45-deg line. Instead, 19
out of 24 fall below, indicating that subjects tended
to earn less in stochastic conditions than they did in
equivalent certainty conditions. We can reject the
hypothesis that subjects do equally well in the explicit
as in the equivalent implicit probability conditions
(binomial test, p=003). The introduction of explicit
probabilities tended to reduce subjectls’ winnings.

Subjects” performance dropped significantly below
optimal when gains or losses were explicitly stochastic.
This is also obvious in Fig. 21.12, which shows effi-
ciencies of each subject in each condition. A subject
following an MEV strategy would exhibit an expected
ethcieney of 100, marked by the horizontal line. For
the certainty condition, one subject (AL) deviated sig-
nificantly from MEV in both penalty conditions, as
noted above. The estimated efficiencies for the other
five subjects are distributed evenly around 100. In the
three explicitly stochastic conditions, several other sub-
jects exhibit large drops in efficiency, going as low as
—400 (they are losing money at four times the rate
they could have won money).

For five out of six subjects in the implicitly stochas-
tic (certainty) conditions, earnings were indistinguish-
able from those expected from an optimal MEEV skrategy.
Performance dropped significantly below optimal only
when subjects were confronted with explicit uncertainty
about whether I']lﬁ}' would incur a reward or pcnn]f}-‘
on a single Irial. The introduction of explicit probabil-
ities disrupted subjects’ near-optimal performance
even when the added cognitive demands were trivial,

Conclusion

We have introduced a class of movement tasks that are
formally equivalent to decision making under risk and
that model a very important elass of everyday decisions
“without words.” In these decisions, there is a strong
element of uncertainty in the outcome obtained as a
consequence of any plan of action we choose, but this
uncerltainly originates in our own motor system. Our
results suggest that, at least in some of these situations,
we act as il we had good but “wordless” access to
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FIGURE 21,12 Efficiency is plotied for all subjects in all penalty and probability
conditions. The expected efficiency for a maximum expected value movement
planner is 100%. There are two bars for each subject, the left for the penalty 200
condition, the right for the penalty 400 condition. We tested each subject’s estimated
efficiency against optimal at the .05 level by a bootstrap method (Efron & Tibshiramni,
1993). Gray bars indicate significantly suboptimal performance. (A) Certainty, In
the certainly condition we could not reject the hypothesis of optimality for five out
of six subjects (see also Figure 21.10). (B) Penalty 50%. (C) Reward 50%. (13). Both
50%. In the explicit probability conditions (B, C, D), all but ene subject fell short of
optimal in one or more conditions. In the five cases where the bar goes below 0,
a subject could have won money on average, bul instead lost money steadily.

estimates of the probabilitics attached to the possible
outcomes of any plan of action. Moreover, our use of
these implicit probabilities is close to optimal.

Our results are consistent with the findings of
Gigerenzer and Goldstein (1996) and Weber, Shalir,
and Blais (2004; see also Hertwig, Barron, Weber, &
Frev, 2004): decision makers have difficulty reasoning
with explicitly stated probabilities. Weber et al. (2004)
find that experience-based choices do not suffer from
the same suboptimal decisions as pencil and paper
tasks involving explicit probabilities. We note however
that the absence of learning trends in Trommershiuser
ctal. (2003D) indicates that experience with a particular

stimulus configuration was 1ot necessary. Subjects
seemed to develop enough understanding of their own
movement variability to allow them lo adapt to novel
configurations almost instantly.

The reader may still question whether the study of
movement planning, as evinced by the tasks we have
preseniled, has major implications for the classical study
of decision making in cconomic tasks or whether it
informs us about human cognitive abilities. Resolution
of this issue will only follow considerable experimental
work comparing human performance in both kinds of
tasks. We will end, though, with two conjectures. First,

we conjecture that the cognitive illusions that decision
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makers experience in paper-and-peneil tasks are not rep-
resentative of performance in the very large mumber of
movement decisions we encounter i any single day.
Second, we suggest thal the lnnman capacity for decision
making bears the same relation to the economic tasks of
classical decision making as human language compe-

tence bears to solving the Sunday crossword puzzle.

Acknowledgments

This research was funded in part by National Institutes
of Health Grant I'YO8266, Human Frontier Science
Program grant RGOL0Y/1999-B, and by the Lnmy-
Noether-Programme of the Gennan Science Foundation

(DFG).

Notes

I. The stimulus configurations in all of the experi-
ments discussed here were coded by colors, typically red
(*penalty”) and green (“reward”). We replace green by gray
and red by black in the illustrations here,

2. The dashed lines used to represent probability con-
dition in Figure 21.5B and following ligures are for the
convenience of the reader. The subject always saw solid
cireles with penalty coded by color and probability condi-
tiom constant across cach block of the experiment, com-
nnmicaled to the subject at the beginning of cach block.

3. For one subject, mean movenment endpoints dif-
fered significantly between the two certainty Sessions |
and 3, indicating that his responses did not remain stable
across sessions, His data were excluded from the analysis,
Movement endpoints of the remaining six subjects were
collapsed for Sessions 1 and 5.
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