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A detailed mathematical analysis of the diffusion process of neurotransmitter inside the
synaptic cleft is presented and the spatio-temporal concentration profile is calculated. Using
information about the experimentally observed time course of glutamate in the cleft the
effective diffusion coefficient Dnet is estimated as Dnet 0 20–50 nm2 ms−1, implying a strong
reduction compared with free diffusion in aqueous solution. The tortuosity of the cleft and
interactions with transporter molecules are assumed to affect the transmitter motion. We
estimate the transporter density to be 5170 to 8900 mm−2 in the synaptic cleft and its vicinity,
using the experimentally observed time constant of glutamate. Furthermore a theoretical
model of synaptic transmission is presented, taking the spatial distribution of post-synaptic
(AMPA-) receptors into account. The transmitter diffusion and receptor dynamics are
modeled by Monte Carlo simulations preserving the typically observed noisy character of
post-synaptic responses. Distributions of amplitudes, rise and decay times are calculated and
shown to agree well with experiments. Average open probabilities are computed from a novel
kinetic model and are shown to agree with averages over many Monte Carlo runs. Our results
suggest that post-synaptic currents are only weakly potentiated by clustering of post-synaptic
receptors, but increase linearly with the total number of receptors. Distributions of
amplitudes and rise times are used to discriminate between different morphologies, e.g. simple
and perforated synapses. A skew in the miniature amplitude distribution can be caused by
multiple release of pre-synaptic vesicles at perforated synapses.
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1. Introduction

Differences in the processing of information at
synapses of the central nervous system (CNS)
and at synapses of the neuromuscular junction
(NMJ) are not surprising, given the different
ways of functioning of the two systems. NMJ
synapses are larger in size, have a higher number
of receptors and exhibit a wider synaptic cleft. At

central synapses (see Edwards, 1995b for a
review) the synaptic cleft is not only much
narrower (e.g. Ichimura & Hashimoto, 1988),
but also seems to be filled with several molecules
or a dense staining, gel-like material (see e.g.
Edwards, 1995b; Harris & Kater, 1994; Peters
& Kaiserman-Abramof, 1969; Van der Loos,
1963). The amount of transmitter molecules
released at CNS synapses exceeds the number of
post-synaptic receptors by far, suggesting mech-
anisms of plasticity different from those at the
NMJ (see e.g. Bekkers, 1994; Edwards, 1995b).

*Author to whom correspondence should be addressed.
E-mail: trommer.theorie.physik.uni-goettingen.de
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Furthermore synapses of the CNS show a
surprising morphological variety whose effects
for the function of synaptic transmission and
plasticity is not understood.

Several theoretical approaches to modelling
synaptic transmission have been introduced and
proven useful to elucidate mechanisms of
synaptic transmission at the NMJ (Agmon &
Edelstein, 1997; Bartol et al., 1991; Bennett et
al., 1995, 1997; Faber et al., 1992; Stiles et al.,
1996) as well as at CNS synapses (Barbour et al.,
1994; Busch & Sakmann, 1990; Holmes, 1995;
Kleinle et al., 1996; Kruk et al., 1997;
Marienhagen & Zippelius, 1995; Uteshev &
Pennefather, 1996, 1997; Wahl et al., 1996). All
these models involve free parameters which
either have not been determined experimentally
or are not accessible. For example the diffusion
coefficient of glutamate has only been measured
in aqueous solution (Longworth, 1953) and not
in the cleft. The values assigned to this parameter
in various models of synaptic transmission vary
from 10 nm2 ms−1 (Kleinle et al., 1996) to
760 nm2 ms−1 (Barbour et al., 1994), correspond-
ing to its value in aqueous solution. Assumptions
regarding mechanisms of transmitter release (see
e.g. Kleinle et al., 1996) and uptake (see e.g.
Holmes, 1995; Rusakov & Kullmann, 1998;
Uteshev & Pennefather, 1997) also differ
remarkably.

Being aware of the large number of poorly
known model parameters we design a theoretical
model of excitatory, glutamate AMPA-mediated
synaptic transmission using the minimal number
of free parameters necessary to account for the
basic features of the transmission process.

In a first step we will estimate a net-diffusion
coefficient Dnet to characterize the net-dynamics
of transmitter molecules, using the knowledge
about transmitter–transporter interactions
(Wadiche et al., 1995; Diamond & Jahr, 1997)
and the total residence time of transmitter
molecules inside the cleft (from Clements et al.,
1992). We use the diffusion equation to model
the net-movement of transmitter molecules
inside the synaptic cleft, which is most likely
slowed down compared with aqueous solution
due to multiple binding and unbinding effects to
transporters within the cleft and its vicinity (see
e.g. Asztely et al., 1997; Bergles & Jahr, 1997;

Diamond & Jahr, 1997; Edwards, 1995b;
Isaacson & Nicoll, 1993; Mennerick et al., 1998;
Otis et al., 1997; Takahashi et al. 1996; Tong and
Jahr, 1994a, b; Wang et al., 1998). We show that
concentration fluctuations equilibrate rapidly
across the height of the synaptic cleft, so that a
two-dimensional profile is sufficient to account
for spatial fluctuations in transmitter concen-
tration. From the concentration profile of our
model, we calculate the average residence
time of transmitter molecules in the cleft and
compare it to the experimentally observed time
(Clements et al., 1992). This yields an estimate
of the net-diffusion coefficient of Dnet =20–
50 nm2 ms−1.

In a second step we use a Monte Carlo model
as first introduced by Bartol et al. (1991) in this
context, with the purpose to discuss and to
reproduce the ‘‘noisy’’ shape of post-synaptic
currents due to the inherent noise in the
individual receptor dynamics (see e.g. Jonas et
al., 1993; Spruston et al., 1995; Hausser & Roth,
1997). We compute the distribution of ampli-
tudes, rise and decay times of AMPA mediated
EPSCs, which turn out to be as broad as
observed experimentally (Jonas et al., 1993;
Spruston et al., 1995).

In a third step we derive a novel chemical
kinetic scheme describing individual, spatially
distributed post-synaptic receptors in a locally
changing concentration field. The model is based
on the assumption that variations in the
transmitter concentration due to binding and
unbinding by post-synaptic receptors can be
neglected. Since the number of post-synaptic
receptors is low compared with the number of
transmitter molecules released, this assumption
is well justified at CNS synapses. Chemical
kinetics provides a very fast and accurate scheme
to calculate average properties and investigate
the influence of different receptor distributions
on the shape of EPSCs. We focus on
AMPA-/kainate receptors, which are thought to
mediate the large component of excitatory
post-synaptic currents (see Edmonds et al., 1995,
for a review). They exhibit a lower binding
affinity for glutamate than NMDA receptors,
which should lead to a higher sensitivity of
AMPA-/kainate responses due to spatial fluctu-
ations in the receptor distribution or in the
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transmitter concentration (see e.g. Kullmann &
Asztely, 1998).

2. Theoretical Model

2.1.     

 

We model the synaptic cleft as a flat cylinder
[Fig. 1(a)], because pre- and post-synaptic
terminals stick together closely in central
synapses. The transmitter is released from a
point source at the pre-synaptic side of the cleft*
and spreads inside the cylindrical cleft according
to Fick’s second law. Certainly the transmitter
movement inside the cleft is different from free
diffusion in aqueous solution due to interactions
with transporters or a dense, gel-like material
(see e.g. Edwards, 1995b; Harris & Kater, 1994).
The effects of these interactions are two-fold:
first, frequent fast binding of transmitter to
transporters and other molecules, as well as the

tortuosity of the cleft, will slow down diffusion,
but will not remove transmitter irreversibly from
the cleft. Hence the transmitter dynamics
remains diffusive for time-scales relevant to the
receptor kinetics and is modeled by a net
diffusion coefficient Dnet, smaller than the free
diffusion coefficient Dwater. For a particular
kinetic scheme of transmitter–transporter inter-
action (Diamond & Jahr, 1997; Wadiche et al.,
1995) we compute the time course of glutamate
in the cleft and estimate the density of
transporters in the cleft and its vicinity. Second,
uptake and transport into intracellular compart-
ments causes depletion of transmitter. Although
detailed information about the distribution and
density of transporters in- and outside the cleft
is not available so far, there seems to be
agreement about the existence of intra- and
extra-synaptic uptake mechanisms to ensure glial
and neuronal uptake and a rapid clearance of
abundant transmitter molecules (Bergles & Jahr,
1997; Hertz et al., 1978; Holmes, 1995;
Kullmann & Asztely, 1998; Rusakov & Kull-
mann, 1998; Takahashi et al., 1996; Wang et al.,
1998). We model neuronal and glial transmitter
uptake by introducing an absorbing boundary
for the diffusion field. Its location is chosen
outside the post-synaptic density (PSD), which
contains the post-synaptic receptors and typi-
cally exhibits a diameter of 100 to 400 nm (see

*There has been a discussion in the literature about the
effect of diffusion pores on transmitter diffusion (see e.g.
Khanin et al., 1994; Holmes, 1995; Kleinle et al., 1996;
Clements, 1996; Uteshev & Pennefather, 1996). As the
authors come to differing conclusions about the necessity of
including a diffusion pore into theoretical modeling, we
want to restrict our model to the simplest case for the
beginning.

F. 1. (a) Two-dimensional model of the synaptic disc: post-synaptic receptors are distributed within the PSD of radius
R. Once the transmitter molecules hit rabs they are absorbed. Small area increment DF=2oriD8=2(o)2, bounded by D8
and 2o to estimate the local transmitter concentration for a receptor located at position ri; (b) difference L between a two-
and a three-dimensional model of the synaptic cleft as function of time and for different heights h of the synaptic cleft.
The three-dimensional model is averaged over the small interval of height d=5 nm. (——) h=10 nm; (W) h=20 nm;
(q) h=30 nm; (R) h=40 nm.
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F. 2. Estimate of the net-diffusion coefficient Dnet as a function of the model parameter rabs. (a) The spatio-temporal
concentration profile (small upper inset) is averaged over time and area of the PSD. The diffusion coefficient Dnet is shown
for R=200 nm and several estimates of �T�: (q) 0.8 ms; (——) 1 ms; (W) 1.5 ms; (w) 2 ms. Upper inset: concentration
profile as function of the radial component r as calculated from eqn (A.2), at times t=10, 20, 50 and 100 ms; transmitter
release in the middle of the synaptic disc; (b) estimate of Dnet for �T�=1 ms and different radii of the PSD [R=100 (w),
150 (Q), 200 (——) and 250 (r) nm).

e.g. Edwards, 1995b), so that the absorbing
boundary is set in the range of 500 to 1000 nm
[Fig. 1(a)], i.e. comparable to the typical distance
between neighboring synapses (Rusakov &
Kullmann, 1998). An absorbing boundary at
larger distances has the same effect as less
efficient uptake mechanisms (see Fig. 3).

Given the boundary and initial conditions
introduced above, the three-dimensional spatio-
temporal concentration profile c(r,8,z,t) of
transmitter molecules in the cleft can be
computed (see Appendix A.1). Since the
extension h0 15–20 nm of the synaptic cleft in
the z-direction is small compared with its
extension in the lateral direction, it is reasonable
to reduce the model to two dimensions (see
Appendix A.2). The three-dimensional concen-
tration profile is integrated over a small distance
d right above the PSD and compared with the
two-dimensional profile cF(r,8,t) in Fig. 1(b): the
differences are seen to vanish within a few ms.

2.1.1. Mean residence time of transmitter in the
cleft

The residence time �T� of a particle, which
diffuses along the path X(t), is given as the
integral over all times, which the particle spends

inside the area KR = pR2 of the PSD (for detailed
calculations see Appendix A.1), i.e.

�T�=g
a

0

dt �YKR(X(t))�, YKR(x):=6 1 x $ KR

0 elsewhere

=
1
NT g

a

0

dt g
2p

0

d8 g
R

0

dr r cF (r,8,t)

=
2Rrabs

Dnet
s
a

n=1

1
l3

0n

J0(a0nr0)J1(a0nR)
[J1(l0n)]2

, (1)

with Jm denoting the m-th Bessel function of the
first kind, lmn the n-th zero of Jm and
amn = lmn/rabs. Hence eqn (1) relates the mean
residence time �T� to the radius R of the PSD,
the radius of the absorbing boundary rabs and the
net-diffusion coefficient Dnet. Experiments on
glutamatergic synapses yield the following
estimates: �T�0 1 ms for the residence time
(Barbour et al., 1994; Clements, 1992; Spruston
et al., 1995), R0 200 nm for the radius of the
PSD (see e.g. Edwards, 1995b) and rabs 0 500–
1000 nm (Rusakov & Kullmann, 1998). This
leaves us with a range of values for Dnet giving
rise to the experimentally observed values of T,
R and rabs (see Fig. 2 and Table 1). The absorbing
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T 1
Range of parameters

Symbol Definition Value Comment

Dt Time step 4 ms
Geometry
h Height synaptic cleft 15 nm From Edwards (1995b)
R Radius PSD 50–400 nm From Edwards (1995a, b)
rabs Radius absorbing 200–2000 nm From Rusakov &

boundary Kullmann (1998)
DF Binding area 113.1 nm2 Free parameter,

kinetic model
rbind ‘‘Binding radius’’ 6 nm Free parameter,

Monte Carlo simulation
Transmitter
NT No. of molecules 2000–4000 From Edwards (1995b)

per vesicle
Texp, �T� Time constant 0.8–2 ms From Clements (1992)

boundary is set in the range RE rabs E 10 R
which gives an estimate for Dnet 0 20–
50 nm2 ms−1 (Fig. 2).

If the range of transmitter diffusion is
unbounded (rabs =a), i.e. no uptake is con-
sidered at all (as done e.g. by Barbour et al.,
1994; Kleinle et al., 1996; Wahl et al., 1996), the
concentration profile is given exactly by
cF(r,8,t)=NT exp (− r2/(4Dt))/(4pDnett). The
mean residence time is then infinite due to a
logarithmic divergence of the integral in eqn (1)
at long times and cannot be used to estimate Dnet.

2.1.2. The reduced diffusion coefficient reflects a
large transporter density

The calculated value of Dnet is one order of
magnitude smaller than the free diffusion
coefficient of glutamate Dwater =760 nm2 ms−1 in
water (Longworth, 1953) and indicates that the
transmitter molecules in the cleft are slowed
down compared with free diffusion in aqueous
solution. A reduction of the diffusion coefficient
to a value of Dnet 0 300 nm2 ms−1 due to
tortuosity of the cleft has been suggested
(Garthwaite, 1985; Nicholson & Phillips, 1981;
Rise et al., 1985; Ichimura & Hashimoto, 1988).
Several theoretical approaches have followed
this idea (Barbour et al., 1994; Holmes, 1995;
Uteshev & Pennefather, 1997; Wahl et al. 1996).
The reduction which we find (Dnet 0 30 nm2 ms−1)
is much stronger and in correspondence with

Kleinle et al. (1996) and Bennett et al. (1997),
who obtained reasonable time courses in
calculated EPSCs using such a small diffusion
coefficient as a fit parameter.

An increase in EPSC-amplitudes following the
blocking of transporters has been observed
(Barbour et al., 1994; Diamond & Jahr, 1997;
Isaacson & Nicoll, 1993; Tong & Jahr, 1994a, b)
and it has been suggested that first transporters
buffer transmitter on a fast submillisecond
time-scale (Diamond & Jahr, 1997), while the
transport cycle itself is slow (020 s−1) compared
with the AMPA-EPSC rise time (Wadiche et al.,
1995; Diamond & Jahr, 1997). These findings are
summarized in a kinetic scheme (Rusakov &
Kullmann, 1998)

Tr+B_
n1

n2

TrB :
n3

B, (2)

with Tr denoting the transmitter, B the
transporter, and TrB the transmitter–transporter
complex. The second step models the depletion
of transmitter due to transport into an
intracellular compartment and the reappearance
of the unbound transporter. This enables us to
roughly estimate the effect of a given transporter
density on the time course of the spatially
averaged overall transmitter concentration in the
cleft (Fig. 3).

As displayed in Fig. 3 buffering of transmitter
by transporters as calculated from the kinetic
scheme gives rise to transmitter dynamics
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F. 3. Time course of 3000 transmitter molecules inside the PSD (radius R=200 nm) as calculated from the net-diffusion
model (transmitter release from a point source in the middle of the PSD, diffusion coefficient Dnet =30 nm2 ms−1, absorbing
boundary at rabs =500 nm, black line, and rabs =1000 nm, thick black line). (R) indicate the transmitter time course as
caused by transporters (kinetic rates from Diamond & Jahr, 1997: n1 =1×106 M−1 s−1, n2 =100 s−1, and n3 =20 s−1;
density of 017 800–15 500 mm−2 on a disc of 500–1500 nm around the point of release), (w) mark the effect of less efficient
transmitter uptake (n3 =300 s−1). Small inset: the decay of particles is approximated by two exponentials (W); t=0.38 ms
for the fast component and t=1.7 ms for the slow component. (——): diffusion model.

inside the cleft, which is comparable to the time
course as calculated from the diffusion model*:
a decay of transmitter concentration in accord-
ance with experiments (Bartol et al., 1994;
Clements et al. 1992; Spruston et al., 1995) is
either reproduced in the frame of the kinetic
uptake model [eqn (2)] by buffering of transmit-
ter by transporters if a density of 015 500 to
17 800 mm−2 transporters is assumed, or by a
net-diffusion coefficient of Dnet =30 nm2 ms−1.
This indicates a slowing down of transmitter
movement by a factor of 025 compared with
free diffusion (Dwater =760 nm2 ms−1; Longworth,
1953). Taking into account that the tortuosity of
the cleft contributes to slowing down of diffusion
by a factor of 02 to 3 (Garthwaite, 1985;
Nicholson & Phillips, 1981; Rise et al., 1985;
Ichimura & Hashimoto, 1988) we find an

estimate of 5170 to 8900 carriers mm−2 in the
synaptic cleft and its vicinity. Experiments yield
a transporter density of 1315 to 13 150 mm−2

(Takahashi et al., 1996).
Figure 3 (small inset) shows that the time

course of transmitter in the cleft can be fitted by
a sum of two exponential functions, as assumed
by Clements, (1996). In our model the rapid
decay (t=0.38 ms) arises from the rapid
equilibration of molecules across the PSD [see
also the fast decrease in the concentration profile
in the small inset in Fig. 2(a)] and reflects the fast
time-scale of transmitter buffering by trans-
porters (Diamond & Jahr, 1997). The second,
lower time constant characterizes the clearance
of transmitter from the cleft (t=1.57 ms).
Variations in the point of release do not
contribute essentially (data not shown here), in
contrast to differences in the extension of the
PSD, which affect the estimate of Dnet [Fig. 2(b)].

We emphasize that the estimated diffusion
coefficient Dnet is independent of any kinetic
receptor model, but is determined by the

*To gain the time course of the total transmitter
concentration in the frame of the diffusion model the
spatio-temporal concentration profile from eqn (A.2) is
integrated over the PSD-area.
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parameters R, rabs and �T� only. The parameter
range is chosen to give an upper limit of the
diffusion coefficient Dnet, which still is about an
order of magnitude smaller than the free
diffusion coefficient.

2.2.      



Monte Carlo simulations of receptor popu-
lations are known to reproduce the experimen-
tally observed noisy character of EPSCs (Korn
et al., 1993). For a detailed description of the
method of Monte Carlo simulations of receptor
dynamics we refer to the work of Bartol et al.
(1991; see also Wahl et al., 1996). To model
AMPA-/kainate receptors we use the kinetic
seven state model (Fig. 4) of Jonas et al.
(1993). A number of nrec receptors are located at
random positions ri (i=1, . . ., nrec), uniformly
distributed across the PSD.

In Monte Carlo simulations of receptor
populations, we compute individual stochastic
trajectories of transmitter molecules instead of
the concentration profile of Section A.1. In
contrast to most Monte Carlo studies, which
treat diffusion on a grid model of the cleft
(Agmon & Edelstein, 1997; Bartol et al., 1991;
Bennett et al., 1995, 1997; Faber et al., 1992;
Kruk et al., 1997; Stiles et al., 1996) we chose a
continuous model of diffusion steps for discrete
time steps Dt. The subsequent diffusion steps of
single transmitter molecules are then given by a
Langevin equation (Gardiner, 1983) for the

position rj(tk)= (xj(tk), yj(tk)) of the j-th molecule
at time tk

xn(ti+1)= xn(ti)+ h1(ti)z2DDt,

yn(ti+1)= yn(ti)+ h2(ti)z2DDt, (3)

where h1(ti) and h2(ti) denote Gaussian dis-
tributed random numbers with

�h(t)�=0; �hi(t)hj(t')�= dijd(t− t').

As shown in detail in Bartol et al. (1991)
statistical averages can either be calculated by
averaging over many possible diffusion paths or
equivalently by using the spatio-temporal con-
centration profile cF(r, 8, t), as calculated in
Appendix A.1.

For a given distribution of transmitter
molecules the receptors are updated in fixed
order by calculating the transition probabilities
kjDt for the respective accessible states (see
Fig. 4) and comparing it to a random number.
Transitions between some of the states of the
receptor require the binding of glutamate
molecules. In the simplest approximation, this
process is modeled by transition rates which
depend on the local transmitter concentration. In
the seven-state model these are: k̃+1, k̃+2, and
k̃+3. To estimate the local transmitter concen-
tration we count the number of molecules inside
a disc of ‘‘binding-radius’’ rj

bind around the j-th
receptor. The concentration in units of mM is
given by dividing this number by the small
volume element DV= hp(rj

bind)2. For instance the
transition rate of the j-th receptor to make a
transition from C0 to C1 is computed as

k̃+1 =
0no of molecules inside

disc of radius r j
bind 1 k+1

(r( j)
bind)2p h NA

,

with h denoting the height of the synaptic cleft
and NA Avogadro’s number. If a transition into
the states C1, C2 (from C1) or C4 (from C3)
occurs, the receptor binds a transmitter mol-
ecule, which is being released if the back-tran-
sition follows. It should be noted here that the
parameter rbind is necessary to determine the local
concentration. We checked that the results

F. 4. Kinetic model of an AMPA/kainate-receptor as
introduced in Jonas et al. (1993). The model differentiates
between an open state O, an unbound closed state C0,
single bound states C1 and C3 and inactive states C2, C4,
and C5. The kinetic rate constants k̃+ i, (i=1,2,3) depend
on the transmitter concentration, choice of parameters for
the rate constants from Jonas et al. (1993) set 2.
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discussed in Section 3 do not depend on the
specific choice of rbind, which was set to 6 nm.

2.3.    

    

 -  

In the following we present a model to
calculate post-synaptic EPSCs by chemical
kinetic equations, different from the usual
approach (Bartol et al., 1991; Holmes, 1995;
Kleinle et al, 1996; Uteshev & Pennefather,
1997): in contrast to other approaches we
consider an ensemble of many spatially dis-
tributed receptors, each characterized by a set of
probabilities to be in one of its accessible states.
In addition, each receptor is exposed to a
different concentration of glutamate which
determines its individual transition rates.

Following the work of Land et al. (1981,
1984), EPSCs are commonly calculated under
the assumption that each receptor in the
post-synaptic density ‘‘sees’’ approximately the
same glutamate concentration. Then it is
sufficient to solve one set of chemical kinetic
equations (representing the average over all
receptors). The transition rates are determined
by the spatially averaged glutamate concen-
tration.

We briefly explain our approach. Instead of
following the stochastic transitions of nrec, as
done in the Monte Carlo simulation, we may
alternatively consider the joint probability
distribution, to find receptor 1 in state s1,
receptor 2 in state s2 . . . receptor n in state sn.
This description in terms of probabilities in
general involves nrec interacting receptors and is
completely equivalent to the stochastic dynam-
ics, as far as averaged quantities are concerned
(Gardiner, 1983). Such n particle distribution
functions are however difficult to treat analyti-
cally or numerically. In our model the inter-
actions among receptors is weak. It is due only
to the competition of receptors for neurotrans-
mitter which is abundant at central synapses. If
we ignore this interaction, i.e. assume that the
number of transmitter molecules temporarily
bound to receptors is small compared with the
total number, then the distribution for nrec

receptors factorizes and we can solve the
chemical kinetic equations for each receptor

separately. Note however that each receptor i at
a given position ri ‘‘sees’’ a time-dependent local
transmitter concentration C(DF)

i (t) [see eqn (A.4)],
which explicitly depends on the position of the
receptor and is obtained in Appendix A.3.

As shown in Appendix A.1 the spatio-tem-
poral concentration profile is calculated analyti-
cally. In the next step we solve the chemical
kinetic eqns (A.6) for each receptor i for i=1,2,
. . . nrec. As in the Monte Carlo model we assume
that the kinetic rates k̃(i)

+1, k̃(i)
+2 and k̃(i)

+3 of
receptor i at position ri are proportional to the
local, time-dependent transmitter-concentration.
Hence for every individual receptor i we have to
solve a set of seven coupled linear differential
equations with time-dependent coefficients given
by C(DF)

i (t) in eqn (A.4).
Because the number of receptors is small at

central synapses, spatial fluctuations are not
negligible, giving rise to fluctuations in the
EPSCs (see next section). Modelling individual
receptors in a local time-dependent concen-
tration-field, we treat these fluctuations properly
and we are furthermore able to investigate the
effects of different spatial arrangements of the
receptors on the EPSCs. The only approximation
in our model of chemical kinetic equations is the
neglect of variations in transmitter concentration
due to the binding to and unbinding from
post-synaptic receptors. This approximation will
be tested by comparison of the results obtained
from chemical kinetics to averages over many
Monte Carlo runs (see next section). We expect
that our assumption is justified for central
synapses, where 1000–4000 transmitter mol-
ecules interact with 20–100 post-synaptic recep-
tors, in contrast to synapses at the NMJ, where
the high number of receptors may affect the
transmitter concentration drastically. All other
theoretical models, which are used to calculate
EPSCs by numerically solving the diffusion
equation, employ the same approximation.

2.4.  

In the Monte Carlo simulation, the concen-
tration profile and the state of all receptors have
to be updated simultaneously. For each discrete
time step Dt a ‘‘new’’ distribution of transmitter
molecules is generated and a possible change in
the states of all receptors is calculated. The
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F. 5. Distribution of (a) maximum amplitudes, (b) rise times and (c) decay times for 30 randomly distributed receptors
on a PSD of R=200 nm, exposed to 3000 transmitter molecules released from a single vesicle in the middle of the synaptic
disc (rabs =500 nm, Dnet =30 nm2 ms−1). The gray columns in the insets indicate the range of variation due to the spatial
distribution of the receptors, calculated from the kinetic model for each receptor position.

choice of Dt explicitly depends on the time-scales
of the processes involved: while the diffusion
process occurs on a time-scale of ms to ms, the
receptor kinetics is much slower (ms to s). For
the simulation we choose a time step of 4 ms,
which takes the microscopic change in the
transmitter concentration into consideration, but
still is much faster than the receptor kinetics. We
checked (data not shown) that larger and smaller
time steps do not alter the results of the
simulation.

The computer simulations and numerical
routines were written in C language, compiled
and run on Pentium PCs. Random numbers were
generated using the ran2 routine (Press et al.,
1992). The coupled set of chemical kinetic
equations were solved numerically for discrete
time steps using a forth-order Runge Kutta
method (Press et al., 1992).

3. Results

3.1.    

  

We have studied a population of 30 receptors,
randomly distributed over the PSD of radius
R=200 nm, exposed to 3000 transmitter mol-
ecules, which are released from a single vesicle in
the center of the PSD. The small value of the
diffusion coefficient Dnet which was estimated in

Section 2.1, has been used, and the total number
of open channels, i.e. the open probability P(tot)

O

as a function of time has been calculated. The
signal of a single Monte Carlo run is quite noisy,
as shown in Fig. 6(a). To obtain a quantitative
measure of the fluctuations we have performed
500 runs and calculated the maximum ampli-
tude, decay and rise time. A histogram of these
values is presented in Fig. 5. The distribution of
maximum amplitudes has a mean and standard
deviation of 20.62 2.3 open channels, corre-
sponding to an open probability of (069%), as
compared with the experimental value for
unitary EPSCs in reduced extracellular Ca2+ of
072% (Jonas et al., 1993). For the distribution
of rise times (defined as the time elapsed between
20 and 80% of the maximum) we find for mean
and standard deviation 0.512 0.26 ms, com-
pared with the experimental values 0.52 0.2 ms
of Jonas et al. For the distribution of decay times
we observe 4.052 1.15 ms compared with
4.12 0.9 ms of Jonas et al. (1993). The observed
strong fluctuations are in good agreement with
experiments and mainly due to the inherent noise
in receptor kinetics.

Also displayed is the open probability for a
diffusion coefficient which is 10 times larger and
often used for theoretical models of transmitter
diffusion (see e.g. Busch & Sakmann, 1990;
Holmes, 1995; Uteshev & Pennefather, 1997;
Wahl et al., 1996). It is obvious from Fig. 6(b)
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F. 6. Open probability P(tot)
O as a function of time (parameters as in Fig. 5). (a) Three examples for the time course of

P(tot)
O resulting from a single simulation run; (b) the simulated P(tot)

O (W), averaged over 500 runs, is compared with results
from local chemical kinetics (——). Also shown is P(tot)

O as caused by a larger diffusion coefficient of Dnet =300 nm2 ms−1

(r).

that the experimentally determined open proba-
bilities of approximately 60–70% for AMPA/
kainate receptors (Hausser & Roth, 1997; Jonas
et al., 1993; Spruston et al., 1995) cannot be
reproduced by the commonly used larger value
of the diffusion constant Dnet.

There are several sources of noise, in
particular inherent noise in the receptor
dynamics and fluctuations due to a spatial
distribution of receptors. The Monte Carlo
simulation includes both, whereas the noisy
receptor dynamics has been averaged out in the
kinetic model. This allows us to discriminate
between the two noise sources. Within the
kinetic model we calculate the open probability
for receptors located at a given distance from the
site of release, so that we know maximum
amplitudes, rise and decay times as a function
of distance between receptor and release site.
For a given realization of the distribution we
can then draw a histogram of maximum
amplitudes, rise and decay times, as shown in
the inset of Fig. 5 (gray columns). Obviously
the inherent noise of receptor kinetics is
much stronger than the fluctuations due to
random distances between receptors and release
site.

3.2.     

 :    

-     

     

   

The basic assumption of the kinetic model is
that fluctuations of neurotransmitter concen-
tration due to binding and subsequent unbinding
of transmitter molecules by post-synaptic recep-
tors can be neglected. To test this assumption, we
compare open probabilities P(tot)

O as calculated
from the kinetic model with averages over 500
Monte Carlo simulations, using the same
amount of released transmitter, the same point
of release and the same receptor population.
Possible differences in the results are due to
transmitter fluctuations because of binding and
unbinding. For the same population of 30
receptors the average open probability generated
by 500 Monte Carlo runs in Fig. 6(b) is in good
correspondence with the result from the kinetic
model. Fluctuations due to binding and unbind-
ing of transmitter by receptors can be safely
neglected. As displayed in Fig. 7 there is only a
very small difference between the open probabil-
ities due to these concentration fluctuations,—
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F. 7. Difference in the theoretical open probability P(tot)
O

between the kinetic model (——), that neglects transmitter
binding, and the results of computer simulation (W), P(tot)

O

averaged over 500 runs, that include transmitter binding by
300 post-synaptic receptors. Parameters as in Fig. 5.

unperforated PSD (Fig. 8) with a perforated
synapse as shown in Fig. 9. Each cluster of the
perforated PSD is associated with a possible
release site of pre-synaptic vesicles and contains
the same number of receptors as distributed
across the simple PSD (30 receptors). First, the
simulation is used to visualize the effects of
transmitter diffusion on the receptor dynamics.
Four snapshots of 30 randomly distributed
receptors on a PSD of 200 nm radius at different
times after the release of a single vesicle are
shown in Fig. 8. One observes how the opening
of channels coincides with the spreading of
transmitter. Following the release of a single
vesicle containing 3000 molecules 60% of the
receptors are in one of the inactive states C3, C4,
or C5 after the transmitter has been cleared from
the cleft. Figure 10(a) indicates that the simple
synapse is saturated to 070% by the release of
a single vesicle and saturated after the simul-
taneous release of two vesicles (as discussed in
e.g. Busch & Sakmann, 1990; Edwards, 1991;
Bennett et al., 1997), while in contrast the
amplitude distribution at perforated synapses
[Fig. 10(b)] does not exhibit saturation after the
release of two vesicles. The distribution of rise
times becomes narrower and shifts towards
faster rise times (Fig. 11) as more vesicles are
released. At the perforated PSD the change in
the distribution of rise times [Fig. 11(b)] is
stronger than for the simple synapse [Fig. 11(a)],
since the broadening of the rise time distribution
for the release of one vesicle is caused by the late
activation of receptors from distant clusters.
Distributions of decay times do not change
systematically with the amount and position of
transmitter released (data not shown) and are
mostly determined by the stochasticity of the
individual receptor dynamics.

3.4. -   



Synaptic plasticity is often discussed in the
context of quantal analysis, where it is assumed
that each vesicle encounters the same distri-
bution of post-synaptic receptors. If this
assumption holds, then the ‘‘quantum’’ of
transmitter defined as the content of one vesicle,
is actually transferred as a whole to the
post-synaptic side, so that the post-synaptic

even if 300 receptors (which exceeds the
experimentally estimated number of glutamater-
gic post-synaptic receptors by far, see e.g.
Edmonds et al., 1995; Hausser & Roth, 1997;
Jonas et al., 1993; Spruston et al., 1995) compete
for transmitter and contribute to transmitter
depletion. We therefore conclude that the kinetic
model is satisfactory for the calculation of
averaged quantities and subsequently will use it
to study systematic effects of different receptor
distributions.

Furthermore the agreement of the kinetic
model and the Monte Carlo simulations shows
that buffering of transmitter by binding to
post-synaptic receptors is a very small effect
compared with the influence of transporter–
transmitter interaction on the transmitter
dynamics (Section 2.1): the number of post-
synaptic receptors (30 to 100) is too small to
noticeably affect the motion of 1000 to 5000
transmitter molecules.

3.3.    



The model is used to study the effect of
different spatial arrangements of receptors on the
post-synaptic side. Changes of the synaptic
geometry from simple to perforated (clustered)
synapses have been suggested as a possible
mechanism of LTP (Edwards, 1995a). We
compare EPSCs of a simple synapse with an
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F. 8. Receptor distribution on a simple synapse; states of 30 randomly distributed receptors at times t=0.04, 0.2, 1,
and 5 ms after release of a single vesicle (at a randomly chosen release site within the PSD), which contains 3000 molecules
(small gray circles); rest of parameters as in Fig. 5. At time t=0 all the receptors are in the closed unbound state C0 (q,
inactive states C1 and C2 also displayed as q), but start to open (state O, W) or desensitize (inactive states C3, C4, and
C5, ×).

current is approximately quantized according to
the number of released vesicles (for a review see,
e.g. McLachlan, 1978). As seen in the previous
paragraph the PSD is partially saturated by one
vesicle and only a gradual increase in post-synap-
tic current is observed, if more than one vesicle
per bouton is released. Hence standard quantal
analysis does not apply. In the extreme case of
complete saturation by one vesicle, one might
again expect to observe multiple quanta due to
several boutons. However the quanta are then
determined by the mean number of receptors in
the PSD of one bouton (see e.g. Bekkers, 1994;

Redman, 1990) and the transition rates of the
single channel, suggesting a post-synaptic mech-
anism for potentiation*. In the case of strong
saturation, changes in vesicle content or changes
in the incidence of multi-vesicular release will
hardly change the post-synaptic current and
hence cannot serve as mechanisms for poten-
tiation.

In the following we discuss mechanisms of
synaptic potentiation which are located on the
post-synaptic side. We first investigate rather
smooth changes in the distribution of receptors,
e.g. the size or the shape of the PSD is varied,
while the total number of receptors is kept
constant, as suggested as a first step of change in
synaptic structure by Edwards (1995a). A
possible arrangement of receptors on the

*We do not discuss here an overall increase in release
probability, resulting in an activation of silent synaptic
boutons.
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F. 9. States of 120 receptors distributed in four clusters,
each with a diameter of 100 nm at time t=0.2 ms. Two
vesicles have been released at time t=0 in the center of two
clusters, each vesicle containing 3000 molecules; rest of
parameters as in Fig. 8.

A much more effective potentiation is achieved
by increasing the number of post-synaptic
receptors. We find that the maximum amplitudes
of EPSCs are directly proportional to the total
number of receptors [Fig. 13(a)]. The normalized
open probability for the same PSD with 30, 80
and 150 receptors is compared in Fig. 13(b). The
differences between the two curves are very small
(and due to transmitter depletion because of
binding to post-synaptic receptors) and hence the
EPSCs increase to a very good approximation
linearly with the total number of receptors.

The number of receptors can be increased in
at least two qualitatively different ways. Either

F. 10. Effect of multiple release on the distribution of
maximum amplitudes of (a) 30 receptors distributed
randomly across a simple PSD (Fig. 8) and (b) 120 receptors
distributed in four receptor clusters of 30 receptors each
(Fig. 9). Amplitude distribution for one (dark gray
columns), two (solid line), three (light gray columns) and
four (thick solid line) vesicles released, generated from 500
simulation runs (parameters as in Figs 8 and 9).

post-synaptic membrane located near the point
of transmitter release (here in the middle of the
synaptic disc) is shown in Fig. 12(a). The same
number of receptors have been distributed
according to a Gaussian distribution, where the
standard deviation s characterizes the average
distance of the receptors from the point of
release. For smaller values of s the receptors are
clustered closer to the point of release, while for
higher values of s the receptor distribution
resembles a random homogeneous receptor
distribution. The calculated open probability
P(tot)

O in Fig. 12(b) reveals that a clustering of
post-synaptic receptors causes a relatively weak
potentiation of the peak amplitude, e.g. a 15 to
20% change for s=50 and 100 nm. This is to be
expected, because of the abundance of neuro-
transmitter molecules and the fact that the
transmitter concentration equilibrates within a
few hundred ms (small inset in Fig. 2), which is
fast compared with the receptor kinetics*. To
double the open probability, keeping the total
number of receptors fixed, requires a 64 times
smaller active zone. Such extreme changes seem
to be more realistic in the context of structural
changes of synaptic morphology.

*Again the explicit choice of DF proved not to be crucial
for the calculated results (data not shown).
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F. 11. Effect of multiple release on the distribution of
rise times of (a) 30 receptors distributed randomly across a
simple PSD (Fig. 8) and (b) 120 receptors distributed in four
receptor clusters of 30 receptors each (Fig. 9). Distribution
of rise times for one (dark gray columns), two (solid line),
and four (thick solid line) vesicles released, generated from
500 simulation runs (parameters as in Figs 8 and 9).

possible release sites: at the simple synapse they
are randomly distributed across the PSD as in
Fig. 8, while at the perforated synapse each
release site is associated with a receptor cluster
(Fig. 9). The probability p for release of a vesicle
is assumed to be the same for all four release
sites. As displayed in Fig. 14 the shape of the
amplitude distribution varies with a change in
the release probability p from 0.05 to 0.4 from a
non-skewed to a skewed distribution for the
perforated synapse, while the distribution for the
simple synapse does not seem to change
systematically. For higher release probabilities
the skew again vanishes or even appears towards
smaller amplitudes. A detailed study and

F. 12. (a) 30 receptors distributed according to a
Gaussian distribution centered around the point of release
(=middle of synaptic disc). Here s denotes the standard
deviation of the Gaussian; (b) total open probability P(tot)

O as
function of time for the receptor distributions in (a), as
calculated from the kinetic model; rest of parameters as in
Fig. 5, s=50 (W), 100 (+), 200 (×, ——) and 400 nm (r).

the geometry of the synapse is left unchanged or
alternatively new boutons are created. (Another
possibility may be the activation of silent
synapses). Edwards (1995a) has suggested
perforation of a simple synapse into several
clusters of receptors, where the different receptor
clusters act as nearly independent release sites,
together with an overall increase in the number
of receptors, as an effective mechanism for
potentiation. Following this idea multiple release
at perforated synapses could account for a skew
in amplitude distributions of miniature currents
(for a detailed discussion see Edwards, 1995b).
We follow this suggestion and assume four
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F. 13. (a) Distributions of amplitudes for 30, 80 and 150
receptors distributed randomly on a PSD of fixed size
(R=200 nm) for a random point of release, generated from
500 runs, rest of parameters as in Fig. 5; (b) corresponding
open probabilities P(tot)

O , averaged over 500 runs, for 30
(——), 80 (W) and 150 receptors (r).

have derived a simplified model in terms of local
chemical kinetic equations, i.e. each receptor is
characterized by a set of probabilities to be in
any one of its accessible states. This simplified
model relies heavily on the fact that at central
synapses the transmitter molecules of a single
vesicle provide an abundance of neurotransmit-
ter for a low number of post-synaptic receptors.
In other words the local chemical kinetics would
not work at the NMJ and has been designed
specifically for synapses in the CNS.

It was our intention to keep the number of free
model parameters as low as possible and the
fitting to experiments as transparent as possible.
We have proposed a simple description of the
synaptic cleft as a flat disc with finite lateral
extension. Transmitter molecules are allowed to
diffuse up to a maximum distance, which is
identified with the typical distance to neighbor-
ing synapses and which is modeled theoretically
as an absorbing boundary. This approach allows
us to estimate the net-diffusion coefficient Dnet of
transmitter inside the cleft on the basis of
experimentally known parameters only. We find
Dnet 0 20–50 nm2 ms−1 for glutamate inside the
cleft, implying a strong reduction as compared
with free diffusion in aqueous solution. Possible
explanations are the tortuosity of the cleft and
interactions with transporter molecules, dis-
tributed with a density of 5170 to 8900
transporters mm−2 in the synaptic cleft and
its vicinity.

We have used the complementary theoretical
approaches of Monte Carlo simulations and
local chemical kinetics to calculate EPSCs. This
enables us to compare the two approaches in
detail and show their equivalence for average
currents. The noisy character of the EPSCs is
apparent in broad distributions of amplitudes,
rise and decay times of individual EPSCs in good
agreement with experiments (Jonas et al., 1993).
We have shown that the fluctuations are mainly
due to the inherent noise in the receptor
dynamics, whereas spatial fluctuations are less
important. We conclude that despite the
simplicity of our model it seems to comprise the
relevant features of the transmission process to
reproduce experimental data for average cur-
rents as well as the statistical properties of
EPSCs.

discussion will follow in a second paper and has
been published in preliminary form (Trommers-
häuser et al., 1997).

4. Conclusion

In this paper we have discussed a theoretical
model of synaptic transmission, derived from
experimental data on single channel kinetics,
transmitter–transporter interactions and the
mean residence time of glutamate in the cleft. On
the one hand we have used Monte Carlo
simulations, which have been introduced by
Bartol et al. (1991) for synapses at the NMJ, and
transfered the approach to transmission pro-
cesses at central synapses. On the other hand we
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F. 14. Distributions of peak amplitudes (maximum number of open channels), each distribution generated for 120
receptors from 500 runs. Different panels show distributions for varying release probabilities: (a) p=0.05/failure rate
080%, (b) p=0.1/failure rate 066%, (c) p=0.2/failure rate 041% and (d) p=0.4/failure rate 012% (d). The gray
distributions are from perforated synapses (parameters as in Fig. 9). The corresponding white distributions result from the
release of four vesicles at random release sites across the PSD at a simple synapse with 120 receptors (rest of parameters
as in Fig. 5). The failure rates denote the percentage of events without the release of any vesicle. (Grey columns) clustered
PSD; (white columns) simple PSD.

Subsequently we have used the model to study
different receptor distributions as well as
post-synaptic mechanisms for potentiation.
Changes in the receptor distribution, e.g.
clustering of receptors, do not efficiently
potentiate post-synaptic signals, as long as the
total number of receptors stays the same. An
increase in the number of post-synaptic receptors
or a change of receptor kinetics as e.g. discussed
in Ambros-Ingerson & Lynch, (1993) and
Marienhagen et al. (1997) are found to be much
more effective for potentiation.

Our future work will discuss potentiation of
post-synaptic currents due to the activation of
silent synaptic boutons by an overall increased
probability of vesicle release or potentiation due
to forming perforated synapses with multiple

release sites (see Edwards, 1995a). Possible
mechanisms shaping miniature amplitude distri-
butions as outlined in the last paragraph will be
studied in this context.
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APPENDIX

A.1. Computation of the Diffusive Concentration
Profile

The spatio-temporal concentration profile
c(r,8,z,t) of a number of NT transmitter
molecules in the cleft is calculated by solving the
three-dimensional diffusion equation

1
1t

c(r,8,z,t)

=NTDnet $ 12

1r2 +
1
r

1
1r

+
1
r2

12

182 +
12

1z2% c(r,8,z,t),

(A.1)

Since the synaptic cleft is chosen as a flat cylinder
of height h and radius R cylindrical coordinates
z,r,8 are used. The solution of the diffusion eqn
(A.1) is unique, provided we specify initial and
boundary conditions. We assume that all
molecules start at t= t0 from a point at position
r0, i.e.

c(r,t=0)=
NT

r
d(r− r0)d(8−80)d(z− h).

Diffusing molecules which reach the absorbing
boundary at rabs are taken out of the system.
Transmitter molecules cannot escape in the
z-direction, corresponding to a reflecting bound-
ary at z=0 and z= h. These boundary
conditions are summarized by the equations:
(a) reflecting boundary at

z=0, z= h:
1
1z

c(r,t)bz=0 =
1
1z

c(r,t)bz= h =0

(b) absorbing boundary at

r= rabs: c(r,t)=r= rabs =0.

Because of the specific form of boundary and
initial conditions the solution of eqn (A.1)
separates into a one-dimensional probability
distribution pz(z,t) to account for the distri-
bution of molecules in the z-direction and into a



     119

two-dimensional ‘‘lateral’’ probability distri-
bution pF(r,8,t)

c(r,t)=NTpF(r,8,t)pz(z,t),

with

Here Jm denotes the m-th Bessel function of the
first kind, lmn the n-th zero of Jm and
amn = lmn/rabs.

The mean residence time of transmitter in the
cleft �T� is calculated by integrating the
two-dimensional concentration profile pF in eqn
(A.2) over the area of the PSD and all times, i.e.

A.2. A Two-dimensional Model of the
Synaptic Cleft is Sufficient

The extension h of the synaptic cleft in the
z-direction is more than ten times smaller than in
lateral direction, so that it seems reasonable to

reduce the model to a two-dimensional model of
the synaptic cleft. To obtain a quantitative
measure for the difference between two- and
three-dimensional concentration profiles just
above the PSD (0E zE d), we integrate the

three-dimensional profile over a small interval d

(located right above the post-synaptic mem-
brane)

cd(r,8,t)=NTpF(r,8,t) g
d

0

dz pz(z,t) (A.3)

and compare it to the two-dimensional concen-
tration profile, given by cF(r,8,t)=NTpF(r,8,t).
The relative deviation L is defined as

pz(z,t)= s
+a

n=−a

(−1)n

h
cos0npz

h 1 e−
n2p2

h2
Dnett,

pF(r,8,t)=−
1

r2
absp $ s

a

m=0

s
a

n=1

Jm(amnr0)
Jm−1(lmn)Jm+1(lmn)

Jm(amnr) e− a2
mnDnett

6[1+ (−1)m] cos(m80) cos(m8)+ [1− (−1)m] sin(m80) sin(m8)7%. (A.2)

�T�=g
a

0

dt g
2p

0

d8 g
R

0

dr r pF(r,8,t)

=−
1

r2
absp

s
a

m=0

s
a

n=1 g
a

0

dt e− a2
mnDnett g

R

0

dr r
Jm(amnr0)

Jm−1(lmn)Jm+1(lmn)
Jm(amnr)

g
2p

0

d86[1+ (−1)m] cos(m80) cos(m8)+ [1− (−1)m] sin(m80) sin(m8)7
zxxxxxxxxxxxVZxxxxxxxxxxxv

= 4pd0n

=
2Rrabs

Dnet
s
a

n=1

1
l3

0n

J0(a0nr0)J1(a0nR)
[J1(l0n)]2

.
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L=
cF(r,8,t)− cd(r,8,t)

cF(r,8,t)

=−2
h
d

s
a

n=1

(−1)n

np
sin 0npd

h 1 e−
n2p2

h2
Dnett,

and shown in Fig. 1(b) as a function of time for
d=5 nm, different heights h of the synaptic cleft
and a relatively slow diffusion coefficient of
Dnet =30 nm2 ms−1. (Larger values of the diffu-
sion constant give rise to an even faster decay of
L). Obviously the difference between a three- and
a two-dimensional model of the synaptic cleft
vanishes within a few microseconds. This
indicates that we find a stationary state in the
z-direction within microseconds, which is very
fast compared with the time-scale of receptor
kinetics (0ms), and hence rationalizes our
approach to use a two-dimensional model.

A.3. Calculation of the Time-dependent Local
Transmitter Concentration

We consider a distribution of receptors
exposed to the spatio-temporal concentration
profile c(r,t) from eqn (A.2). In the simplest case
the transmitter molecules are released in the
middle of the synaptic disc, so that

c(r,t)=
NT

pr2
abs

s
a

n=1

J0(a0n =r=)
[J1(ln)]2

e− a2
0nDnett.

The receptor i at position ri is exposed to a local
concentration C(DF)

i (t), which is estimated by
integrating c(r,t) over the small area increment
DF around ri shown in Fig. 1. This leads to

C(DF)
i (t)=

NT

r2
abs

D8

p
s
a

n=1 6(ri + o)J1[an(ri + o)]
an[J1(ln)]2

−
(ri − o)J1[an(ri − o)]

an[J1(ln)]2 7 e−a2
nDnett. (A.4)

The local concentration in mM then determines
the transition rates according to*

k̃i = ki
C(DF)

i (t)
DF h NA

. (A.5)

A.4. Set of Kinetic Differential Equations for
a Single Receptor in a Local Time-dependent

Concentration Field

The receptor i at position ri is exposed to the
local time-dependent transmitter concentration
C(DF)

i (t). Average properties, like the average
probability of receptor i to be in the open state
C4 can be calculated from a set of chemical
kinetic (master) equations (Gardiner, 1983),
which describe the dynamic evolution of the
probabilities P(i)

a for receptor i to be in state a:

d
dt

P(i)
C0 =−k̃+1P(i)

C1 + k−1P(i)
C2

d
dt

P(i)
C1 = k̃+1P(i)

C0 − 4k−1 + k̃+2 + a15 P(i)
C1

+ k−2P(i)
C2 + b1P(i)

C3

d
dt

P(i)
C2 = k̃+2P(i)

C1 − 4k−2 + a+ a25 P(i)
C2 + bP(i)

O

+ b2P(i)
C4

d
dt

P(i)
C3 = a1P(i)

C1 − 4b1 + k̃+35 P(i)
C3 + k−3P(i)

C4

d
dt

P(i)
C4 = k̃+3P(i)

C3 + a2P(i)
C2 − 4k−3 + b2 + a45P(i)

C4

+ b4P(i)
C5

d
dt

P(i)
C5 = a4P(i)

C4 − 4b4 + b35P(i)
C5 + a+3P(i)

O

d
dt

P(i)
O = aP(i)

C2 − 4b+ a35P(i)
O + b3P(i)

C5. (A.6)

For definition of receptor states and transition
rates see Fig. 4. Each receptor has to be in one
of its available states, so that

P(i)
C1 +P(i)

C2 +P(i)
C3 +P(i)

C4 +P(i)
C5 +P(i)

C6 +P(i)
O =1

holds.
After specifying the initial conditions, here

P(i)
C1 =1 and P(i) = 0 for all other states—all

receptors are initially in the closed unbound
state—the set of eqns (A.6) is solved numerically
for each receptor. This yields for instance the
open probability P(i)

O (t) of each of the nrec

receptors, which can then be averaged to gain the
total, averaged synaptic response of the receptor
population

P(tot)
O (t)=

1
nrec

anrec
i=1 P(i)

O (t).
*A larger diffusion coefficient speeds up the equilibration

of transmitter across the PSD and further reduces the
influence of spatially different receptor arrangements.
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