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Statistical decision theory and the selection of
rapid, goal-directed movements
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We present two experiments that test the range of applicability of a movement planning model (MEGaMove)
based on statistical decision theory. Subjects attempted to earn money by rapidly touching a green target
region on a computer screen while avoiding nearby red penalty regions. In two experiments we varied the
magnitudes of penalties, the degree of overlap of target and penalty regions, and the number of penalty re-
gions. Overall, subjects acted so as to maximize gain in a wide variety of stimulus configurations, in good
agreement with predictions of the model. © 2003 Optical Society of America
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1. INTRODUCTION
Motor responses have consequences. In the first semifi-
nal of the 2002 World Cup, Germany met host South Ko-
rea, and the match was decided in the 75th minute by the
only goal of the match. Oliver Neuville passed the ball to
Germany’s play maker Michael Ballack, who scored in his
second attempt. Aware of Korea’s defenders closing in
behind him, Ballack was forced to react quickly, and he
first tried to score immediately by shooting straight at the
goal keeper, South Korea’s Lee Woon-Jae. Lee blocked
the shot but Ballack regained control of the ball. He now
had a second chance, a brief window in time when he
could score the decisive goal by passing Lee on the right.

Imagine you are Ballack in that instant of time, illus-
trated in Fig. 1(a). Your only option is to try to score by
aiming somewhere to the right of Lee Woon-Jac. The fur-
ther you aim to your right, away from him, the lower the
probability that Lee will succeed in blocking your shot.
But the further you aim to the right, the greater the
chances that your shot will miss the goal altogether [Fig.
1(b)]. In making your decision, you need to balance the
probability that the goal keeper will block the shot
against the probability of missing the goal to the right.
You also need to keep in mind that you are in the World
Cup semifinals and a goal will almost certainly assure
victory. If you delay the decision significantly, you will
lose your chance to score. You have just a fraction of a
second. Where should you aim?

In this paper we examine human performance in ex-
perimental tasks analogous to the example just pre-
sented. Following a signal, the subject is required to rap-
idly touch a green circle on a computer screen with his or
her fingertip. If the subject hits within the circle (‘‘the
goal’’), she or he wins 100 points. If the subject instead
hits a red, circular penalty region near the green circle
(‘‘the goal keeper’’), she or he loses 500 points. Hitting
anywhere else on the screen incurs no penalty but gener-
ates no reward. There is a large penalty for failure to re-
spond within a brief time after the signal (‘‘the defenders
will steal the ball’’). Owing to the short time limit and
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small target region, the subject cannot be certain that a
movement aimed at the center of the reward region will
not, instead, end up outside the reward region, possibly in
the penalty region. To summarize, the subject, in each
trial, must select among possible actions and must do so
very rapidly. There are explicit monetary penalties asso-
ciated with the outcome of the action selected, but the
outcome is never completely certain. In selecting an ac-
tion, the subject must strike a balance among competing
risks.

In previous work1 we developed a model of ideal perfor-
mance for ‘‘action under risk’’ based on statistical decision
theory.2–5 The model, called MEGaMove, Maximizes Ex-
pected Gain in its selection of Movement strategies. It
predicts specific shifts in a subject’s mean movement end
point in response to changes in the reward and penalty
structure of the environment and with changes in the
subject’s motor variability. In an experiment, subjects
did indeed alter movement end points in response to
changes in the amount of penalty and location of a single
penalty region. In this paper we further explore the
range of validity of our model in two experiments.

MEGaMove is a model of movement planning. In con-
trast, models of motor planning are intended to solve a
different problem. Some motor-planning models empha-
size selection of a single deterministic trajectory that
minimizes biomechanical costs while achieving a pre-
specified goal of the movement. These models differ pri-
marily in the choice of biomechanical cost function, which
may include measures of joint mobility,6,7 muscle tension
changes,8 mean squared rate of change of acceleration,9

mean torque change10 and peak work.11 In a different
approach, Rosenbaum and colleagues12 proposed that the
motor system computes a goal posture based on a data-
base of stored posture representations. The goal posture
is chosen on the basis of two criteria, accuracy and effi-
ciency, which leads to a trade-off between the accuracy of
a potential goal posture and the biomechanical costs of
getting there. Adding obstacles to the environment
changes the range of possible movement paths.13–17

These findings are typically explained by assuming that
2003 Optical Society of America
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trajectories are chosen to avoid spatial over-lap of the
limb with the obstacle18 or by minimizing biomechanical
costs within a constrained space.19–21

The outcome of the models just described is a motor
plan to achieve a prespecified goal, i.e., a unique sequence
of motor commands selected by optimizing the trade-off
between the goal of the task and biomechanical costs.
These models do not take into account any error during
the execution of the motor plan. Recent stochastic mod-
els of motor planning19,22,23 rest on the assumption that
the realized trajectory is affected by signal-dependent
noise in the neural control signal that is driving eye and
arm movements. In these models, stochastic variability
is taken into account in motor planning by selecting a mo-
tor plan that minimizes the variance of the final eye or
arm position or that avoids collision with an
obstacle.20,22,24 In particular, such models account for
the speed–accuracy trade-off observed in rapid-pointing
tasks. In these experiments subjects slow down when
pointing at smaller targets to hit the target with constant
reliability.24–26

Models of motor planning address the problem of defin-
ing and finding the optimal sequence of motor commands
given a prespecified goal posture. These models do not
predict the goal posture, where it is located in space, or
why the movement should arrive there within a certain
time window. This latter problem, movement planning,
is what concerns us here.

The goal of a motor task may involve aspects other
than accuracy. Experimenter-imposed (extrinsic) con-
straints on the task, such as monetary penalties for cross-
ing certain regions in space, can—as long as the penalty
is high enough—alter the motor plan, even if this changed
motor plan results in increased motor variability. On the
other hand, the consequences of following a particular
motor trajectory through a ‘‘landscape’’ of penalties will
depend critically on the motor variability associated with
a given motor plan. Hence the optimal selection of a
movement plan will depend on both the (monetary) re-
ward and loss structure of the environment and the ex-
pected motor variability associated with a given motor
plan. Therefore we developed the MEGaMove model
which takes into account extrinsic costs associated with
the task and the subject’s own motor variability.1

2. A STATISTICAL DECISION-THEORY
MODEL OF POINTING MOVEMENTS
Here we briefly summarize the key components of our
model.1

Fig. 1. Michael Ballack’s goal during the 2002 World Cup. (a)
Ballack, must rapidly decide where to shoot. (b) A schematic of
factors affecting the decision.
1. The outcome of movement planning is a visual–
motor strategy denoted S. For the simple sort of task
studied in our current experiments, the choice of S will
correspond to the selection of the mean movement end
point within a given time limit (Section 3). However, as
the word ‘‘strategy’’ suggests, a visual–motor strategy
could also be a detailed sequence of motor commands, pos-
sibly involving intermediate goals in space and time. It
could well incorporate the use of available visual or prop-
rioceptive information to control the movement during ex-
ecution.

2. When a motor strategy is executed, the result is a
particular movement trajectory. In the case of our simple
task, a movement trajectory t(t) specifies, for any time t,
the position of the fingertip in time and space: t:t
→ @x(t), y(t), z(t)#. More generally, it could specify the
full time course of movement in an appropriate joint-
angle space.

3. When the motor system selects a particular visual–
motor strategy S, it in effect imposes a probability density
P(tuS) on the space of possible movement trajectories
that could occur once the motor strategy is executed.
The choice of strategy influences the probability that any
particular trajectory will occur, but the actual trajectory
is not determined by the choice of strategy.

The probability density P(tuS) is likely affected by the
goal of the movement, the planned duration, the possibil-
ity of visual feedback during the movement,27,28 previous
training, and intrinsic uncertainty in the motor system.
Computing P(tuS) on the basis of the underlying se-
quence of motor commands in the presence of visual feed-
back and signal-dependent noise is a challenging task and
has only recently been addressed within the framework of
optimal feedback control theory.23 However, note that as
long as we know or are able to measure P(tuS), the con-
sequences of the choice of S for the subject are completely
mediated through this probability density, and we can, for
the most part, ignore the details of the actual mecha-
nisms that determine P(tuS).

4. Whatever the reward/penalty structure of the task,
the rewards and penalties incurred by the subject depend
only on the motion trajectory that actually occurs. In our
experiments, the penalties are explicit monetary rewards
and penalties known to the subject. We will use the term
‘‘gain’’ to refer to both rewards and penalties, for conve-
nience. Gains are associated with particular regions of
space, denoted Ri , i 5 0,..., N. If the subject’s actual
trajectory enters region Ri then the subject incurs a gain
(reward or penalty) Gi . We refer to regions where the
gain is positive as target regions or reward regions. We
refer to regions where the gain is negative as penalty re-
gions (a negative gain is a loss).

5. The expected gain function G(S) of the motor strat-
egy S is

G~S ! 5 (
i50

N

GiP~RiuS ! 1 Gtimeout P~timeoutuS ! 1 lB~S !.

(1)

P(RiuS) is the probability, given a particular choice S of
mean movement end point, of reaching region Ri before
the time limit t 5 timeout has expired,
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P~RiuS ! 5 E
Ri,timeout

P~tuS !dt, (2)

where Ri,timeout is the set of trajectories that pass through
Ri at some point in time after the start of the execution of
the visual–motor strategy and before time t 5 timeout.

6. An optimal visual–motor strategy S on any trial is
one that maximizes the subject’s expected gain G(S).
The prediction of our model is that subjects will trade off
risks entailed by different strategies so as to maximize
their expected gain.

Biomechanical costs associated with the selected move-
ment trajectory are included in the expected gain function
in Eq. (1) by a biomechanical gain function B(S), which is
typically negative (a cost or penalty associated with the
trajectory). As the tasks involve a time limit for response
and a penalty for failure to respond before the limit, Eq.
(1) contains a term reflecting this ‘‘timeout’’ penalty. The
probability that a task leads to a timeout is denoted by
P(timeoutuS) and the associated gain by Gtimeout . The
parameter l in Eq. (1) characterizes the trade-off between
physical effort and expected reward that the subject will
tolerate.

Selecting the optimal motor strategy S corresponds to
solving Eq. (1). Note that a complete solution of Eq. (1) is
no trivial task: Any given motor strategy S implies a set
of motor commands that, depending on the noise associ-
ated with the execution of these commands,22 determines
the motor variability associated with this strategy
@P(tuS)#. The selection of P(tuS), on the other hand, af-
fects the probability of incurring rewards or penalties
@P(RiuS)# or the timeout @P(timeoutuS)#. Therefore
finding the optimal motor strategy S in Eq. (1) corre-
sponds to simultaneously computing P(tuS) and optimiz-
ing Eq. (1).

In the following we will discuss predictions of our
model in an experimental situation in which P(tuS) [and
B(S)] remain constant over the range of relevant motor
strategies. In addition, in our experiment P(tuS) can be
estimated experimentally. This reduces the problem of
simultaneously computing P(tuS) and optimizing Eq. (1)
to the much simpler problem of measuring P(tuS) and us-
ing its estimate to solve Eq. (1).

3. EXAMPLE: SELECTING THE OPTIMAL
MOVEMENT END POINT IN A
LANDSCAPE OF EXPECTED GAINS
Imagine a subject carrying out the simple task discussed
above. The subject is asked to touch within a target
circle drawn on a computer screen. If the subject hits the
target on a trial, he or she will win 100 points. After the
experiment is over, the total point winnings are converted
to a monetary reward. On all trials, a second ‘‘penalty’’
circle appears to the left of the target, partially overlap-
ping it. If the subject hits within the penalty circle, she
or he will lose 100 points. Note that as the regions over-
lap, the subject may hit within both of them and simulta-
neously incur the specified reward and the specified pen-
alty, receiving zero points [see Fig. 2(b) for a display of the
stimulus configuration]. We force the subject to touch
the screen within a specified time limit that is the same
on every trial. Late responses incur a very high penalty.

Each trial has three possible outcomes:

1. The target is hit: The subject receives a reward of
G0 points (given that we represent values as gains, G0
. 0).

2. The penalty region is hit: The subject receives a
penalty of G1 points (G1 , 0).

3. Time out: The subject was too slow and receives a
large penalty of Gtimeout , 0.

The first and second options are not mutually exclusive if
the target and penalty regions overlap.

How does one predict the optimal movement end point
that maximizes the gain function [Eq. (1)]? Given our ef-
fectively two-dimensional task, we will designate visual–
motor strategies S by their resulting mean point of impact
on the computer screen (x, y), i.e., the mean movement
end point of the subject. For mean movement end point
(x, y), the expected gain is

G~x, y ! 5 G0P~R0ux, y ! 1 G1P~R1ux, y !

1 Gtimeout P~timeoutux, y ! 1 lB~x, y !,

(3)

where G0 is the gain associated with the reward region
R0 , and G1 is the penalty associated with the penalty re-
gion R1 .

In our experiments the probability of a timeout and the
biomechanical gains are effectively constant over the lim-
ited range of relevant screen locations. In evaluating
whether subjects correctly maximize expected gains, we
can ignore the constant timeout and biomechanical pen-
alty terms. Thus the subject must choose (x, y) so as to
maximize

G8~x, y ! 5 G0P~R0ux, y ! 1 G1P~R1ux, y !. (4)

To compute the probabilities P(Riux, y), we need to
model the subject’s motor uncertainty. We assume that
pointing trajectories are unbiased and distributed around
the mean movement end point (x, y) according to a
Gaussian distribution,

p~x8, y8ux, y !

5
1

2ps 2
exp$2@~x8 2 x !2 1 ~ y8 2 y !2#/2s 2%, (5)

where s indicates the spatial motor variability of the sub-
ject’s responses. We assume that the subject’s motor
variability is the same in the vertical and horizontal di-
rections, on the basis of previous experience with subjects
in similar tasks,1 and we will test whether this assump-
tion holds in the experiments reported below.

The probability of hitting region Ri is, then,

P~Riux, y ! 5 E
Ri

p~x8, y8ux, y !dx8dy8. (6)

For the stimulus configurations used in our experiments
(see Figs. 3 and 8, below) no analytical solution could be
found for Eq. (6). The integral was solved by integrating
Eq. (6) numerically,29 and the results were used for maxi-
mizing Eq. 4.
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Fig. 2. ‘‘Landscape’’ of expected gain for an optimal observer with a variance of s 2 5 4.83 (matching that of subject S2 in experiment
1). (a) Expected gain (in points per trial) as a function of the mean movement end point (x, y). The distribution is truncated for scores
,260 points. (b) The same landscape replotted as a contour plot with the mean movement end point of subject S2 (open squares)
compared with optimal performance as predicted by the model [the contour regions are coded with the same gray-level scale as in (a)].
We first consider the gain G1 associated with hitting
the penalty region for a given mean movement end point.
Suppose that G1 is 0, i.e., there is no penalty associated
with hitting the penalty region. Then we can reasonably
expect that the subject will seek to hit the target as often
as possible, given the time limit. The optimal mean
movement end point is the center of the target under
these conditions (Fig. 2(b), left panel). The subject’s win-
nings depend only on his or her motor uncertainty, cap-
tured by the parameter s in the specification of the
Gaussian. This is illustrated in Fig. 2(a), which shows
the winnings as a function of mean movement end point
(i.e., the figure shows expected gains, which the observer
should maximize). The left panel displays the case G1
5 0. The largest gain is predicted if the observer’s mean

movement end point coincides with the target center.
Note that owing to the subject’s motor variability (equal
to subject S2’s motor variability in experiment 1; see
Table 1 below) the subject occasionally misses the target,
resulting in an average win of 82.1 points (out of a pos-
sible 100).

Next, suppose that hitting the penalty circle incurs a
penalty of 100 points (G1 5 2100). Given the spatial
motor variability of the pointing responses, the subject
may accidentally hit the penalty circle for a mean move-
ment end point at the center of the target. When trying
to maximize the gain across all trials, it may be preferable
to shift movement end points to the right of the center of
the target. Depending on the amount of the penalty, it
might be less costly to miss the target once in a while to
avoid the risk of incurring so many penalties. Therefore
we expect the optimal mean movement end point to shift
farther to the right with increasing penalty (for a con-
stant target area). This is demonstrated in Fig. 2(b)
(middle panel) in which the mean movement end point re-
sulting in maximal expected gain has shifted to the right.
Note that the maximum expected gain in this condition
(57.6 points) is less than that of the penalty 5 0 condi-
tion. If the penalty value increases to 500 points, the op-
timal mean movement end point moves even further to
the right [Fig. 2(b), right panel]. This means that the
subject will safely avoid hitting the red penalty region but
also will rarely collect points for hitting the green circle.
The maximum expected gain drops to 30.2 points (Fig. 2,
top-right panel).

We next describe two experiments designed to test the
basic assumptions of our theory. The results of the ex-
periments will be compared with the predictions of the
model. We will estimate subjects’ motor variabilities
from the pointing data. We use that estimate of the mo-
tor variability to compute subjects’ optimal mean move-
ment end points for various stimulus configurations and
penalties, using the model developed above. We compare
these predictions with subjects’ performance.

4. EXPERIMENT 1
In a previous experiment1 we demonstrated that subjects
modify their mean movement end points in response to
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changes in the gains associated with the penalty region.
All the subjects’ winnings were within 8% of that pre-
dicted by the model. The subjects’ distributions of move-
ment end points, however, were too noisy to allow a pre-
cise comparison with the spatial predictions of the model.
We therefore decided first to measure subjects’ perfor-
mance using the same stimulus configurations but collect-
ing sufficient data per subject to allow for a separate ex-
perimental test of our model for each subject. We also
changed the time course of trials as described below.

A. Method

1. Apparatus
The experimental setup was the same as used
previously.1 Subjects were seated in a dimly lit room in
front of a transparent touch screen (AccuTouch from Elo
TouchSystems, accuracy , 62 mm standard deviation,
resolution of 15,500 touchpoints/cm2) mounted vertically
in front of a 21-in. computer monitor (Sony Multiscan
CPD-G500, 1280 3 1024 pixels @75 Hz). A chin rest
was used to control the viewing distance, which was 29
cm in front of the touch screen. The computer keyboard
was mounted on the table centered in front of the monitor.
The experiment was run with the Psychophysics
Toolbox30,31 on a Pentium III Dell Precision workstation.
A calibration procedure was performed before each ses-
sion to ensure that the touch screen measurements were
geometrically aligned with the visual stimuli.

2. Stimuli
Each stimulus configuration consisted of a target region
and a penalty region. The penalty region was circular,
with light red shading, a bright red edge, and a small
bright red circle marking the center. The target region
was also circular, marked by a bright green edge, and un-
shaded so that the overlap with the penalty circle would
be readily visible. The target and penalty regions had
radii of 32 pixels/9 mm.

The target region was displaced horizontally from the
penalty region, either to the left or right. There were
three possible magnitudes of displacement. The six re-
sulting stimulus configurations are summarized in Fig. 3.
The penalty and target regions always appeared simulta-
neously, on a black background.

Fig. 3. Layout of the stimuli in experiment 1. The six dashed
regions indicate the six different positions at which the target
could appear.
To prevent subjects from using preplanned movements,
the whole stimulus configuration was ‘‘jittered’’ by a ran-
domly chosen amount in each trial; the shifts in x and y
were chosen independently from a uniform distribution
over the range 644 mm. A blue frame (114.2 mm
3 80.6 mm), centered around the screen center, indi-
cated the area within which the target and penalty re-
gions could appear.

3. Procedure
Each trial followed the procedure illustrated in Fig. 4. A
fixation cross indicated the start of the trial. The subject
was required to depress the space bar of the keyboard
with the same finger that she or he would later use to
touch the screen. The trial would not begin until the
space bar was depressed; the subject was required to hold
the space bar down until after the green target appeared.
Next, the blue frame was displayed, delimiting the area
within which the targets would appear and preparing the
subject to move shortly. After an interval of 500 ms the
green target and the red penalty region were displayed si-
multaneously on the screen. Only after the appearance
of the target was the subject allowed to release the space
bar and initiate a movement toward the touch screen (al-
lowing us to measure the time of movement initiation).
After the green target was displayed, subjects were re-
quired to touch the screen within 700 ms or they would
incur a ‘‘timeout’’ penalty of 700 points. If the subject
touched the screen within the area of the red or the green
target, the target(s) that were hit ‘‘exploded’’ graphically.
Then the points awarded for that trial were shown, fol-
lowed by the subject’s total accumulated points for that

Fig. 4. Sequence of events during a single trial. The trial
would not start until the subject depressed and held the space
bar. In screen 5 (feedback) the subject would be shown each of
the regions that she or he hit (the region would ‘‘explode’’ graphi-
cally) and the associated gain (penalty or reward) incurred.
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session. A hit on the green target gained 100 points.
The penalty for touching the red penalty region was con-
stant during a block of trials and could be 0, 100, or 500
points (gains of 0, 2100, 2500). If the screen was
touched in the region of overlap between the target and
the penalty region, then the reward and the penalty were
both awarded. If a subject anticipated the target display,
releasing the space bar before or within 100 ms after dis-
play of the green target, the trial was abandoned and re-
peated later during the block.

Each block of trials consisted of five repetitions of each
of the six target locations, presented in random order.
The first session served as a practice session during which
the subject learned the speeded motor task. In this ses-
sion, the subjects first ran a single block in the penalty
zero condition without a time limit for the response.
This was followed by three blocks of trials with a moder-
ate time limit of 850 ms, again followed by six blocks with
a time limit of 700 ms. The practice session was followed
by two single experimental sessions on a different day
within the same week. Experimental sessions consisted
of a touch screen calibration, 12 practice (warm-up) trials
(two repetitions of the six target locations in the penalty
5 0 condition), and 12 blocks of 30 trials (four blocks for
each of the three penalty levels), presented in random or-
der.

4. Subjects and Instructions
Five subjects participated in the experiment. The sub-
jects were two male and three female members of the De-
partment of Psychology at New York University. All par-
ticipants were right-handed, had normal or corrected-to-
normal vision, and ranged in age from 26 to 32 years. All
subjects had given their informed consent before testing
and were paid for their participation. All were unaware
of the hypotheses under test. Subjects ran one practice
session of 300 trials and two sessions of 372 trials (12
practice trials, 12 blocks of 30 trials) which took approxi-
mately 45 min per session. Subjects were informed of
the payoffs and penalties before each block of trials. All
used their right index finger to depress the space bar at
the start of a trial and to touch the touch screen. Sub-
jects were told that the overall score over the three ses-
sions would be converted into a bonus payment at the
rate of 25 cents per 1000 points so as to motivate fast, ac-
curate responses.

5. Data Analysis
For each trial we recorded the reaction time (the interval
from stimulus display to the release of the space bar), the
movement time (the interval from release of the space bar
to touching the screen), the response time (the sum of re-
action and movement time), the screen position that was
hit, and the score. Trials in which the subject released
the space bar less than 100 ms after display of the green
target or hit the screen more than 700 ms after display of
the green target (timeouts) were excluded from the analy-
sis.

Penalty coordinates. Each subject contributed approx.
720 data points, i.e., 40 repetitions per condition. Move-
ment end-point positions (Xij

p , Yij
p ) were recorded relative

to the center of the red penalty region (Fig. 3) for each
penalty-value condition i (i 5 1, 2, 3), displacement con-
dition j ( j 5 1,..., 6), and trial p ( p 5 1,..., nij). In these
coordinates, the six possible positions of the green target
were Xj

target 5 217.9 213.4, 29, 9, 13.4, and 17.9 mm and
Yj

target 5 0 ( j 5 1,..., 6). We first computed the mean
end point for each subject and each condition X̄ij and Ȳij
by averaging across replications p 5 1,..., nij . We omit-
ted those trials (31 out of 3600) where the subject did not
reach the touch screen within the time limit (timeout).

Variance. For each subject, we tested whether vari-
ances in the x and y directions were independent of con-
ditions and found that they were (F , 1.35 for all sub-
jects). We found no evidence of correlation between the x
and y directions, and, accordingly, we estimated a pooled
variance s 2 across the X and Y coordinates and all condi-
tions for each observer separately.

Equality of reaction times, movement times, and Y coor-
dinate of movement end points. Reaction times, move-
ment times, and the Y coordinate of the movement end
points were analyzed individually for each subject as a
1-factor, repeated-measures analysis of variance
(ANOVA) across all 18 conditions (three penalty levels
times six target locations).

Overall bias. We next analyzed whether each subject
had a consistent overall bias. This bias represents a ten-
dency to consistently aim to the left or right or up or down
independent of condition. Because of the vertical and
horizontal symmetry of the 18 conditions of the experi-
ment, the horizontal bias Xbias is readily estimated by av-
eraging the 18 values of X̄ij , and the vertical bias Ybias is
estimated similarly. Given the symmetries of the stimu-
lus configurations, an evident prediction of the model is
that Xbias 5 Ybias 5 0. We will test this prediction in the
following section.

MEG predictions. Once we have an estimate of a sub-
ject’s movement variability, s 2, we can use the MEGa-
Move model to predict the maximum expected gain
(MEG) end point (Xij

MEG , Yij
MEG) that corresponds to maxi-

mum expected gain for that subject in that condition.
In conditions where the penalty associated with the

penalty region G1 5 0, the MEG point (Xij
MEG , Yij

MEG)
should be the center of the target region, (Xj

target , Yj
target).

That is, when there is no penalty the subject maximizes
expected gain by ignoring the penalty region and select-
ing a distribution of movement end points with the mean
at the center of the target region. This is a consequence
of the symmetry of the error model that we employ.

Target coordinates. In comparing a subject’s perfor-
mance with optimal performance, it will be convenient to
replot points relative to the center of the green target re-
gion. We define, x̄ ij 5 X̄ij 2 Xj

target and ȳ ij 5 Ȳij
2 Yj

target for each subject and all conditions. We simi-
larly define (xij

MEG , yij
MEG) as the MEG point, now ex-

pressed as a shift away from the center of the green target
region.

Score. To test how the subjects’ winnings compared
with optimal performance predicted by the model, the
mean and variance of the distribution of optimal perfor-
mance were computed. This was done by performing
computer simulations of the experiment for each subject
individually, i.e., simulating 40 trials in each condition by
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using the estimate of the subject’s motor variance and
computing the respective score in each experiment. One
hundred thousand repetitions of the simulated experi-
ment provided a precise estimate of the mean and the
variance of the distribution of optimal performances.
This estimate was used to test whether the subjects’ per-
formance was significantly different from optimal.

We will use both penalty (X, Y) and target (x, y) coor-
dinate systems in the analysis below.

B. Results
As subjects differed significantly in their motor variabil-
ity, reaction, and movement times, the data were ana-
lyzed individually for each subject. Results are reported
in Table 1.

Equality of reaction and movement times. The results
of the statistical analysis for each subject confirmed that
the reaction and movement times did not differ signifi-
cantly across conditions ( p . 0.05 in all cases).

Response time distributions. In choosing their move-
ment and reactions times, our subjects chose to use all of
the time available to them consistent with avoiding all
timeouts. The time limit of 700 ms fell at roughly the
99.9th percentile of the distribution of overall response
times. Any shift of this distribution to longer response
times would have increased the timeout rate, whereas a
shift to faster responses times could only reduce it by
0.1%. This outcome is consistent with models that pre-
dict that subjects minimize movement variance by using
all of the time available to move.20,22,24

Overall bias. Subjects showed a small constant right-
ward shift Xbias of movement end points ranging from 0.1
(subject S5) to 2 mm (subject S2). Those for subjects S1,
S2, S3, and S4, were significantly different from 0 at the
0.05 level (t-test, p , 0.05, Bonferroni correction for five
tests). Some subjects also showed small individual up-
ward displacements Ybias ranging from 0.3 6 0.2 mm
(subject S2) to 2.1 6 0.2 mm (subject S1). Those for
subjects S1, S3, S4, and S5 were significantly different
from 0 at the 0.05 level (t-test, p , 0.05, Bonferroni cor-
rection for five tests). In carrying out the remainder of
the analysis, we will report results for the data with and
without correction for this bias, where appropriate, and
return to a consideration of the biases below.

Effect of penalty and displacements: Y coordinates.
Subjects’ movement end points did not vary systemati-

Table 1. Experiment 1, Resultsa

Subject s 2 (mm2)
Reaction

Time
Movement

Time
Xbias
(mm)

Score
($)

S1 11.94 179 6 34 ms 389 6 28 ms 1.0 6 0.1 15.73
S2 23.36 213 6 44 ms 344 6 39 ms 2.2 6 0.2 13.08
S3 11.07 205 6 37 ms 381 6 37 ms 1.0 6 0.1 15.80
S4 19.65 253 6 40 ms 285 6 40 ms 1.7 6 0.1 14.58
S5 11.43 215 6 43 ms 352 6 31 ms 0.1 6 0.1 15.90

a Data reported for the five subjects individually; spatial motor variabil-
ity (s2), reaction and movement times (6 one standard deviation), and
constant response bias in the x direction Xbias (6 one standard error of the
mean) computed by averaging across all conditions (;720 data points per
subject); the score indicates the cumulative sum of wins across all trials.
cally across conditions in the y direction (data not re-
ported here; contact authors for details). As just noted,
we found a small but significant vertical bias for all sub-
jects that was constant across all target positions and in-
dependent of penalty and displacement conditions.

Effect of penalty and displacements: X coordinates.
Our model predicts a specific horizontal shift of the move-
ment end point away from the red penalty regions for
each choice of penalty and displacement. This shift
should be stronger for target positions closer to the pen-
alty region and for higher penalty values. We predict no
shift in zero-penalty conditions, and in conditions with
nonzero penalties the magnitude of shift should increase
with increasing motor variability.

Figure 5 (left column) shows the raw mean x coordi-
nates of the end points, X̄ij , for each target position, pen-
alty condition, and subject in comparison with the respec-
tive expected optimal end points Xij

MEG . As predicted by
the model, the movement end points shifted away from
the target center (target centers are indicated by the dot-
ted vertical lines in Fig. 5). This shift was largest for the
highest penalty value [Fig. 5(a)] and the target positions
closest to the penalty region (represented in the figure by
the points above the largest Xij

MEG values). The small
rightward bias Xbias mentioned earlier is visible in these
plots as a small displacement upward of the data points
relative to the 45-deg line.

In Figs. 5(a) and 5(b), right column, we collapsed over
right–left symmetric conditions. (We tested whether the
pattern of movement end points was symmetric, and for
all subjects the pattern of movement end points did not
differ significantly from symmetry; t-tests for each subject
and penalty condition were p . 0.05 in all cases.) Data
were replotted for the G1 5 2100 and G1 5 2500 pen-
alty conditions (no shift predicted for G1 5 0). We plot-
ted for each subject the unsigned magnitudes of the hori-
zontal shifts away from the center of the target (the
absolute values of the target coordinates x̄ ij) versus the
corresponding unsigned magnitudes of the optimal shifts
(the absolute value of xij

MEG). We removed the constant
bias Xbias from the data to facilitate comparison of the ef-
fect of changes in displacement and penalty with the
changes predicted by the MEGaMove model.

The 45-deg solid lines in Figs. 5(a) and 5(b), right col-
umn, indicates a perfect correspondence between the sub-
jects’ shift and the predictions of the model. Overall, sub-
jects’ results followed the predictions of the model. The
results of the statistical analysis are consistent with these
observations. As displayed in Fig. 5(a), right column,
subjects with a higher motor variability (S2 and S4)
shifted farther away from the target center than less-
variable subjects (S1, S3, and S5), consistent with the pre-
dictions of the model.

We fitted separate regression lines to the data in Figs.
5(a) and 5(b), right column, for each subject and for the
G1 5 2100 and G1 5 2500 penalty conditions. We per-
formed two tests on the estimated slope for each subject
and condition. We first tested whether the slope of this
line is zero versus the alternative that it is greater than
zero. A slope of zero indicates that the subject is not al-
tering mean end point in response to changes in penalties
or displacements. Not surprisingly, we rejected the null
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hypothesis for both of the penalty conditions, G1
5 2100 and the G1 5 2500 ( p , 0.0001 for all subjects
and conditions).

Fig. 5. Experiment 1, results for five subjects under penalty
conditions 0, 100, and 500. Left column, mean movement end
points X̄ij (x coordinate) as a function of the optimal mean move-
ment end point Xij

MEG predicted by the model for five subjects.
Model predictions based on each subject’s variability were com-
puted. Solid lines, perfect correspondence of model and experi-
ment; dotted lines, center of the green target region. Data are
uncorrected for bias; pointing bias is visible as a shift of the data
above the prediction line. Right, shift of mean movement end
points from the center of the green target region, corrected for
pointing bias ( x̄ ij) as a function of the optimal shift of mean
movement end point (xij

MEG). Data for green target regions to
the left of the penalty region (open symbols) were reflected; solid
symbols indicate mean movement end points toward green target
regions on the right of the penalty region. Data were corrected
for constant pointing bias by subtracting the constant pointing
bias given in Table 1. Average standard error of the mean is in-
dicated in the key. Right, solid symbols indicate data for targets
on the right side of the configuration.
Next, we tested the hypothesis that the slope is pre-
cisely 1 versus the alternative that it is not. A slope of 1
implies that the subject’s shifts in response to changes in
penalty and displacement are precisely those predicted by
the model. A slope less than 1 (but greater than 0) indi-
cates that the subject shifted mean end point less than is
optimal in response to changes in penalties and displace-
ments. A slope greater than 1 indicates that the subject
shifted mean end point more than is optimal in response
to changes in penalties and displacements. That is, the
subject was overly ‘‘afraid’’ of the red penalty.

Table 2 contains the slope estimates and raw p values
for the null-hypothesis test that the slope is 1 (employing
a Bonferroni correction for ten tests, significant devia-
tions from the model predictions with p , 0.05 marked
by an asterisk). We rejected the null hypothesis in both
penalty conditions for two of the five subjects (S3 and S4)
in both penalty conditions. The slope estimates for these
subjects in both conditions were less than 1. This indi-
cates that these two subjects did not shift away from the
red penalty region as far as they should have to optimize
maximum expected gain.

Subject S1’s movement end points deviated signifi-
cantly from the model predictions in the penalty 5 100
condition, but in the opposite direction. The slope of 1.38
indicated that S1 overreacted to changes in the relative
location of the red penalty region more than an optimal
mover should.

At least some of the subjects did not fully maximize ex-
pected gain as predicted by the model. Of course, if we
collected sufficient data in each condition, we would even-
tually expect to be able to discriminate any human sub-
ject’s performance from optimal performance. No physi-
cal coin is ever really fair, and no human observer is ever
really ideal. It is therefore important to assess the con-
sequences of the subjects’ deviations from the predictions
of the model in terms of a second standard, the amount of
money won or lost over the course of the experiment.
Note that subjects were not instructed to aim as accu-
rately as possible (they were not even told where to aim).
Rather, they were told to respond so as to maximize their
payment, something they were likely motivated to do in
any case.

Therefore we compared the subjects’ winnings for each
target position and penalty condition with the optimal
possible score as predicted by the model. In the penalty
5 0 condition this ‘‘optimal’’ score is determined by the

Table 2. Experiment 1, Comparison of Results
with Model Predictionsa

Subject

Penalty 5 100 Penalty 5 500
Performance

(%)Slope p Slope p

S1 1.3860.08*,0.0001 0.97 6 0.05 0.5824 98.60
S2 1.0360.11 0.7740 0.86 6 0.05 0.0067 104.92
S3 0.7360.08*,0.0001 0.68 6 0.05* ,0.0001 97.57
S4 0.7660.08* 0.0003 0.74 6 0.04* ,0.0001 107.67
S5 0.8660.09 0.1298 1.00 6 0.05 0.8886 98.91

a Model predictions were computed for each of the five subjects indi-
vidually by using estimates of individual subjects’ motor variability s 2 as
given in Table 1. See text for details.
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subject’s motor variability: A more variable subject will
miss the target more often, winning fewer points on aver-
age. To compare the performance of individual subjects,
we therefore normalized the individual data by dividing
their wins per trials by the optimal score at penalty
5 0. The resulting data provide an estimate of the de-

gree to which each subject outperforms or underperforms
relative to the optimal performer and shows how their
winnings deteriorate with increasing proximity to the
penalty region and increasing penalty (see also Fig. 2).
The data of all five subjects are displayed in Fig. 6 and in
Table 2 in which the total winnings are compared with op-
timal performance. In accordance with the model, sub-
jects with lower motor variability (S1, S3, S5) scored
higher than more variable subjects (S2, S4).

However, subjects’ performance did not differ signifi-
cantly from the predicted optimal performance (Table 2)—
not even for subjects S1, S3, and S4 whose movement end
points had been found to be significantly different from
the model predictions. We therefore conclude that our
model compares well with the experimental data.

Overall bias. We found constant biases across condi-
tions in both horizontal and vertical directions for all sub-
jects. These biases ranged from 0.3 to 2.1 mm in the x
direction and 0.1 to 2.2 mm in the y direction. This bias
is considerably smaller than the width of the finger tip.
Note also that subjects never received experimental feed-
back on where they had hit the screen other than an ex-
ploding target circle (or the lack thereof when they
missed) and that the subject’s finger tip occluded the
point of impact on the screen.

We suspect that these biases are due to a calibration
failure. Subjects carefully aligned the touch screen with

Fig. 6. Experiment 1, results for five subjects, listed in order of
motor variability, for penalty conditions 0, 100, and 500. The
values plotted on the vertical axis are average scores per target
position displayed as a percentage of optimal performance pre-
dicted by the model for penalty 5 0. Normalizing in this way
makes it easier to compare performance of subjects with different
motor variabilities. The horizontal axis is the target position
Xtarget relative to the penalty region. Model predictions based on
each subject’s variability were computed. The curves (one per
subject) represent the model predictions.
the visual stimuli before each experimental session by
pointing at calibration points on the screen using slow,
deliberate pointing movements. The location registered
by the touch screen is the centroid of the part of the
screen where the finger pad exerted more than a thresh-
old pressure. During the experiment, the subjects moved
rapidly. The part of the finger pad that impacted the
screen could not be controlled, and the distribution of
pressure was almost certainly different. Consequently,
we hesitated to assign much importance to these small
deviations.

To test this calibration-bias hypothesis, subject S1 re-
peated the entire experiment using the index finger of the
left hand. After a practice session, S1 was able to per-
form the task without difficulty. Winning a bonus of
$15.63, S1 scored as high as with the right hand (Table 1).
The motor variability ( s2 5 10.6 mm2) as well as the re-
sponse and movement times (177 6 26 ms and 410
6 27 ms) were equivalent to those previously measured
when S1 had been responding with her right hand. In
contrast to the previous outcome, movement end points
deviated to the left (average deviation from the model pre-
dictions 2 0.75 6 0.1 mm). We tentatively conclude
that the consistent rightward deviation of the subjects’
movement end points from the model predictions is a
problem with calibration. Of course, we cannot use
speeded movements in calibration, since subjects cannot
accurately control the point of contact with the screen
when moving rapidly. In the analysis, we used data cor-
rected for these biases, except as noted.32

Reinforcement-learning models. Our results suggest
that the subjects selected their movements in good agree-
ment with the predictions of the MEGaMove model. Of
course, we cannot conclude that they are selecting motor
strategies by solving Eqs. (4)–(6) (Section 3).

How do subjects achieve near-optimal performance (as
they do, at least in the experiment just reported)? A first
class of models, of which the MEGaMove model is repre-
sentative, consist of the assumptions that (1) the subject’s
motor system contains some representation of the sub-
ject’s movement uncertainty and that (2) given informa-
tion about the rewards and penalties associated with
movement in a scene, the subject’s motor system can ef-
fectively select the motor strategy that maximizes ex-
pected gain.

As we noted in Section 1, there is evidence that human
movement planning takes into account movement uncer-
tainty, and the results of experiment confirm this claim.
There is a vast literature on cognitive decision making in-
dicating that subjects are sensitive to gains and probabili-
ties in deciding between simple gambles.33 The issue,
then, is whether the motor system employs the same or
similar principles in deciding among an indefinitely large
number of motor strategies.

Consider then an alternative explanation of subjects’
performance in experiment 1. Subjects use a simple
reinforcement-learning algorithm to find the motor strat-
egy that maximizes expected gain. They search the re-
ward landscape of Fig. 2 until they find the maximum.
The observer, for example, may choose a motor strategy at
random and then integrate the rewards received over
many trials to estimate the expected gain. The subject
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could then change to a second motor strategy and evalu-
ate it, using the information gained to search the space of
motor strategies seeking to maximize expected gain.

Suppose that we examined the performance across time
of a ‘‘hill-climbing’’ movement planner. Initially, end
points need not be near the end point associated with
maximum expected gain, but we would expect a shift to-
ward XMEG over the course of any block. To determine
the optimal mean movement end point, any reinforce-
ment strategy would require trials in which the penalty
region was hit. In fact, subjects hit the penalty region
extremely rarely in this experiment: on fewer than 1
trial in 100 (in the penalty 5 500 condition).

Furthermore, the shift toward the optimal end point is
based on collecting information about the expected gain
associated with a series of motor strategies. Yet the out-
come of any choice of motor strategy is stochastic, and the
observer must integrate over several attempts using one
motor strategy to get a useful estimate of its expected
gain. Hence, if subjects relied on a reinforcement-
learning algorithm, we would expect to see a slow shift in
end point toward the optimal over the initial trials in each
block.

In experiment 2 we will explicitly look at the ability of
practiced subjects to adapt rapidly to novel experimental
configurations. We can, however, look at the time course
of results in experiment 1 to see whether there is any hint
of the slow shift in end point associated with
reinforcement-learning models.

As displayed in Fig. 7, this is not the case. Movement
end points randomly fluctuate with constant variability
around the mean within each condition over the course of
the entire experiment. There is no discernible trend at
the beginning of each block (i.e., for every sixth trial). In
particular, we can compare performance in the penalty
5 0 and penalty 5 500 conditions. In the former, the
optimal mean movement end point is obvious (i.e., the
center of the green target), whereas in the latter, it is not.
Yet the distributions of end points at the beginnings of
blocks in both conditions appear to be very similar.

Fig. 7. Experiment 1, trial-by-trial data of subject S1. Devia-
tions of individual movement end points (x coordinate) from the
mean movement end point x̄ (per condition) as a function of trial
number are shown. Data are displayed for each location of the
green target region and for two penalty conditions.
5. EXPERIMENT 2
The results of experiment 1 suggest that subjects select
mean movement end points by rapidly solving an optimi-
zation procedure in each trial. Consequently, we ex-
pected that they would be able to perform the same point-
ing task with a rotated but otherwise unchanged stimulus
configuration without any additional practice. We ex-
pected subjects to point at the unfamiliar, rotated configu-
rations with the same low motor variability as in the pre-
vious experiments.34

We performed a second experiment to directly test the
assumption that subjects are able to transfer previously
gained knowledge about their own motor variability when
pointing at novel stimulus configurations. Second, we in-
creased the level of difficulty of the movement planning
task to test whether subjects still managed to plan the
movement end point according to our theory in more com-
plex situations.

First, we rotated the previously horizontal stimulus
configuration (Fig. 3) by 690 and 630 degrees (Fig. 8, up-
per row). Since the same subjects participated in experi-
ment 2 as in experiment 1, they were well practiced in the
task, and it is plausible that they had already gained
knowledge of their own motor variability.

Second, we added four more conditions experiment 2 in
which we increased the complexity of the stimulus con-
figuration by increasing the number of penalty areas to
two. As displayed in Fig. 8, we chose a set of four con-
figurations that were combinations of the first four con-
figurations.

A. Method

1. Apparatus
The experimental setup was the same as in experiment 1.

2. Stimuli
The stimulus configurations of the stimuli are similar to
those of experiment 1. The red penalty region and the
green target region appeared in eight different combina-
tions. Figure 8 (upper row) shows configurations 1–4,
composed of a single green target region and a single red
penalty region. In configurations 5–8, a single green tar-
get region was combined with two red penalty regions,
combining two of the first four configurations (Fig. 8,
lower row). Target and penalty regions had radii of 32
pixels/9 mm. Red penalty areas were surrounded by a
bright red edge, making the position of each penalty area

Fig. 8. Layout of the stimuli in experiment 2.
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clear as well as indicating where the two penalty regions
overlapped. The green target was a transparent overlay
as before.

3. Procedure
The sequence of events during a single trial remained un-
changed from experiment 1. Again, the subject could win
100 points by hitting the green target. The penalty for
touching either of the red penalty regions was constant
during a block of trials and varied randomly between
blocks taking values of 0 or 500 points. Each block of tri-
als consisted of four repetitions of each of the eight con-
figurations presented in random order. As before, each
session began with a touch screen calibration followed by
16 practice trials (each stimulus configuration displayed
twice in random order for a penalty 5 0 condition). Fi-
nally, 12 blocks (6 at each penalty level) of 32 trials were
presented in random order.

4. Subjects and Instructions
The same five subjects participated as in experiment 1.
Subjects ran one session of 400 trials (16 practice trials,
12 blocks of 32 trials), which took approximately 50 min.
As before, subjects were told that the total score would re-
sult in a bonus payment of 25 cents per 1000 points.

5. Data Analysis
For each trial we recorded reaction time, movement time,
the screen position that was hit, and the score. Trials in
which the subject released the space bar less than 100 ms
after display of the green target or hit the screen more
than 700 ms after display of the green target were ex-
cluded from the analysis.

Each subject contributed approximately 384 data
points, i.e., 24 repetitions per condition. Movement end-
point positions were measured relative to the center of
the green target region. The green target was always
presented at the screen center, i.e., Xtarget 5 Ytarget 5 0
for all configurations. The subject’s motor variability
was averaged across the eight conditions and the x and y
directions.

As in the previous experiment, all subjects showed a
systematic pointing bias in both the x and y directions.
For each subject this bias was estimated as the movement
end points averaged across all eight configurations in the
penalty 5 0 condition and is displayed in Table 3 (the dis-
plays were not symmetric with respect to the y direction,
so we could not include the nonzero penalty conditions as
we did for experiment 1). Compared with the experimen-
tal results, the model predictions were shifted by each
subject’s constant pointing bias Xbias and Ybias .

An approach similar to that of experiment 1 was chosen
to compare the recorded movement end points with the
model predictions. But, unlike in experiment 1, shifts in
predicted movement end points occurred along both spa-
tial dimensions. Overall, the model accounted for ap-
proximately 70% of the variance of the average movement
end points (Table 4). Since variances in the x and y di-
rections did not differ significantly, data were analyzed
with a polar coordinate system. For each recorded move-
ment end point the absolute distance from the origin rhit
and the angle with the positive x axis fhit @ fhit
P @0, 360)# were computed. These estimates were com-
pared with the predictions of the model (ropt , fopt) by
computing the slopes rhit versus ropt and fhit versus fopt
(data combined across all spatial configurations). Again,
both slope estimates were constrained by a constant of
zero, because data had been corrected for constant point-
ing bias. The slope estimates were compared with a
slope of 1, indicating perfect correspondence between the
data and model. Table 4 contains the slope estimates
and the corresponding p values (df ; 192, varying ac-
cording to the exact number of data recorded per subject,
data that Bonferroni corrected for number of subjects; sig-
nificant deviations from the model predictions with
p , 0.05 marked by an asterisk; please contact authors
for details).

Subjects’ winnings were compared with optimal perfor-
mance by using the same procedure as in experiment 1.
Significant deviations from optimal performance are indi-
cated by an asterisk in Table 4.

B. Results
The number of recorded movement end points included in
the analysis was 1902; 18 responses were omitted for be-

Table 3. Experiment 2, Resultsa

Subject s 2 (mm2) Xbias (mm) Ybias (mm) Score ($)

S1 7.84 2.4 6 0.2 1.0 6 0.2 6.05
S2 14.78 0.8 6 0.3 20.5 6 0.3 5.13
S3 7.71 0.7 6 0.3 0.1 6 0.3 7.13
S4 8.47 2.2 6 0.2 1.2 6 0.3 5.93
S5 8.93 1.2 6 0.2 1.1 6 0.3 7.20

a Data reported for the five subjects individually; motor variability
( s2), response bias in the x and y directions (Xbias , Ybias , 6 one standard
error of the mean), computed by averaging across all conditions (;384
data points per subject); the score indicates the cumulative sum of wins
across all trials. Performance is computed by dividing the score by the
score of an optimal performer with the same motor variability.
Table 4. Experiment 2, Comparison of Results with Model Predictionsa

Subject
R2

(%) Slope (fhit) p Slope (r) p
Performance

(%)

S1 75.31 0.94 6 0.02 0.0076 1.10 6 0.02* ,0.0001 77.0*
S2 67.53 0.98 6 0.02 0.3608 1.06 6 0.03 0.0542 91.0*
S3 68.09 0.99 6 0.02 0.6105 0.87 6 0.03* ,0.0001 90.3*
S4 65.39 1.03 6 0.02 0.1995 1.30 6 0.03* ,0.0001 79.5*
S5 73.31 0.96 6 0.02 0.0723 1.15 6 0.03* ,0.0001 95.1

a Model predictions were computed for each of the five subjects individually by using estimates of individual subjects’ motor variability s2 as given in
Table 3.
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ing late. As in the previous experiment, subjects differed
significantly in their motor variability. Therefore the
data were analyzed individually for each subject. Re-
sults are summarized in Tables 3 and 4 and displayed in
Fig. 9. Reaction and movement times remained constant
across conditions (data not reported here; contact authors
for details), indicating that subjects did not alter their
planning and movement strategy when pointing at con-
figurations 5–8, i.e., for more complex stimulus configura-

Fig. 9. Experiment 2, results: average movement end points
(X̄, Ȳ) for each of the eight stimulus configurations and the two
penalty conditions, for each of the five subjects. Model predic-
tions based on each subject’s variability were computed. Left
column, results for conditions 1–4 (one red penalty region).
Right column, results for conditions 5 to 8 (two red penalty re-
gions); see Fig. 8 for details. Error bars represent 6 one stan-
dard error in the x and y directions, computed from 24 data
points per condition (less than 24 in the rare cases where data
were dropped owing to a timeout). Model predictions were cor-
rected for each subject by adding the constant pointing bias given
in Table 3.
tions. There was no significant difference between the
motor variabilities in the x and y directions nor across
conditions. In particular, the distribution of responses
was not affected by changes in the number of red penalty
areas. Subjects did not reshape the distribution on the
basis of the shape of the penalty region, nor did they en-
gage in a speed–accuracy trade-off that varied between
conditions.

A systematic pointing bias in both the x and y direc-
tions was apparent for all subjects. As in the previous
experiment, this bias did not change with experimental
conditions but differed between individual subjects (Table
3). We believe that the bias does not reflect systematic
errors in the movement planning process but is a touch-
screen bias due to the subject’s use of the right hand (see
the detailed discussion in the context of experiment 1,
Subsection 4.B). We therefore corrected for the pointing
bias in comparing the predictions of the MEGaMove
model with the experimental data.

Figure 9 displays the mean movement end points of
each of the five subjects for each stimulus configuration; it
shows that, overall, movement end points follow the pre-
dictions of the statistical decision-theory model. The re-
sults of the statistical analysis support this observation.
All subjects shifted their mean movement end points in
the direction as predicted by the model (as reflected by
slope estimates ;1 for fhit). The magnitude of this shift
(indicated by rhit) however, differed significantly from the
model predictions. Three subjects (S1, S4, S5) shifted
their mean movement end points farther away from the
penalty region than predicted by the model, and one sub-
ject (S3) did not shift as far as predicted (Fig. 9 and Table
4).

In addition, four subjects (S1, S2, S3, S4) performed
significantly below optimal performance predicted by the
model. As is apparent from Fig. 10, subjects performed
particularly poorly when pointing at configuration 6.

Two subjects reported that they had no idea why in par-
ticular in this condition they missed the green target, and
even worse, hit the lower red penalty area, so frequently.
Subject S1 hit the red penalty area four times in this con-
dition (compared with only twice in all other seven condi-
tions combined), S2 hit the red six times in this condition

Fig. 10. Average gain per trial and model predictions in the
penalty 5 500 condition as function of the configuration (Fig. 8).
Data displayed for each of the five subjects are based on 24 data
points per configuration (less than 24 in the rare cases where
data were dropped owing to a timeout). Model predictions based
on each subject’s variability were computed.
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(compared with five hits total in the other conditions), and
S4 and S5 each hit the red three times (compared with
three hits total in the other conditions). The reason for
this might be the rightward pointing bias, which should
lead to the most dramatic consequence (accidentally hit-
ting red) when pointing at configuration 6 (Fig. 8). This
is more severe for configuration 6 than for the configura-
tions of experiment 1, as there is more penalty area in
configuration 6 located just to the right of the green tar-
get. Only the performance of subject S3 deviated from
optimal performance for a different reason: On average
S3 did not shift her movement end points as far as pre-
dicted by the model, and as a consequence she collected
penalties for hitting the red penalty across all conditions
(1.3 hits per configuration).

In general, however, the MEGaMove model accounted
for the subjects’ behavior. The fact that subjects failed to
perform close to optimally in this experiment does not in-
dicate the use of suboptimal visual–motor strategies.
Rather, it resulted from a nondetectable systematic re-
sponse bias due to subjects’ use of the right hand, which
turned out to be costly in the context of this experiment.
That subjects persisted in this particular suboptimal be-
havior also is a further indication that the basic corre-
spondence of data and model is not the result of a
reinforcement-learning procedure.

Finally, note that all subjects’ motor variabilities were
low and stable, as in the previous experiment, although
the eight configurations constituted a novel set of stimuli
and required planning motor responses in an unfamiliar
context (pointing vertically and in tilted directions com-
pared with the horizontal arrangements in the previous
experiments). Subjects had only 16 practice trials (in a
penalty 5 0 condition) before the experiment began, and
no learning effects were visible in the data across experi-
mental blocks (Fig. 11). This suggests that during the
previous experimental sessions subjects had gained
knowledge about their own motor variability and were
able to use this knowledge in a novel and more complex

Fig. 11. Experiment 2, trial by trial data. Two-dimensional
distance of individual movement end points (x, y) from the mean
movement end point ( x̄, ȳ) as a function of trial number, dis-
played for configurations 2 and 7 (Fig. 8), for all five subjects in-
dividually and for penalty conditions 0 and 500.
motor task. With this knowledge, the motor system is
able to solve complex two-dimensional integration and op-
timization problems.

6. GENERAL DISCUSSION
We recently presented a model of movement planning
based on statistical decision theory.1 In this MEGaMove
model, a motor strategy is selected by maximizing an ex-
pected gain function [Eq. (3)] that takes into account ex-
plicit gains associated with the possible outcomes of the
movement, motor variability, biomechanical gains, and
gains associated with time limits imposed on the mover.

In this study we performed two experiments to test the
range of validity of our model. In these experiments sub-
jects had to reach and hit a target region on a computer
screen. Hitting the target within a prescribed time limit
gained them a monetary reward. There were also one or
more penalty regions on the screen that could partially
overlap the target region. Hitting the regions incurred a
specified penalty. In each experiment the penalty associ-
ated with hitting a penalty region as well as its position
relative to the target region were varied. Using our
model and an estimate of each subject’s motor variability
based on his or her performance, we could predict the
mean movement end point that would maximize expected
gain. Subjects followed the predictions of our model.
With increasing penalty values, they shifted their mean
movement end points away from the penalty region.
This shift was larger for closer penalty regions and higher
penalty values.

In the second experiment, subjects were exposed to a
novel set of stimuli that consisted of four rotated configu-
rations of experiment 1 and four more complex configura-
tions consisting of one target and two penalty regions.
We asked whether subjects still planned their movements
as predicted by our model. Recall that the predictions of
our model are based on the maximization of the expected
gain function, which in the case of the four more-complex
configurations requires a two-dimensional integration
procedure. Subjects altered their movement end points
in direction and magnitude as predicted by our model in
all configurations presented. Furthermore, their motor
variabilities were as low as in the previous experiments.
Thus subjects were able to use their previously acquired
estimate of motor variability in planning their responses
in this more complex situation. And, the more complex
array of penalties did not result in an increase in variabil-
ity, owing to variability in the computation of the in-
tended movement end point. This suggests that the bulk
of the variability is due to execution of the motor com-
mand rather than to variability in the movement plan it-
self.

There are several things that subjects must know to
calculate the optimal movement plan, including their mo-
tor variability (due to errors in both movement planning
and movement execution), the target and penalty region
positions and sizes, and the gains associated with these.
The current experiments do not directly test whether
each of these terms is estimated correctly by the subjects.
However, although subjects initially required an hour of
practice for variability to stabilize, variability remained
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stable with almost no practice trials across both experi-
ments with different penalty and target conditions.
Thus subjects must have acquired an estimate of their
motor variability. Novel experimental conditions did not
result in an increase in that variability, suggesting that
movement planning for more-complex tasks (in experi-
ment 2) did not result in additional variability.

Our model predicts optimal movement end points on
the basis of a complex two-dimensional integration proce-
dure. We therefore expect the model to fail once this in-
tegration procedure becomes too difficult or too time
costly. It is likely that an increasing complexity of the
stimulus configuration (containing a variety of different
penalty regions or more-complicated stimulus shapes)
and a reduced time limit on the task will push the limits
of our model. Future experiments will study this ques-
tion.
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