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Abstract—We present a novel approach to the modeling of motor responses based on statistical
decision theory. We begin with the hypothesis that subjects are ideal motion planners who choose
movement trajectories to minimize expected loss. We derive predictions of the hypothesis for
movement in environments where contact with speci� ed regions carries rewards or penalties. The
model predicts shifts in a subject’s aiming point in response to changes in the reward and penalty
structure of the environment and with changes in the subject’s uncertainty in carrying out planned
movements. We tested some of these predictions in an experiment where subjects were rewarded if
they succeeded in touching a target region on a computer screen within a speci� ed time limit. Near the
target was a penalty region which, if touched, resulted in a penalty. We varied distance between the
penalty region and the target and the cost of hitting the penalty region. Subjects shift their mean points
of contact with the computer screen in response to changes in penalties and location of the penalty
region relative to the target region in qualitative agreement with the predictions of the hypothesis.
Thus, movement planning takes into account extrinsic costs and the subject’s own motor uncertainty.
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1. INTRODUCTION

Motor responses have consequences. According to Swiss tradition, the tyrant
Gessler ordered the marksman Wilhelm Tell to shoot an apple off the head of Tell’s
own son with a crossbow at 50 paces distance (Fig. 1A). Were Tell successful, he
would be released. Should he refuse or miss altogether, both he and his son would
be put to death. It is not clear what Gessler intended the outcome to be if Tell had
shot and hit the boy. Perhaps Gessler, cruel man that he was, would free Tell to live
out his life with the memory of having killed his own son. We shall assume that this
was the case.
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In Fig. 1A, every point where the arrow might land is associated with a clear
penalty or reward. Of course, Tell cannot pick exactly where his arrow will go. He
can only choose where to aim and, even if he aims at the exact center of the apple,
he knows he risks hitting the boy below. If he aims a bit above the center, he reduces
the risk that he will hit the boy, but likely increases the risk that he will miss both
apple and boy. The question is, where should Tell aim?

Let us consider an experimental task analogous to Wilhelm Tell’s quandary (but
with less grave consequences). Following a signal, the subject must rapidly touch a
point on a computer screen with his /her � ngertip. The items visible on the screen
are illustrated in Fig. 1B. If the subject hits within the upper circle on the screen
(‘the apple’), s / he wins a dollar. If s /he instead hits the circular penalty region
just below (‘the child’), s /he loses ten dollars. Hitting anywhere else on the screen
incurs no penalty (but generates no reward). There is a large penalty for failure to
respond within a brief time after the signal.

In the situation just described, where should the subject aim? With a short
enough time limit and small enough target regions, the subject cannot be certain
that a movement aimed at the center of the reward region will not, instead, end up

Figure 1. Wilhelm Tell’s quandary. (A) Tell, forced to shoot at an apple perched on his son’s head,
must decide precisely where to aim. Intuitively, this should depend on the consequences associated
with hitting the apple, hitting his son, and missing both apple and son (drawing by M. F. Dal Martello).
(B) A pointing task analogous to Wilhelm Tell’s quandary. Once a signal is given, the subject must
quickly reach out and touch a point in the � gure. The rewards associated with each point are labeled
by region. The region of highest reward is enclosed in the white circle. If the subject hits in the
intersection of the target and penalty region, s/he collects both rewards, for hitting the target and
the penalty, respectively. The time limit in the task is chosen so that the subject cannot reliably hit
within the white circle without some risk of hitting the grey circular region beneath that carries a large
penalty. There is a very large penalty for not responding before the time limit expires. What is the
optimal point to aim for?
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outside the reward region, possibly in the penalty region. Intuition suggests that the
wise subject should aim somewhere above the center of the reward region, but it
is not at all clear by how much. It is plausible that the values of the rewards and
penalties should affect the choice of aim point: the larger the penalty associated
with the penalty region, the larger we would expect the subject’s aiming bias to be,
all else held constant. The experimenter can increase or reduce the uncertainty in
the subject’s motor response by manipulating the time limit,1 and it is plausible that
altering motor uncertainty should also affect the subject’s choice of aim point.

The task just described is representative of a wide range of everyday movement
planning tasks where there are (a) externally-imposed costs and bene� ts associated
with the outcomes of actions, and where (b) the uncertainty inherent in carrying out
a planned movement may alter the consequences for the planner. In this article we
� rst develop a model, based on statistical decision theory (Blackwell and Girshick,
1954; Ferguson, 1967), that predicts optimal behavior for such ‘Wilhelm Tell’ tasks.
We then report an experiment in which subjects’ actual performance is compared to
predicted optimal performance. The Theory of Signal Detection (Green and Swets,
1966/1974) is an analysis of detection experiments that models an ideal observer
who makes decisions so as to minimize expected loss. We propose an analogous
model of movement planning.

2. MODELS OF MOTOR STRATEGY AND MOTOR BEHAVIOR

In planning a goal-directed movement, the motor system is required to pick one of
many possible motor programs. Since there is some disagreement in the literature as
to exactly what constitutes a motor program, we will use the slightly more inclusive
term ‘visual-motor strategy’ to describe the outcome of movement planning. A
strategy includes the choice of the goal trajectory as well as any effect of ongoing
visual feedback on the movement. In this section, we review the previous literature
on movement planning.

There are many possible trajectories that can satisfy the demands of a particular
task. Thus, additional constraints are required to specify a unique solution. It is
plausible that the motor system tends to avoid trajectories that lead to ‘wear and
tear’ on the organism. Previous models of motor planning typically emphasize
selection of a single deterministic trajectory that minimizes biomechanical costs
while achieving the speci� ed goal of the movement. These models differ primarily
in the choice of biomechanical cost function.

These biomechanical cost functions include measures of joint mobility (Soechting
and Lacquaniti, 1981; Kaminsky and Gentile, 1986), muscle tension changes
(Dornay et al., 1996), mean squared rate of change of acceleration (Flash and
Hogan, 1985), mean torque change (Uno et al., 1989) and peak work (Soechting
et al., 1995). The resulting model predicts that the motor system will select
the strategy that minimizes the speci� ed biomechanical cost while achieving the
intended goal.
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Rosenbaum and colleagues proposed a slightly different model of motor planning.
They propose that the motor system computes a goal posture based on a ‘database’
of stored posture representations (Rosenbaum et al., 1995, 2001). The goal posture
is a weighted sum of the stored candidate postures where the weights assigned to
each stored posture are chosen on the basis of two criteria: accuracy (How close is
the stored posture to ful� lling the goal of the movement?) and ef� ciency (What are
the biomechanical costs of moving from the current posture to the stored posture?).
The motor system, given the computed goal posture, then seeks to effect it, using
visual and kinesthetic feedback to optimize the requested change in posture. Note
that the choice of goal posture involves a trade-off between the accuracy of potential
goal postures and the biomechanical costs entailed by change of posture.

Obstacles or other ‘extrinsic’ objects further constrain the range of movement
paths. A number of studies have demonstrated that hand trajectories are altered
in the presence of distractors or obstacles (Dean and Brüwer, 1994; Howard and
Tipper, 1997; Tipper et al., 1997; Castiello, 2001; Mon-Williams et al., 2001).
These � ndings are typically explained by assuming that trajectories are chosen to
avoid spatial overlap of the limb with the obstacle (Rosenbaum et al., 1999). In other
obstacle avoidance approaches the inertial properties of the arm are considered as
well (Sabes and Jordan, 1997; Sabes et al., 1998). However, the outcome of the
proposed computation is still a single, deterministic trajectory that optimizes the
trade-off between the goal of the task and biomechanical costs. The optimization
now excludes all trajectories that collide with the obstacle since, for a suf� ciently
solid obstacle, these trajectories are not achievable.

The models just described do not take into account the possible consequences
of subjects’ motor uncertainty in carrying out tasks. Nor do they allow for
consideration of trade-offs among extrinsic costs, imposed as part of the task. There
is, for example, no ready way to frame a trade-off between a small probability
of collision with an obstacle and a large decrease in the chances of achieving the
goal of the task. Nor is it easy to explain why a subject might be more willing
to risk collision as the reward associated with successful completion of the task is
increased.

There is considerable evidence that the motor system takes its own motor
uncertainty into account when planning movements. Consider the task of moving
the hand quickly to a target. The task is more dif� cult (i.e. the landing point is
less likely to hit the target) for shorter movement times (the time interval from
movement initiation to completion), and for smaller and more distant targets. In
fact, subjects show an awareness of these constraints by prolonging their movement
time for smaller target diameters as predicted by Fitts law (Fitts, 1954). Thus,
subjects take uncertainty into account and select movement times that allow the
target to be hit with constant reliability (see Meyer et al., 1988).

Following this observation Harris and Wolpert (1998) suggested that movement
trajectories are selected to minimize the variance of the � nal eye or arm position.
They proposed that the underlying determinant of trajectory planning is the mini-
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mization of the noise in the neural control signal that activates the muscles during
the execution of a motor command and the post-movement period. In their model
the arm’s position is computed as function of a (deterministic) biomechanical ex-
pression and a noisy neural signal, where the noise increases with the magnitude
of the neural signal. Optimal trajectories of the eye and arm are then determined
by minimizing the total positional variance during the immediate post-movement
period (of 500 ms). The idea behind this approach is that the variability in the � nal
position of a saccade or pointing movement is a result of the accumulated devia-
tions of the executed trajectory from the planned trajectory over the duration of the
movement. The model managed to describe horizontal saccadic eye movements,
hand paths for a set of point-to-point movements, as well as the optimal trajectory
in an obstacle avoidance task (Hamilton and Wolpert, 2002).

Note that this approach is based on the notion that the endpoint variability is a
consequence of the ‘biological noise’ in the motor control system and therefore
unavoidable. Motor trajectories will always be distributed around the optimal
aiming point. If so, does this motor uncertainty affect where we aim?

In the following section, we develop a model for selection of visual-motor
strategies that explicitly takes into account motor uncertainty and that allows for
trade-offs between the penalty structure imposed by the task and biomechanical
costs. The key ideas are as follows.

First, when the motor system selects a visuo-motor strategy, it in effect imposes
a probability density on the space of possible movement trajectories that could
occur once the motor strategy is executed. This probability density is likely
affected by the goal of the movement, the planned duration, the possibility of visual
feedback during the movement, previous training, and intrinsic uncertainty in the
motor system. We emphasize that the consequences for the subject are completely
mediated through this probability density and we can, for the most part, ignore the
details of the actual mechanisms that produce and steer the action.

Second, whatever the penalty structure of the task, the penalty incurred by the
subject depends only on the motion trajectory that actually occurs. Where Wilhelm
Tell aims is important, but where the arrow hits is all that really matters in the end.

Third, the subject acts so as to minimize expected loss as computed from the
magnitude of each possible penalty and the probability of incurring it. Note that we
use the term ‘loss’ to describe both gains and losses, treating gains as a ‘negative
loss’. In our experiments, subjects typically win money and their expected loss is
therefore negative (an expected gain).

3. A STATISTICAL DECISION THEORY MODEL OF POINTING MOVEMENTS

A movement trajectory ¿ .t/ is a function that speci� es, for any time t , the position
of the entire body at that time. For our purposes, though, it is enough to consider
the position of a single � ngertip in time and space: ¿ : t ! .x.t/; y.t/; z.t//. We
have chosen notation so that the development of the theory is little affected if the
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range of ¿ .t/ is expanded to include a full representation of the position of the arm
or of the full body.

We will denote by S a choice of visual-motor strategy. The effect of choosing
S is simply to impose a probability density on the set of possible trajectories that
could occur when S is executed. For the simple sort of task we will investigate
experimentally in a later section, we could think of the choice of S as a choice of
aim point or as the choice of a planned trajectory. However, as the word ‘strategy’
suggests, a visual-motor strategy could involve a complex series of goals in space
and time. The consequence of any chosen strategy, though, is simply the probability
density assigned to possible trajectories, P .¿ jS/.

Consider now a target region R in space. For any choice of strategy S, we can
compute the probability of passing through the target region (‘hitting the target’). It
is simply the probability,

Phit.S/ D
Z

R1

P .¿ jS/ d¿; (1)

where R1 is the set of trajectories that pass through R at some point in time after
the start of the execution of the visual-motor strategy. If the target region is large
compared to the � ngertip and no time limit is imposed, it is plausible that the motor
system can always pick a strategy S such that the actual trajectory always passes
through the target region, i.e. Phit.S/ D 1.

If we impose a time limit on the task, it is no longer enough to pass through the
target region. The trajectory must pass through the target region before the time
limit t¤ has expired. The probability of hitting the target is now

Phit.S/ D
Z

Rt¤
P .¿ jS/ d¿; (2)

where Rt¤ denotes the trajectories that pass through R after the start of the execution
of the visual-motor strategy and before time t¤. Given Fitts’ law (Fitts, 1958), it is
plausible that the experimenter can select a time limit and/or reduce target size so
that the target will be missed in some cases and, therefore, Phit.S/ < 1. Our primary
concern is with such ‘speeded tasks’ where, on every trial, there is a substantial
probability that a movement intended to hit the target region will instead hit another
region, incurring a penalty.

If all that mattered were whether or not the subject hit the target, then we could
simply choose a visual-motor strategy S¤ that maximizes Phit.S/ (the choice of S¤

need not be unique). However, we should also consider the biomechanical costs
associated with different strategies. Further, for the Wilhelm Tell tasks considered
above, we must also factor in the possibility of losses incurred by trajectories that
pass through penalty regions. It is not enough to maximize the chances of hitting
the apple. We must also consider the chances he will hit the boy.
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Let us denote the other regions by Ri where i ranges from 1 to N . Then the
probability of hitting the ith region before the time limit is

P .RijS/ D
Z

Ri;t¤
P .¿ jS/ d¿; (3)

where Ri;t¤ denotes the trajectories that pass through Ri after the start of the
execution of the visual-motor strategy and before time t¤. If we change notation
slightly, denoting the target region by R0, then the equation above summarizes the
probability of hitting any region, target or penalty. Let Ci denote the cost associated
with hitting region i for i ranging from 0 to N (a ‘reward’ is just a negative ‘cost’).
Then the expected loss of a movement strategy is calculated as

L.S/ D
NX

iD0

CiP .Ri jS/: (4)

Note that the expected loss includes a possible negative cost from hitting the target
region R0.

For tasks with an imposed time limit and a penalty for failure to respond before the
limit, we should add a term to the expected loss function that re� ects this ‘timeout’
penalty. We denote the probability that a task leads to a ‘timeout’ by P .timeoutjS/

and the associated cost by Ctimeout.
Last of all, we need to include biomechanical costs associated with a given

movement trajectory due to the ‘intrinsic’ constraints of the arm. We codify these
biomechanical costs as a second loss function B.S/. This yields a new expected
loss function

L.S/ D
NX

iD0

CiP .RijS/ C CtimeoutP .timeoutjS/ C ¸B.S/; (5)

where ¸ characterizes the trade-off between physical effort and expected reward/
penalty that the subject will tolerate.

An optimal visual-motor strategy, according to statistical decision theory is one
that minimizes the expected loss function L.S/ (Blackwell and Girshick, 1954;
Ferguson, 1967; Berger, 1985; see Maloney, 2002). Note that implicit in the
form of the previous equation is the fact that subjects can be expected to trade off
biomechanical costs and costs imposed externally by the task. As we will see,
predicted optimal behavior will be in� uenced by the presence of penalty target
regions, the magnitudes of penalties and rewards, the ‘timeout’ penalty, and changes
in motor uncertainty induced by changing the ‘timeout’ time limit.

Note that the form of the � nal equation does not explicitly depend on how we
represent trajectories. However we represent them, all that matters is whether they
hit any given penalty region at an appropriate time. Further, while our penalty
regions are speci� ed in space, it would be easy to extend them to represent regions
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in space-time, allowing us to represent tasks that involve avoiding or seeking objects
in a dynamic environment.

It is clear that movement trajectories also depend on visual feedback (for reviews,
see Connolly and Goodale, 1999; Desmurget and Grafton, 2000). Depending on
timing and viewing conditions, visual feedback may allow the subject to follow a
trajectory more accurately. In our formulation, this reduction in motor uncertainty
affects only the probabilities of hitting various regions and possibly the probability
of timeout.

In the next section, we illustrate the model for the simple task described in the
introduction.

4. A THOUGHT EXPERIMENT

Imagine a subject carrying out the simple task, analogous to that faced by Wilhelm
Tell, that we discussed above. S /he is asked to touch within a target circle drawn on
a computer screen. If the subject hits the target on a trial, s /he will win 100 points.
After the experiment is over, the total point winnings are converted to a monetary
reward. On all trials, a second ‘penalty’ circle appears to the left of the target,
partially overlapping it (Fig. 2). If the subject hits within the penalty circle, s /he
will lose 100 points. Note that, as the circles overlap, the subject may hit within both
of them and simultaneously incur the speci� ed reward and the speci� ed penalty,
receiving zero points. S /he receives the sum of all rewards and penalties earned in
a single trial. We force the subject to touch the screen within a speci� ed time limit
that is the same on every trial. Late responses incur a very high penalty.

This leaves the subject with the following options:

1. The target is hit: The subject receives a reward of C0 points (as we represent
values as costs, C0 < 0).

2. The penalty is hit: The subject receives a penalty of C1 points.

3. Time out: The subject was too slow and receives a large penalty of Ctimeout.

The � rst and second options are not mutually exclusive if the target and penalty
regions overlap.

So, how does one predict the optimal aiming point that minimizes the cost
function (equation (5))? Given our effectively 2-dimensional task, we will designate
possible visual-motor strategies S by their resulting mean point of impact on the
computer screen .x; y/. We can think of this point as the ‘aim point’ of the subject.
For aim point .x; y/, the expected cost is,

L.x; y/ D C0P .R0jx; y/ C C1P .R1jx; y/

CCtimeoutP .timeoutjx; y/ C ¸B.x; y/: (6)

Let us assume that both the probability of a timeout and the biomechanical costs
are nearly constant over the limited range of relevant screen locations. To minimize
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Figure 2. Outcome of the thought experiment. 500 simulated responses per condition for varying
penalties. Arrows indicate the optimal aiming point for each possible penalty. The left- and right-hand
circles mark the areas of the penalty circle and the target (radius D 9 mm). The response variability
(¾ D 4:2 mm) was set so that 90% of the responses hit the target in the zero-penalty condition.

expected costs, we can then ignore the constant timeout and biomechanical penalty
terms. Thus, the subject must choose .x; y/ so as to minimize,

L.x; y/ D C0P .R0jx; y/ C C1P .R1jx; y/: (7)

Next, we assume that pointing trajectories are unbiased and distributed around the
aim point .x; y/ according to a Gaussian distribution,

p.x 0; y0jx; y/ D
1

2¼¾ 2
e¡[.x¡x0/2C.y¡y 0/2]=2¾2

; (8)

where ¾ indicates the spatial variability of the subject’s responses in any direction
away from the aim point. The probability of hitting region Ri is

P .Ri jx; y/ D
Z

Ri

p.x 0; y0jx; y/ dx0 dy0: (9)

For the stimulus con� guration used in our experiment (see Fig. 3) no analytical
solution could be found for equation (9). The integral was solved numerically by
Monte Carlo integration (Press et al., 1992) and the results were used for minimizing
equation (7).

We � rst consider how the choice of aim point will depend on the penalty C1

associated with hitting the penalty region. Suppose that C1 is 0, i.e. there is no
penalty associated with hitting the penalty region. Then, we can reasonably expect
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that the subject will seek to hit the target as often as possible, given the time limit.
The optimal aim point is the center of the target under these conditions. The
subject’s winnings depend only on motor uncertainty, captured by the parameter
¾ in the speci� cation of the Gaussian.

Next, suppose that hitting the penalty circle incurs a penalty of 100 points. Given
the spatial variability of the pointing responses, the subject may accidentally hit
the penalty circle when aiming at the center of the target (see the overlap of the
distribution of the � lled circles with the shaded penalty area in Fig. 2). When trying
to minimize the loss across all trials, it may be preferable to aim at a point which
is shifted to the right of the center of the target. Depending on the amount of the
penalty, it might be less costly to miss the target once in a while to avoid the risk
of incurring so many penalties. Therefore, we expect the optimal aim point to shift
farther to the right with increasing penalty (if the target area remains constant, as it
does in our experiment).

This scenario is illustrated in Fig. 2, which displays the outcome of a simulation of
an optimal subject who minimizes equation (7) for varying penalty values C1. When
subjects take into account their own response variability and the varying penalties,
their optimal aim point shifts farther to the right for increasing values of C1. For
instance, in the case of a penalty of 500 points, the optimal aim point .xopt D 16 mm,
yopt D 0 mm) is barely within the area of the target (9 mm radius, target center at
9 mm). Aiming farther to the left increases the penalties due to hitting the penalty
circle; aiming farther to the right reduces the chance of collecting points by missing
the target.

We now describe an experiment designed to test whether subjects behave in a
manner consistent with the theory just outlined. In this thought experiment, we
assumed that we knew the subject’s motor uncertainty, as described by a Gaussian
distribution. In the experiment below, for this simple pointing task, we will estimate
subjects’ motor uncertainty from the variability in the data. We use that variability
estimate to compute subjects’ optimal aim point for various choices of penalty
using the model developed above. We compare these predictions to subjects’ actual
performances.

5. METHOD

5.1. Apparatus

Subjects were seated in a dimly lit room in front of a transparent touch screen
(AccuTouch from Elo TouchSystems, accuracy < §2 mm (std), resolution of
15 500 touchpoints/ cm2) mounted vertically in front of a 21-inch computer mon-
itor (Sony Multiscan CPD-G500, 1280 £ 1024 pixels @ 75 Hz). A chin rest was
used to control the viewing distance, which was 29 cm in front of the touch screen.
The computer keyboard was mounted on the table centered in front of the monitor.
The experiment was run using the Psychophysics Toolbox (Brainard, 1997; Pelli,
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Figure 3. Layout of the stimuli. Stimuli were presented on a black background. The red penalty
circle was displayed near the center of the display � rst (see Fig. 4). The six open circles indicate the
six different target positions.

1997) on a Pentium III Dell Precision workstation. A calibration procedure was
performed before each session to ensure that the touch screen measurements were
geometrically aligned with the visual stimuli.

5.2. Stimuli

Stimuli were presented on a black background. A red penalty circle was displayed
� rst, followed by a green target. The penalty circle was light red with a small
bright red circle indicating the center, and displayed near the center of the screen.
To prevent subjects from using preplanned motor movements the whole stimulus
con� guration was shifted by a randomly chosen amount in each trial; the shifts
in x and y were chosen independently from a uniform distribution over the range
§44 mm. The green target was transparent so that the overlap with the penalty
circle was visible. The target and penalty circles had radii of 32 pixels /9 mm. The
green target appeared at one of six possible positions, horizontally displaced from
the penalty circle (Fig. 3).

5.3. Procedure

Each trial followed the procedure illustrated in Fig. 4. A � xation cross indicated the
start of the trial. The subject was required to depress the space bar of the keyboard
with the same � nger that s /he would later use to touch the screen. The trial would
not begin until the space bar was depressed; the subject was required to hold the
space bar down until after the green target appeared. Next, the red penalty circle was
displayed, indicating that the subject should be prepared to move shortly. This was
followed by the green target after an interval of 500 ms. Only after the appearance
of the target was the subject allowed to release the space bar and initiate a movement
toward the touch screen (allowing us to measure the time of movement initiation).
After the green target was displayed, subjects were required to touch the screen
within 750 ms or they would incur a loss of 500 points. If the subject touched the
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Figure 4. Sequence of events during a single trial.

screen within the area of the red or the green target, the target that was hit (or both)
‘exploded’ graphically. Then, the points awarded for that trial were shown, followed
by the subject’s total accumulated points for that session. A hit on the green target
gained 100 points (a loss of ¡100). The penalty for touching the red penalty circle
was constant during a block of trials, and could amount to 0, 100 or 500 points.
If the screen was touched in the region of overlap between the target and penalty
circle, then the reward and penalty were combined. If a subject anticipated the target
display, releasing the space bar before, or within 100 ms after, display of the green
target, the trial was abandoned and repeated later during the block.

Each block of trials consisted of 10 repetitions of each of the six target locations,
presented in random order. A single experimental session consisted of a touch
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screen calibration, 30 practice trials, and three blocks of 60 trials corresponding
to the three penalty levels, presented in random order.

5.4. Subjects and instructions

6 subjects participated in the experiment. The subjects were four male and
two female members of the Department of Psychology at New York University.
All participants were right-handed, had normal or corrected-to-normal vision and
ranged in age from 27 to 32 years. All subjects had given their informed consent
prior to testing and were paid for their participation. All were unaware of the
hypotheses under test. Subjects ran two sessions of 210 trials (30 practice trials,
3 blocks of 60 trials) which took approximately 30 minutes per session. Subjects
were informed of the payoffs and penalties for each block of trials. All used their
right index � nger to depress the space bar at the start of a trial and to touch the
touch screen. Subjects were told that the overall score over the two sessions would
result in a bonus payment of 25 cents per 1000 points so as to motivate fast, accurate
responses.

5.5. Data analysis

For each trial we recorded the reaction time (the interval from stimulus display to
release of the space bar), the movement time (the interval from release of the space
bar to touching the screen), the screen position that was hit and the score. Trials in
which the subject left the space bar less than 100 ms after display of the green target,
or hit the screen more than 750 ms after display of the green target were excluded
from the analysis.

During the � rst session, two subjects reported dif� culty with the required time
limit of 750 ms. Subjects’ responses were more variable in the � rst session (average
spatial variance ¾ 2 D 82:2 mm2 in the � rst session, ¾ 2 D 16:4 mm2 in the second
session) and scores were signi� cantly lower in the � rst session (7012§ 3818 during
the � rst session, 14617 § 975 during the second). After the second session, all
subjects reported that they had no dif� culty performing the task. Therefore, we
only analyzed the data from the second session.

Each subject contributed approx. 180 data points, i.e. 10 repetitions per condition.
Endpoint positions .xp; yp/ were recorded relative to the center of the red penalty
circle (Fig. 3). The six position of the green target were xgreen;i D ¡18, ¡13:5,
¡9, 9, 13.5 and 18 mm and ygreen;i D 0 (i D 1 : : : 6). To test whether the recorded
endpoint differed from the target center, we also calculated the endpoint relative to
the target: 1xi D xp ¡xgreen;i and 1yi D yp ¡ygreen;i . A value of 1xi > 0 indicates
that the recorded endpoint was to the right of the target center; a value of 1yi > 0
indicates that the recorded endpoint was above the target center.

Data were analyzed individually for each subject as a 2-factor, repeated measures
ANOVA. The factors were the target position and the penalty level. This form
of ANOVA was calculated for three dependent measures: 1xi , reaction time and
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movement time. In general, data are reported as mean § standard error. As we did
not expect 1yi to differ signi� cantly from zero for any of the conditions, data were
analyzed across subjects using a 3-factor repeated measures ANOVA. Two factors
(target position and penalty level) varied within subjects, the third factor (subject)
tested for differences between subjects. Statistically signi� cant results are printed
in italics.

6. RESULTS

1073 recorded endpoints were included in the analysis (i.e. only 7 responses were
omitted for being late). As subjects differed signi� cantly in their spatial endpoint
variability (Levene test, F .5; 2140/ D 14:194, p < 0:001) the data were analyzed
individually for each subject. Results are reported in Table 1.

As displayed in Table 1, reaction and movement times differed between subjects,
but were consistent across conditions for each subject (note the small standard
deviations in Table 1). The results of the statistical analysis for each subject
con� rmed that reaction and movement times did not differ signi� cantly across
conditions (data not reported here; contact authors for details). Thus, the time limit
of 750 ms was short enough to force the subjects to respond rapidly and consistently
across conditions.

Our model (Section 3) predicts a shift of the endpoint away from the red penalty
circle. This shift should be stronger for target positions closer to the penalty circle,
and for higher penalty values. We did not expect any shift in the endpoint in zero-
penalty conditions. Due to the symmetry of the stimulus con� guration, we also did
not expect a vertical shift.

In agreement with what we expected, subjects’ endpoints were distributed without
signi� cant bias in the y-direction. The deviation in the y-direction, 1y, neither

Table 1.
Experimental results

Subject ¾ 2 (mm2) Reaction time Movement time F.10; 90/ p

S1 8.0555 211 § 17 ms 412 § 23 ms 6.172 p < 0:001
S2 15.233 232 § 23 ms 426 § 19 ms 1.794 p D 0:073
S3 15.6025 264 § 18 ms 352 § 29 ms 4.790 p < 0:001
S4 15.9275 277 § 17 ms 331 § 19 ms 3.096 p D 0:002
S5 22.9555 237 § 35 ms 356 § 17 ms 7.179 p < 0:001
S6 18.786 203 § 15 ms 403 § 12 ms 1.985 p D 0:044

Data reported for the six subjects individually; spatial variability (¾ 2), reaction and movement
times (§ one standard deviation) computed by averaging across all conditions (»180 data points per
subject). To test whether movement endpoints shifted away from the penalty region with increasing
penalty level and with smaller target distance, a 2-factor, repeated measures ANOVA was performed
(see Data analysis for details), F - and p-values for the interaction between ‘target position’ and
‘penalty level’ are reported on the right.
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varied signi� cantly among the six subjects (F .5; 54/ D 2:034, p D 0:088),
nor across target positions .F .5; 50/ D 0:555, p D 0:734) or penalty levels
.F .5; 53/ D 2:662, p D 0:079).

Figure 5 shows the mean horizontal shifts of the endpoints (1x) as a function
of the target position and penalty, displayed separately for each subject. For
all subjects, the endpoint shifted away from the red penalty circle (located at
x D 0 mm); and this shift was largest for the highest penalty value and the target
positions closest to the penalty circle.

The results of the statistical analysis are consistent with these observations.
Table 1 contains the F - and p-values for the interaction between target position
and penalty value. The interaction between target position and penalty value was
signi� cant for � ve of the six subjects (see Table 1), con� rming the expected shift
of endpoints with increasing penalty values. The missing signi� cant interaction for
subject S2 most likely results from his general tendency to ‘avoid the red target’,
which also persisted during the penalty D 0 condition (see middle panel in the top
row in Fig. 5).2

Qualitatively, the observed pattern of movement endpoints followed the predic-
tions of our model. To make a quantitative prediction, we again assumed that the
recorded endpoints were distributed around the optimal aiming point according to
a Gaussian distribution with a width of ¾ , where this variability is independent of
penalty value and target location. This is justi� ed by the lack of effect of experi-
mental conditions on reaction and movement times. Thus, we estimated the end-
point reliability ¾ by computing the standard deviations ¾x , and ¾y in the x- and
y-directions across all conditions separately for each subject. The variabilities ¾ 2

x

and ¾ 2
y did not differ systematically (Fmax < 1:5 for all subjects), consistent with

the assumed distribution in equation (8). The standard deviation ¾ was estimated
separately for each subject by pooling data for horizontal and vertical deviations.
The resulting estimates are reported in Table 1. All other parameters required by
our model (target size, location and penalty value) are speci� ed by the design of
our experiment. Thus, with no free model parameters other than ¾ (computed di-
rectly from the data), we were able to calculate a prediction of our model for each
subject and experimental condition. The optimal aiming point as predicted by equa-
tion (7) was computed for different target locations and penalties. The predicted
values of xopt are plotted as the curves in Fig. 5, allowing a direct comparison with
the experimental data.

It is clear from Fig. 5 that for all subjects our model compares well with the
experimental data. Our model predicts shifts in the movement endpoints that are
close to those observed experimentally; and the trends as a function of penalty
level and target position are quite similar. Also note that the model predicts a shift
of the optimal aiming point in the horizontal direction. In accordance with the
model prediction, subjects did not alter their aiming point in the vertical direction
throughout the experiment (see above), but only shifted their aiming point away
from the penalty area in the horizontal direction.
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Table 2.
Comparison of the subjects’ performance to that of an ideal observer

Subject Score (experiment) Optimal performance Ef� ciency (%)

S1 15700 17058 § 425 92.04%
S2 14400 14887 § 668 96.73%
S3 15500 14769 § 650 104.95%
S4 14600 14751 § 662 98.98%
S5 12700 12625 § 804 100.59%
S6 14800 13841 § 816 106.93%

Optimal performance as predicted by our model (equation (7)) for each subject, employing the
individual variabilities¾ 2 as given in Table 1. The model predictionswere generated by simulating the
actual experiment (100 runs); data reported as average § standard deviation. The actual performance
is considered to differ signi� cantly if the subject’s score differs more than two standard deviations
(signi� cant deviations in italic).

To compare the subject’s performance to that of an ‘optimal performer’, we
simulated the experiment for an ‘optimal performer’ and compared the overall
winnings of the optimal performer to the actual subject’s performance (Table 2).
Note that subjects with higher variabilities ¾ 2 (subjects S5 and S6, see Table 1)
miss the green target or collect a penalty from accidentally hitting the red target
more often. This outcome is consistent with the model: an ideal performer with
lower variability will, on average, win more than an ideal performer with higher
variability. The model predicts lower overall winnings for more variable subjects.
Table 2 shows that all six subjects’ performances deviate less than 8% from optimal
performance.

7. DISCUSSION

We have presented a model of motor planning based on statistical decision theory.
The theory is applicable to tasks where there are explicit costs associated with the
outcomes of actions and where the uncertainty inherent in carrying out a planned
movement may alter the consequences for the planner. Under these circumstances,
an optimal choice of motor strategy is achieved by minimizing an expected loss
function (equation (6)) that takes into account motor uncertainty, biomechanical
costs, and costs associated with time limits imposed on the mover.

We used our model to predict where subjects should aim in a simple task involving
hitting a target region on a computer screen when a second penalty region was
also present. The rewards and penalties associated with hitting either region were
monetary and the penalties associated with the penalty region and its position
relative to the target region were both varied. We measured the subjects’ motor
uncertainty as part of the experiment and used these measurements to predict the
optimal aim point for each location of the penalty region and magnitude of penalty.
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We tested these predictions experimentally. Subjects attempted to maximize their
monetary reward in a task where they had to tap a touch screen on every trial. We
found that subjects shifted their mean impact point away from the middle of the
penalty region, with larger shifts for closer penalty circles and higher magnitudes of
penalty. These results suggest that humans take both costs and their own movement
uncertainty into account in movement planning. Actual performance was in good
agreement with the predictions of the model.

It is likely that additional factors such as fatigue, aversion to errors, motivation,
and self-con� dence shape and in� uence a subject’s performance. If we manage to
quantify these factors, we can easily include them into our approach and study how
these ‘non-physical’ factors interact with the subject’s desire to make money at the
task. It may be objected that such psychological factors cannot be put into units of
money, but the fact is that the subject, by his /her actions, is in effect doing just that:
translating fatigue, boredom, or self-con� dence into dollars by his or her choice of
strategy.

An important implication of the cost equation (equation (6)) is that the subject
will trade off biomechanical factors against other possible losses and gains. S /he
will alter her or his movement strategy so as to risk physical damage or pain if the
perceived gain outweighs the risk (something that the professional soccer player
knows too well as s/he plays one last game despite bad knees). Models of motor
planning that consider only biomechanical factors and a speci� c target point cannot
readily account for such trade-offs.

It is evident that the model we propose is readily expanded to tasks with multiple
penalty regions and multiple target regions with more complex limits on timing
than the simple timeout rule we impose. In the experiment reported here, we only
predicted and measured the endpoint of the subject’s motion trajectory, not the full
motion trajectory. We emphasize that the theory, as developed above, is intended to
predict not just the endpoint of the trajectory, but the trajectory itself. It would be
very natural to model tasks involving penalty regions and reward regions distributed
arbitrarily in three-dimensional space near the subject. We suggest that games
involving rewards and penalties can potentially evoke a far richer range of motor
behavior than tasks typically used in the laboratory.

Statistical decision theory (Blackwell and Girshick, 1954; Ferguson, 1967) is
applicable to modeling perception and action under risk (Maloney, 2002). Bayesian
decision theory is a branch of statistical decision theory that is applicable when
there is uncertainty surrounding the state of the external environment. In all of the
‘Wilhelm Tell’ tasks we have discussed, there is little or no uncertainty concerning
the locations of target and penalty regions or costs associated with each. It would
not be dif� cult to extend the scope of the proposed model to include tasks in which
the exact location, shape or cost associated with these regions was in doubt.

We could, for example, leave out the visual feedback about the location of penalty
targets, by keeping the penalty targets invisible. Over a sequence of trials the subject
might then hit the invisible penalty target and will come up with expectations about
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the local distribution of ‘dangerous’ areas. The more evidence a subject has about a
penalty target in a certain area the more likely s/he will account for this area when
choosing his or her aiming point. The resulting Bayesian decision theoretic model of
motor planning is a natural counterpart to Bayesian approaches to modeling visual
perception (Knill and Richards, 1996; Maloney, 2002; Mamassian et al., 2002).
Vetter and Wolpert (2000) have presented a Bayesian model of motor planning by
using a probabilistic framework to demonstrate that subjects alter their pointing
movements when they change their expectations about the experimental context.

It should be noted that ours is not the only study demonstrating effects of ‘non-
physical’ or cognitive factors on performance in speeded motor tasks. Speeded
pointing performance depends on perceived effort (Rosenbaum and Gregory, 2002)
and is impaired during dual task paradigms requiring overt attention (see Castiello,
1999, for review). It has also been demonstrated that information from preceding
trials (de Lussanet et al., 2001, 2002) and expectations about future events, for
instance expected changes in the experimental environment (Vetter and Wolpert,
2000), are integrated into the motor plan. Subjects take uncertainty into account
when planning movements (e.g. Adolph and Avolio, 2000). Furthermore, Sabes and
colleagues (Sabes and Jordan, 1997; Sabes et al., 1998) have evidence of subjects
using details of motor uncertainty in planning movements around obstacles. What
distinguishes the current study from these is the development of a theory of ideal
motor behavior and a demonstration of such behavior in a task where costs and
rewards are clearly speci� ed.

Overall, actual behavior matched ‘optimal’ behavior as predicted by the model
(Table 2). The subjects’ performance was always within 8% of optimal perfor-
mance. It is implausible that human performance is precisely optimal in any visual
or motor task but much can be learned by determining exactly how subjects fail.
By comparing human performance to that of an ideal movement planner, we may
be able to demonstrate limitations of movement planning, much as ideal observer
analysis has been so successful at probing sites of information loss in the visual
system (Geisler, 1989).

But what about Wilhelm Tell? He was indeed an experienced marksman and
managed to shoot the apple from his son’s head. While doing so he still considered
the possibility of missing his aim and harming his son. That is why he saved a
second arrow for Gessler.
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NOTES

1. The manipulation of the time limit may also reduce visual feedback control of
the movement and increase visual uncertainty of target location. For the purposes
of this article, each of these effects may be included with movement variability,
altering none of the theoretical results or conclusions presented here.

2. In all six subjects, deviations in the x-direction differed signi� cantly across
target position, i.e. the � rst main effect, target position, was signi� cant. Due to the
lack of shift for distant targets and zero penalties, there was no signi� cant second
main effect of penalty for any of the subjects (data not reported here; contact authors
for more details).
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