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Humans shift their gaze to a new location several times per second.
It is still unclear what determines where they look next. Fixation
behavior is influenced by the low-level salience of the visual
stimulus, such as luminance, contrast, and color, but also by high-
level task demands and prior knowledge. Under natural conditions,
different sources of information might conflict with each other and
have to be combined. In our paradigm, we trade off visual salience
against expected value. We show that both salience and value
information influence the saccadic end point within an object, but
with different time courses. The relative weights of salience and
value are not constant but vary from eye movement to eye
movement, depending critically on the availability of the value
information at the time when the saccade is programmed. Short-
latency saccades are determined mainly by salience, but value
information is taken into account for long-latency saccades. We
present amodel that describes these data by dynamicallyweighting
and integrating detailed topographic maps of visual salience and
value. These results support the notion of independent neural
pathways for the processing of visual information and value.
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Because of foveal specialization for high acuity and color vision,
humans frequently move their eyes to project different parts of

the visual scene on the fovea. Although the basic networks for the
programming and execution of saccades have been studied for
decades (1, 2), surprisingly little is known about the neural pro-
cesses that underlie selection of the point of fixation of the next
saccade. To some degree, the weighted combination of basic vi-
sual-stimulus features can predict saccadic eye movements in
natural scenes (3–5). These basic stimulus features are, among
others, local differences in luminance, color, or orientation and
are combined by the visual system in a bottom-up image-based
salience map. However, the salience difference between fixated
and nonfixated image locations is typically rather small (6, 7), in-
dicating that the influence of salience may be modulated by other
factors. Visual salience, by definition, is determined by features of
the visual scene alone and therefore is determined exclusively by
visual bottom-up processing. Other factors reflect the influence of
top-down processing. Task demands, for example, exhibit con-
straints on gaze patterns in different activities such as visual
searching (8), manipulating an object (9), playing ball sports,
preparing a cup of tea (10), and navigating between obstacles (11).
In all these examples, gaze is concentrated on objects that are
relevant for the task.
Along different lines, recent research in neuroeconomics has

used saccadic eye movements as a tool to uncover the neural bases
of primate choice behavior. The results of these experiments in-
dicate that value can be an important determinant of the neural
activity underlying the selection of a saccadic target when one
object bears a higher reward than another (12–16). In these
studies, a monkey observer typically selects between two or more
spatially and visually distinct response alternatives that are asso-
ciated with different rewards. Single-unit recordings have shown
that the firing rates of some neurons in the lateral intraparietal

area (LIP) are indeed proportional to the relative expected sub-
jective value. According to a “back-pocket” model of choice be-
havior (17), the LIP contains, in addition to a map of visual
salience, a topographic map of value that is derived from dopa-
minergic cortical and striatal pathways. However, this research
leaves open the question whether value is presented in the brain
very coarsely for discriminating among a small number of different
choices or is represented in full detail in a topographic map. We
therefore devised a saccade task in which the expected gain varied
smoothly as a function of saccadic end point, similar to tasks that
have been used to study the effect of value on pointing behavior
(18–20). Value has been shown to influence the fine-tuning of
motor actions (e.g., pointing). In our saccade task, we also sys-
tematically manipulated the visual salience of our stimuli, because
salience is known to be an important determinant of eye-
movement behavior.

Results
We instructed our observers to make saccades from a central
fixation point to a red stimulus patch composed of overlapping
light and dark regions (Fig. 1A). We modulated the relative vi-
sual salience of the two regions by changing their relative con-
trast. In a salience baseline condition, observers were instructed
simply to make a saccade to the red patch. No reward or penalty
was given. We then varied value by changing the ratio of reward
and penalty of either region (Fig. 1B). In the second condition,
observers were informed that saccades to the darker region
would be rewarded with 1.5 cents (as marked by the blue bars in
Fig. 1B). In the third condition, observers were informed that, in
addition to the rewards for saccades to the darker region, sac-
cades to the lighter region would incur a 1.5-cent penalty (as
marked by the orange bars in Fig. 1B). Observers were informed
about the reward and penalty, but they were never explicitly
instructed to saccade to a certain location within the stimulus
patch. In Fig. 1, examples of the saccadic end-point distributions
are shown for some conditions. In the baseline condition, in which
a saccade did not incur a reward or a penalty, the relative contrast
of the two regions exclusively determined the saccadic end points
(Fig. 1 C and D): When the contrast of the darker region was
higher, saccadic end points shifted toward the darker region (Fig.
1C). When the contrast of the lighter region was higher, saccadic
end points shifted toward the lighter region (Fig. 1D). However,
when the region with lower contrast was rewarded and the region
with higher contrast was penalized (Fig. 1E), the balance between
light and dark was reversed, indicating that there is an inverse
tradeoff between value and visual salience.
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Effects of Salience and Value. Because both salience and value
information were manipulated only with respect to saccadic di-
rection, we concentrate on this aspect of the data in the following
quantitative analyses. We compared the distribution of observed
saccadic directions and saccadic latencies with the predictions of
a model that assumes an optimal selection of saccadic directions.
The model is based on a dynamically weighted combination of
salience and value, with inverse weights for salience and value
(see below for model details). We hypothesized that visual sa-
lience-based saccades either always would be executed toward
the region with the higher visual salience or would weight the
relative visual salience of both regions in some manner. Fig. 2A
shows average saccadic directions for conditions that differed
only with respect to visual salience. In these conditions, saccadic
latency had no effect on saccade direction [F(5,45) = 1.09, P =
0.38]; that is, differences in the low-level visual properties of the
stimulus patch alone—its salience—fully accounted for the ob-
served differences in the weighting of the two regions [F(2,18) =
141.55, P < 0.001].
In the conditions in which saccades to one of the regions were

rewarded and saccades to the other region were penalized, the
distribution of saccadic directions depended strongly on the
value information and on the latency of the saccades. If value
had no effect, one would expect the distribution of saccade
directions to remain the same as in the salience-only condition. If
the value alone determined the saccade direction, all saccades
would land in the rewarded region. As shown in Fig. 2 B and C,

visual salience alone could account for saccadic directions at the
shortest latencies (<150 ms). The expected value determined
saccadic directions at the longest latencies (>250 ms). At in-
termediate latencies, both sources of information were dynami-
cally weighted, with the average saccade direction changing
gradually from the more salient region to the rewarded region.
This result indicates that the processing of value information is
slower than saccade planning and that saccade planning pro-
ceeds without waiting for value information. The statistical
analysis of saccadic directions showed significant main effects of
value information [F(2,18) = 79.20, P < 0.001], visual salience [F
(2,18) = 65.46, P < 0.001], and saccade latency [F(5,45) = 50.08,
P < 0.001]. Furthermore, all pairwise interactions between these
three variables were significant. Data of typical single observers
are shown in Fig. S1.

Optimality Analysis. To estimate the dynamic weights of the pro-
cessing of visual salience and value information, we compared
the measured distributions of observed saccadic directions with
the predictions of an optimality model. The model predicts op-
timal saccadic directions based on a dynamically weighted
combination of salience and value at a given latency. To account
for the effects of visual salience in the absence of reward or
penalty, we averaged saccade directions separately for the dif-
ferent contrast conditions and used them as empirical estimates
of visual salience. To account for differences in value, we cal-
culated the saccadic direction that optimizes expected value,
using a variant of the MEGaMove (Maximum Expected Gain)
model. This model previously was applied successfully in similar
experiments on manual pointing (18). For each possible saccade
direction, the model calculates the expected value, based on the
given parameters for penalty and reward and the variability of
the individual observer’s saccadic direction. This computation
yields an expected value landscape that allows the selection of
the saccade direction with the highest expected value. Depend-
ing on the relative ratio of the assigned rewards and penalties the
optimal saccade direction shifts away from the penalized region
toward the rewarded region (Fig. 1B). Note that for the reward-
and-penalty condition the optimal saccade direction does not fall
onto the center of the rewarded region but is shifted even further
away from the penalized region. The measured distributions of
saccadic directions followed the predictions of our model in the
value conditions at long latencies (Fig. 2).
We modeled the transition from salience- to value-based

saccades by a cumulative Gaussian function indicating the rela-
tive weight of visual salience and value (SI Materials and Methods
and Fig. 3A). Using the same two parameters to fit both value
conditions, our model produced an excellent fit of the observed
saccade directions across all latencies (Fig. 3 B and C). With only
two free parameters, the model was able to explain on average
87 ± 7% of the variance of our data for the two value conditions.
Estimated transition parameters were a mean of 184 ± 25 ms
and a standard deviation of 32 ± 9 ms. These values indicate that
saccades with latencies >184 ms were governed by value rather
than by visual salience. The transition from 31% value to 69%
value took 32 ms, on average. This transition also is reflected in
the monetary gain. Saccades below the critical latency of 184 ms
yielded an average gain of 0.3 cents per trial during the course of
the whole experiment, whereas saccades above the critical la-
tency yielded an average gain of 0.8 cents per trial. Depending on
the condition, 30–60% of the saccades were above the critical
latency (Fig. 3D).
Our results show that information about both visual salience

and value is used to plan saccadic directions, that these two
computations are performed independently, and that the neural
computations for optimizing reward take significantly longer
than the shortest latencies of saccades. This difference implies
that a simple strategy to maximize expected value would be
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Fig. 1. Experimental paradigm and saccade end points of 10 observers. (A)
Stimulus display. Observers initially fixated a bull’s eye at (0,0), which dis-
appeared 200 ms before the onset of the saccade target. The red lines in-
dicate the three other possible target locations and were not part of the
display. The relative position of the light and dark regions was randomized.
(B) Gain landscape. The saccade score is shown for different directions of the
saccade end points. The dashed lines show the given penalty and reward in
the two value conditions. The solid lines represent the expected gain for the
average variability across observers. The saccade direction yielding the max-
imum gain is marked by the solid horizontal lines. Blue and orange indicate
the reward-only and the reward-and-penalty conditions respectively. (C–E),
Saccade end points in the target for different conditions. End points in the
dark region are plotted in white, end points in the light region are plotted in
black, and intermediate end points are plotted in gray. All trials have been
rotated and flipped, so that the target appears on the right side with the
light region on top. Please note the difference between the saccade end
points in C and D (salience effect) and between D and E (value effect). Trial
conditions: C, contrast ratio of 20/10, no penalty or reward; D, contrast ratio
of 20/40, no penalty or reward; E, contrast ratio of 20/40, reward and penalty.
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always to wait to initiate eye movement until all value in-
formation is available. Our results show that our observers fol-
lowed that strategy to some degree. The average saccade latencies
were 177 ± 34 ms in the salience baseline condition, 174 ± 33 ms
in the reward-only condition, and 221 ms ± 47 ms in the reward-
and-penalty condition [F(2,18) = 4.85, P = 0.021]. Indeed, it
seems that our observers strategically increased their saccadic
latencies depending on the speed of processing value in-
formation. The increase in latency was highly correlated with the
time observers required to take value information into account
(r = 0.765, P = 0.01). However, all observers still made many
suboptimal saccades with short latencies in the conditions in which
information about value had to be processed. There may be other
possible constraints in the saccadic eye-movement system: There
may be an inherent reward for fast saccades or an inherent penalty
for slow saccades, or the built-in timingmay be dominated by noise
and thus cannot be controlled fully.

Effect of Learning. Another reason why observers make fast,
suboptimal saccades may be that they must learn to delay their
saccades. We therefore compared saccade latencies and saccade
directions across successive trials as a function of trial number.
Here we look only at the slowest 25% of saccades in the reward-
and-penalty condition, because latencies are most variable in
these data. During the course of the experiment, saccade latency
increased from 236 ± 71 ms in the first 48 trials to 302 ± 81 ms in
the last 48 trials [F(22,198) = 2.14, P = 0.003] (Fig. 4A). For the
same subset of trials, saccade direction changed from −5.1 ± 3.0°
to −8.2 ± 1.5° (Fig. 4B), further away from the penalty region
[F(22,198) = 1.60, P = 0.048]. One of these observers needed
more trials to learn to delay the saccades (Fig. S2). Two additional
observers failed to delay their saccades and thus were unable to
take value information into account (Fig. S3). Thus, observers
are capable, at least partially, of delaying the latency of their
saccades so that the saccadic system can take value information
into account.

Corrective Saccades. Saccadic eye movements often land only in
the vicinity of the intended target position. A secondary small
saccade then is used to correct any remaining position error (21).
In our experiment, observers executed a second saccade after the
first saccade in 62 ± 15% of all trials. We therefore investigated
whether salience and value drive these corrective saccades in the

same manner as the primary saccades. If the secondary saccades
are influenced by value information, they should aim closer to the
rewarded region than the primary saccades. Because the latencies
of the secondary saccades were necessarily longer (414 ± 38 ms),
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our model indicates that value information should be readily
available. The average time between the offset of the first saccade
and the onset of the secondary saccade was 187 ± 26 ms, allowing
the use of visual feedback when planning the secondary saccades.
Indeed, the direction of the secondary saccades was influenced
strongly by the value information [F(2,18) = 127.05, P < 0.001].
They landed close to the optimal directions predicted by our
model (Fig. S4 A–C). Interestingly, more secondary saccades
were executed in the reward-only (74 ± 15%) and the reward-
and-penalty (64 ± 15%) conditions than in the salience baseline
condition (41 ± 22%) [F(2,18) = 19.96, P < 0.001] (Fig. S4 D–F).
Especially in the value conditions, more secondary saccades oc-
curred for primary saccades with short latencies [F(5,45) = 44.49,
P < 0.001]. The proportions of the secondary saccades and their
measured directions suggest that they were driven by value in-
formation and served to correct the primary saccades. Once the
value map is available, it is used automatically by the saccadic
system, even though the secondary saccades themselves did not
lead to rewards.

Saccade Trajectories. Assuming that information about value is
integrated gradually into the planning of saccades, this process
might be visible even in individual saccades. Although saccades
are ballistic movements, the curvature of their trajectories is
indicative of variables that affect early and late phases of plan-
ning (22). Because the gradual change from salience- to value-
driven saccades was particularly pronounced in the reward-and-
penalty condition, we concentrated on this condition for the
analysis of saccade curvature. Here, even the average saccade
trajectory was curved, and the curvature seemed to be more
pronounced for saccades with longer latencies (Fig. S5A). For
our analysis we computed the curvature for each saccade relative
to a line connecting its start and end point. Saccade curvature
depended critically on saccade latency [F(5,45) = 16.97, P <
0.001]: Saccades were straight or only slightly curved at short
latencies but were strongly curved toward the rewarded region at
long latencies (Fig. S5B). This curvature away from the penalized
region is similar to the effects of visual distractors, which have
been described as repelling saccades at long latencies (22).

Discussion
Our results show that both visual salience and value information
determine saccadic end position but require different neural pro-
cessing times. We compared the distribution of eye movements
with the estimates of amodel that predicts the saccadic end position
based on a weighted combination of visual salience and value. Our

results demonstrate that visual salience dominates eye-movement
planning for fast saccades, independently of the available rewards.
Value information needs more time for processing and dominates
the final eye position at longer latencies. The results indicate that
a rich topographic representation of both salience and value is
available to observers and that these two maps are combined ad-
ditively within the visuomotor system.
Our results show that saccades share similar neural compu-

tations with other motor actions, in that value information can be
used to control the final movement end point. Saccades differ
from other movements in that the timing cannot be controlled
fully to achieve optimal performance under all circumstances.
Rather, value information seems to be integrated whenever it
arrives in the brain regions responsible for the execution of
saccades. Therefore, eye movements give us a unique opportu-
nity to look at the dynamics of reward processing. Most other
actions, such as pointing or grasping, have much longer latencies
and movement durations. They exhibit close-to-optimal behavior
in most cases (18, 20), because the reward computations have
been performed fully by the time the movement starts.
Some of the brain regions that perform the neural computa-

tions underlying saccadic target selection have been identified
already. The representation of a salience map has been associated
with different brain areas; among them are areas in the early
visual cortex V1 and V4 and oculomotor-related areas, such as
the LIP area, the frontal eye fields (FEF), and the superior col-
liculi (SC) (23–27). The LIP area, FEF, and SC are of functional
importance for eye movement planning and execution, as dem-
onstrated by microstimulation in these areas (28–30). The LIP
area and FEF have been shown to be influenced not only by
bottom-up stimulus salience but also by top-down factors (13, 31),
although value-based modulations might exist throughout the
visual cortex (32). Recently it has been shown that the LIP area
contains three signals (33–36): a bottom-up stimulus-onset signal,
a saccade-related signal, and a cognitive, top-down signal that
distinguishes targets from distractors. Interestingly, these differ-
ent types of signals arrive at different latencies: The cognitive
signal has latencies of about 117–133 ms, which is similar to our
estimated delay for value processing (∼184 ms), but the visual
signal is much faster, at ∼40 ms (33, 34). In summary, the LIP
area likely contains a priority map that integrates bottom-up and
top-down information to guide visuospatial attention and eye
movements (37, 38). Top-down information about reward and
loss likely is conveyed via the basal ganglia and the amygdala,
respectively (39–41), and the combination of reward and loss
signals presumably occurs in the prefrontal cortex (42, 43).
Even though the effects of reward have been investigated nu-

merous times at the neural level, only a few studies have in-
vestigated the behavioral consequences of rewards for saccade
planning and execution. These studies were concernedmostly with
latencies of saccades, which are shortened for rewarded targets
(44, 45). Interestingly saccade latencies do not reflect simply the
magnitude or the probability of reward but rather the combination
of magnitude and probability, i.e., the expected value (44). Re-
ward also modulates saccade metrics such as the main sequence
(46, 47), the relationship between the amplitude, the velocity, and
the duration of a saccade (48). For example, saccades to neutral
targets have a higher velocity and shorter duration when the
subsequent presentation of a face is anticipated (47). Our findings
on latencies agree with these earlier results and extend them by
showing that the possibility of a loss can lead to longer latencies.
Our results also are relevant for the study of eye movements in

visual search (see refs. 49 and 50 for reviews). In this paradigm,
eye movements typically are not rewarded directly but can lead
to a gain in information that subsequently might lead to a re-
ward. There is some evidence that eye-movement strategies are
explained best by computations based on maximizing the in-
formation gain (51–53). However, several studies show that at
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least the first saccades in visual search are not optimal. First, the
latency of the first saccade is not adjusted to the difficulty of the
search task, resulting in a decrease in performance in more dif-
ficult tasks (54). Second, saccades do not always take into ac-
count the foveal and peripheral discriminability of potential
targets in a search display (55). Third, the efficiency of saccadic
decisions is well below the perceptual efficiency because saccades
are programmed even before all available information has been
integrated (56). Here we show that this lack of optimization
holds not only for visual signals but even more for value in-
formation that takes longer to become available.
In general, the visuomotor system frequently seems to face the

difficult task to integrate information that becomes available at
different time scales. For example, when a stimulus is flashed
briefly while the observer is executing smooth-pursuit eye
movements, saccades can be directed either to its veridical spatial
position or its retinal position at the time of the flash. To make
a saccade to the veridical spatial position of the flash, information
about the eye movements during the saccadic latency period must
be taken into account. Interestingly, only saccades with latencies
>175 ms are directed to the veridical spatial position (57). Sim-
ilarly, information about retinal position and speed errors seem
to arrive at different points in time. As a result, saccades become
curved. The initial saccade trajectory is governed by the retinal
position error and the late trajectory by retinal speed error (58).
In all these cases, the need for a quick response must be balanced
with the information that can be gained by delaying it. The linear
combination of different cortical maps maybe an elegant way to
perform this cortical computation.
Other recent studies have investigated directly the interaction

between value and salience for saccadic target selection. Liston
and Stone (59) performed an elegant experiment to investigate the
effects of rewards on saccadic choices and brightness perception.
They asked their observers to make a saccade to the brighter of
two disks and then to compare the brightness of that disk with that
of a third. They imposed a bias for leftward or rightward saccades
by rewarding them. The rewards similarly biased saccadic and
perceptual choices, indicating that any weighting of signals by
rewards occurs before separate processing for perception and eye
movements. It is an intriguing question whether the rewarded
regions in our experiment might have appeared more saturated as
well with the combined value and salience map being available for
perception. Our paradigm does not allow an answer to the ques-
tion, because effects of motor behavior or feedback connections
are difficult to exclude with perceptual choices that take place at
a much longer time scale. Because we were interested mainly in
the dynamics and the topographic representation, we did not in-
vestigate any potential perceptual effects.
In the experiments reported by Navalpakkam et al. (60),

observers had to saccade to one of eight possible targets that
varied in salience and value. Neither value nor salience alone
could account for the proportion of times a target was selected by
the first saccade. The authors therefore proposed a Bayesian
model that could account for the combination of these two vari-
ables. Unfortunately, saccadic latencies were not reported, so it is
difficult to compare these results with ours. However, because the
results for saccadic choices and for manual reactions were the
same, it is likely that the results of these experiments depend
mostly on the final state of the integration process. Markowitz
et al. (16) did measure the time course of how value and salience
information compete for visual selection. Monkey observers had
to choose between two targets that were defined by congruent or
incongruent salience and reward information. Matching our
results, a dynamic and additive model fitted best. The switch from

salience- to value-dominated saccades occurred after 140–180 ms.
These authors interpret their results in terms of exogenous and
endogenous attention circuits (61) and assume that the effect of
value on these decisions is mediated by attention, a point that has
been raised before (62). The close relationship between attention
and value is emphasized by recent results showing that neutral and
task-irrelevant stimuli can capture attention if they previously
have been associated with a reward (63). In general, it is difficult to
dissociate attention and value in these experiments, and some
authors even state that the purpose of attention is to maximize
reward (64). Our results show that observers can shift their sac-
cadic end points within a single object to maximize their reward;
thus our results cannot be explained easily by spatial-, feature-, or
object-based attention.
In conclusion, our results show that visual salience and value

information are processed with different delays, resulting in a dy-
namic relative weighting of salience and value that depends on the
timing of the saccade. This relative weighting likely reflects the
ratio of neural activity in a priority map at the locations favored by
salience and those favored by value. Saccades are programmed to
the weighted average of these activation peaks, similar to aver-
aging saccades to the center between two visual targets (65, 66).
This programming implies the existence of a common map at
some stage of visuomotor processing that includes information
about salience, value, and perhaps other relevant signals. These
topographic maps must be of high spatial resolution to be able to
control the subtle changes in saccade position within a single ob-
ject that we observed in our experiments. Interestingly, the dy-
namic integration of visual salience and value is visible only in
saccadic eye movements, with their extremely fast latencies. Most
other types of movements typically are executed at longer laten-
cies, at which the processing of value information already is in-
tegrated completely in the corresponding priority maps.

Materials and Methods
Design. To test relative weights of visual salience and value information, we
asked observers to saccade to a visual stimulus, a red patch containing two
overlapping light and dark regions. To vary the relative visual salience, we
varied the contrast of the light region. Each observer participated in three
conditions. In the salience baseline condition, observers were instructed to
make saccades to the patchwithout reward or penalty. The salience condition
also contained single-stimulus conditions in which only one region was
shown; we used this condition tomeasure the individual saccade variability of
each observer. In the reward-only condition, observers were informed that
they would win 1.5 cents for making saccades that ended in the dark region.
In the reward-and-penalty condition observers were additionally instructed
that they would lose 1.5 cents for making saccades that ended in the light
region. In these two value conditions, observers received feedback about the
end point of their saccades and the respective gain or loss resulting from their
saccades. Specific details about observers, stimuli, equipment, and procedure
are given in SI Materials and Methods.

Modeling. Our model uses a dynamic, weighted combination of salience and
value to predict the observed distributions of saccade directions and latencies.
We used the average saccade direction from the salience baseline condition
as the salience-only prediction for the value conditions. The value-only
prediction was the optimal saccade direction maximizing expected value. To
compute this optimal direction, we used the given reward and penalty
regions and the measured saccade variability from the single-stimulus con-
dition, in which only one region was shown. The transition from salience-only
to value-only predictions was estimated using a cumulative Gaussian func-
tion. Specific details about the model are given in SI Materials and Methods.
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