Reflections on colour constancy

Karl R. Gegenfurtner

A study of colour perception shows that, when assigning colour to objects, the seeing brain takes into account subtle reflections of light between the surfaces in a scene.

For more than two centuries, scientists and artists have come up with a range of ways to demonstrate that the wavelength composition over a whole scene can affect how we perceive the colour of the individual parts of that scene. The proportion of light of each wavelength reflected from an object can be highly beneficial in detecting or recognizing objects. However, to make use of that invariant, the visual system somehow has to discount the illuminating light, which can vary quite drastically.

This process is usually called ‘colour constancy’, and the degree to which it is shown depends on many factors. Some of them occur at the early stages of sensory processing, such as local colour contrast, whereas others (for instance, colour memory) occur at higher cognitive levels. Most computational schemes for achieving colour constancy try to decompose the overall light reaching the eye into one component that is due to the illuminant, and a second component due to the reflectance.

However, the physics of light is more complicated than the simple reflection of light from a surface into the eye, as if looking at a photograph. In a three-dimensional world, some light is reflected from one surface, but it then bounces to yet another surface from which it is reflected into the eye (Fig. 1). And so on. These indirect reflections are called ‘inter-reflections’, and are of especial interest to those involved in computer graphics and computer vision. For example, computer simulations of indoor scenes appear more realistic when inter-reflections are taken into account. Indeed, many recent advances in computer graphics are due to the discovery of efficient algorithms to calculate the effects of all such multiple bounces of light among the vast number of surfaces typically contained in a scene.

Reporting on page 877 of this issue, Bloj et al. tested whether inter-reflections are taken into account by the human visual system when perceiving the colour of surfaces. To do this, they presented subjects with a folded card, with its two sides opening towards the observer (Fig. 2). One side of the card was painted magenta, the other white. The magenta half reflects light only in part of the spectrum, some of which reaches the eye directly, and some of which is reflected onto the white side of the card. As a result, the light reflected from the white side is no longer balanced over all wavelengths, and it should appear a quite saturated magenta under the conditions of the experiment. Surprisingly, subjects reported that it appeared only slightly pinkish, suggesting that the visual system discounts the effect of inter-reflections to compute surface reflectance. In other words, the colour we perceive is influenced not only by the two-dimensional image of an object projected onto the retina, but also by our perception of the object’s three-dimensional shape.

The strength of Bloj and colleagues’ paper lies in the way they controlled for potential confounding factors. They used a special device called a pseudoscope, which optically inverts the depths of all objects in the scene. This means that the card will appear to open away from the observer when seen through the pseudoscope (Fig. 2b). This leads to an identical two-dimensional distribution of image intensities over the visual field. Perceptually, however, there is no longer the possibility for inter-reflections between the two surfaces, because they no longer seem to be pointing towards one another.

In this way, the physical stimulus was unchanged, so the inter-reflections and their effect were still present. But they could no longer be interpreted as such by the brain. Instead, the bias in the wavelength distribution of the card seemed to be due to its surface reflectance, and, as a result, it was perceived to have a deep pinkish hue. So the results show not only that three-dimensional shape can affect colour perception, but also that the seeing brain indeed knows the physics of light inter-reflections.

Similar phenomena are well known in our perception of brightness. When dealing with black and white scenes, the effects of shape, reflectance and illumination are basically interchangeable, presenting the visual system with an infinite number of possibilities for interpreting such scenes. Yet we perceive the world as being quite stable. The solution seems to be that the most likely percept is calculated, so changes in the perception of three-dimensional shape can easily (and profoundly) affect our perception of brightness.

The question is, then, how much knowledge of the physics of light has the visual system acquired? It seems to know even the very subtle aspects, which may have only a very limited function when viewing natural outdoor scenes. For example, the geometric information contained in highlights — generated by mirror-like reflections from glossy surfaces — can affect the perception of surface curvature. In their experimental set-up, Bloj et al. chose conditions that emphasized the role of inter-reflections. The white side of the card almost lay in the shadow, so it received very little direct light; most light

Figure 1 Illustration of inter-reflections. Part of the light is being scattered directly into the eye of the observer (green line). Other light rays enter the eye after being reflected from the magenta side of the card onto the white side (grey line). The magenta is ‘bleeding’ into the white.

Figure 2 The experiment done by Bloj et al. Observers viewed a folded card opening towards them. a. Under normal viewing, observers discount the effect of inter-reflections. b. When seen through a pseudoscope, the inter-reflections are interpreted as a change in surface colour because they are incompatible with the percept of the bent-away card. The magnitude of the effect has been emphasized for clarity.
came from the magenta card. In typical real-life situations, however, a much smaller part of the light reaching the eye is due to interreflections.

A tremendous amount of psychophysical characterization has been done on visual ‘illusions’, such as those mentioned above, yet we know hardly anything about the brain processes that underlie such phenomena. The analysis of colour and other elementary features such as motion or orientation is often assumed to occur at an early stage of sensory processing in the visual system, whereas information about surfaces and objects is thought to be extracted during the later stages. Bloj and colleagues’ results support the idea that the colours we perceive may be determined at a rather late stage of visual processing.

Richard Hailstone

Making every photon count

More than 150 years after the invention of photography, the underlying solid-state photochemistry is still being investigated and improved. One aspect of continual importance is the efficiency of the image-recording stage, which strongly affects the sensitivity of the photographic emulsion. Photons falling on a silver halide microcrystal in the emulsion cause a halide electron, which is then captured by a silver atom, converting it into a neutral silver atom. The photoinduced electron transfer occurs from the conduction band (C), leaving a hole in the valence band (V), leaving behind an oxidized-dye radical. During film development the silver halide microcrystal is converted to metallic silver through an electrochemical reduction reaction catalysed by the latent image. A microcrystal can only be developed when the latent image contains three or more photons per microcrystal (which absorbs blue light) is shown here.

Dye and the Red-Absorbing Dye Are Positioned at Different Wavelengths of Light. The Effect of Adding a Green- or Red-Absorbing Dye to AgBr (which absorbs blue light) is shown here. Absorption involves movement of an electron from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), leaving a hole in the HOMO level. The photoinduced electron transfer occurs between the LUMO and the AgBr conduction band, leaving behind an oxidized-dye radical.

The LUMO levels for both the green-absorbing dye and the red-absorbing dye are positioned at the conduction-band minimum so that efficient electron transfer can occur. Thermal energy can be used to move the hole into the valence band, thereby preventing recombination with an electron. Belloni et al. show that formate doping increases the sensitivity of green-dyed AgBr. Improving the overall efficiency of colour films might be possible, if similar increases in sensitivity can be shown for red-dyed emulsions.