Available online at www.sciencedirect.com

SCIENOE<dDIRECT“

Vision Research 46 (2006) 1520-1529

Vision
okl Research
ELSEVIER

www.elsevier.com/locate/visres

Phase noise and the classification of natural images

Felix A. Wichmann ¢, Doris I. Braun ?, Karl R. Gegenfurtner ®*

% Max-Planck-Institut fiir biologische Kybernetik, Spemannstr. 38, 72076 Tiibingen, Germany
b Abteilung Allgemeine Psychologie, Justus-Liebig- Universitit, Otto-Behaghel-Str. 10F, 35394 Giefen, Germany

Received 14 April 2005; received in revised form 31 October 2005

Abstract

We measured the effect of global phase manipulations on a rapid animal categorization task. The Fourier spectra of our images of nat-
ural scenes were manipulated by adding zero-mean random phase noise at all spatial frequencies. The phase noise was the independent
variable, uniformly and symmetrically distributed between 0° and +180°. Subjects were remarkably resistant to phase noise. Even with
+120° phase noise subjects were still performing at 75% correct. The high resistance of the subjects’ animal categorization rate to phase
noise suggests that the visual system is highly robust to such random image changes. The proportion of correct answers closely followed
the correlation between original and the phase noise-distorted images. Animal detection rate was higher when the same task was per-
formed with contrast reduced versions of the same natural images, at contrasts where the contrast reduction mimicked that resulting from
our phase randomization. Since the subjects’ categorization rate was better in the contrast experiment, reduction of local contrast alone
cannot explain the performance in the phase noise experiment. This result obtained with natural images differs from those obtained for
simple sinusoidal stimuli were performance changes due to phase changes are attributed to local contrast changes only. Thus the global
phase-change accompanying disruption of image structure such as edges and object boundaries at different spatial scales reduces object
classification over and above the performance deficit resulting from reducing contrast. Additional color information improves the catego-
rization performance by 2%.
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1. Introduction

Object classification and categorization is one of the
most remarkable achievements of the visual system. Higher
primates effortlessly classify a large number of very differ-
ent and even partly occluded objects in their natural sur-
roundings. Despite the diversity of individual natural
images they share, as an ensemble, some statistical struc-
ture. It has been found, for example, that natural scenes
have a characteristic 1-over-f Fourier-amplitude spectrum
implying that most of the power is contained in the low
spatial frequency components (Field, 1987, Thomson,
1999a, 1999b; van der Schaaf & van Hateren, 1996).
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If projected into a sine-/cosine wave basis (Fourier trans-
form), images of natural scenes thus diverge from each
other primarily in terms of their phase and not their ampli-
tude spectra. Every image can, in principle, be synthesized
from sine wave gratings. For the generation of a particular
image, sine gratings of the correct spatial frequency, ampli-
tude and phase have to be combined. Phase is particularly
important for edges, since edges require an alignment of the
phase of different spatial frequency components. In a well-
known demonstration of the importance of global phase by
Piotrowski and Campbell (1982; see also Oppenheim and
Lim, 1981) two images were mixed, one contributing its
Fourier amplitude and the other its Fourier phase. Invari-
ably, the resulting combination looks much more like the
image contributing the phase spectrum and not like the one
contributing the amplitude spectrum. Clearly, this results
from the aforementioned fact that most natural images
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have similar amplitude spectra with the amplitude decreas-
ing linearly with spatial frequency, typically termed 1-over-
f- When the phase spectrum of an image is randomly
swapped across frequencies, that is, its Fourier energy is
randomly distributed over the image, the resulting image
becomes impossible to recognize.

1.1. Human phase-sensitivity using simple stimuli

The importance of global phase in the Fourier represen-
tation of image structure in natural images does not imply,
however, that the primate visual system necessarily encodes
global phase explicitly—this would only be required if the
visual system did perform a global Fourier transform of the
images mapped onto its retinae, an idea that is certainly not
tenable (Derrington & Henning, 1989; Henning, Hertz, &
Broadbent, 1975; Westheimer, 2001). This conclusion is in
line with Piotrowski and Campbell (1982) who, in addition
to their demonstration of the importance of phase for
image structure, also found that for recognition human
observers are not critically sensitive to the precision of the
encoded phase. Similar conclusions were reached by Burr
(1980) and Badcock (1984a, 1984b, 1988) who examined the
discrimination performance of human observers for phase-
shifted gratings composed of several harmonically related
gratings. Burr (1980) found phase discrimination thresh-
olds of about 30° for all spatial frequencies tested. Badcock
converted the phase discrimination thresholds of his
observers to local contrast changes accompanying, willy-
nilly, every phase change. Badcock concluded “the visual
system does not have direct access to the spatial phase of
constituent sinusoidal components in an image but instead
codes the local contrast and position of image features
(1988, p. 305)”.

1.2. Phase-spectra of natural images and higher-order
statistics

In a series of elegant articles Thomson and colleagues
(Thomson, 1999a, 1999b; Thomson & Foster, 1997;
Thomson, Foster, & Summers, 2000) explored the proper-
ties of phase spectra of natural images within a statistical
framework. Changing the phase spectrum of an image does
not affect its power spectrum (i.e., the autocorrelation func-
tion) and thus shows how little of the content of an image is
contained therein. What phase spectrum manipulations do
change, however, are higher-order image statistics
(moments and cumulants of degree 3 and above). Thus
edges, contours and other visually salient features cannot
be captured by first- and second-order statistics but must
be contained in the higher-order statistics (Franz &
Scholkopf, 2005).

Thomson et al. extend the commonly used first- and sec-
ond-order statistics analysis by computing higher-order
image statistics attempting to find whether regularities in
the phase spectra of classes of images—e.g., natural
scenes—are reflected in their higher-order image statistics.

Thomson (1999b) showed that (whitened) natural scenes
have a strictly positive kurtosis, whereas phase-randomized
versions of the very same images have positive and negative
kurtosis values very close to zero.

Thomson etal. (2000) conducted a psychophysical
experiment relating the structure of natural-image phase
spectra to visual perception and notions from efficient cod-
ing. Note, however, that their main interest was statistical:

“One obvious threshold psychophysical paradigm would
require observers to discriminate a slightly phase-per-
turbed image from a natural image, but under these
circumstances observers’ sensitivities might be deter-
mined by one particular ‘feature’ in the natural images,
1.e., they may not perform the tasks statistically” (Thom-
son et al., 2000, p. 1065).

Consistent with their statistical aims human observers in
the Thomson et al. (2000) study discriminated completely
phase randomized images from images with slightly less
phase randomization (or quantization). None of the images
looked like “natural images”, i.e., subjects discriminated
“cloud-like” images with power spectra derived from natu-
ral images. Subsequently Thomson et al. correlated certain
higher-order statistics with their observers’ performance
and found phase-only kurtosis—kurtosis after removing
second-order image structure—to provide a reasonable fit
to their empirical data.

The aim of our study is related but different: we are pre-
cisely interested in the recognition of individual, natural
“real-life” images with their multiple and possibly highly
redundant features and how phase perturbation interferes
with classification. We thus conducted a study akin to that
outlined in the citation of Thomson et al. above: comparing
image classification performance for natural images with
and without various degrees of phase perturbation.

1.3. Phase-alignment across spatial scales: Edges, lines and
contours

Despite the negative results of Piotrowski and Campbell
as well as Burr and Badcock on finding phase-sensitive
mechanisms using simple stimuli, phase-sensitive mecha-
nisms, or whatever other mechanism such as local energy
estimation (Burr, Morrone, & Spinelli, 1989; Morrone &
Burr, 1988; Morrone & Owens, 1987; Morrone, Burr, &
Spinelli, 1989) may detect the phase-change accompanying
image changes, could be highly sensitive to particular phase
relationships between harmonically related spatial frequen-
cies. This is particularly true for detecting phase alignment
at edges—the notion of alignment across spatial scales
(Marr, 1982). If true, we would expect that for natural
images with their complex structure of edges and object
boundaries a global phase change is more disruptive than a
contrast reduction—for natural images phase change could
thus not simply be equated with local contrast change.

Rephrasing the above from a higher-order statistics
point-of-view, it may be that phase changes in natural
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images—affecting higher-order but not the first- and sec-
ond-order statistics of the images—have a severe impact on
the recognition of natural images because phase manipula-
tions destroy particular higher-order regularities
(Thomson, 1999b). Burr (1980) and Badcock (1984a, 1984b,
1988) may have found the visual system to be rather insen-
sitive to phase manipulations because simple, artificial stim-
uli are lacking such regularities.

Thus we investigated the effect of phase manipulations
on the processing of natural images rather than the sine
gratings. Our goal was to evaluate how robust the human
visual object classification and categorization system is with
respect to phase manipulations in natural scenes.

1.4. Experimental paradigm: Rapid animal categorization in
natural images

Thorpe, Fize, and Marlot (1996) showed that humans
are able to rapidly categorize briefly presented natural
scenes. Their subjects had to indicate whether the flashed
photograph showed an animal by releasing a button. The
analysis of the frontal event-related potentials revealed a
differential activity between target and non-target trials at
about 150 ms, which can be taken as the processing time for
high-level object categorization of natural images. In a later
study Rousselet, Fabre-Thorpe, and Thorpe (2002) com-
pared the human performance when subjects had to do the
same task with one or with two simultaneously presented
images. Since the behavioural and the electrophysiological
data showed no difference between the one- and the two-
image condition the authors concluded that high-level
object categorization of natural images can be done in par-
allel. We used the same visual categorisation task and a
two-image condition to examine the effect of phase noise on
visual processing. In our easy animal versus non-animal
categorization task the target and distractor image were
presented simultaneously to the left and right of a central
fixation point. Since phase noise blurs the contours and
reduces local image contrast, shape recognition should
become more and more difficult with increasing phase
noise.

We also investigated the effect of color on the phase
manipulations. Color information has been shown to play
an important role for image segmentation and recognition
(Gegenfurtner & Rieger, 2000; Wichmann, Sharpe, &
Gegenfurtner, 2002). However, the human visual system
might be a less sensitive to the phase of colored stimuli
compared to luminance stimuli (Troscianko & Harris,
1988). If phase and color information are used in early
visual processing for image segmentation then performance
should be affected by the addition of small amounts of
phase noise even more so when, in addition, color cues are
removed from the images.

Sensitivity of the human visual system to phase noise
was tested under two conditions: In one experiment the
phase spectra of naturally colored images was altered, in
the other the same was done with black and white images.

To determine whether the effect of changing global phase is
merely that of a reduction in image contrast, subjects had
to perform the same task with the same images but now
image contrast was varied.

2. General methods

2.1. Experimental set-up

Subjects were seated in a dimly lit room facing a Sony GDM F 520
color monitor. At the viewing distance of 72 cm the active screen area of
1280 by 1024 pixels subtended 32.5° of visual angle on the subjects’ retinae.
The frame rate of the display was 85 Hz non-interleaved. Natural image
stimuli had a size of 256 by 384 pixels and subtended 6.6° by 9.9° of visual
angle. Pairs of stimuli were presented for 50 ms 3.5° to the left and right of
a small black fixation dot on a grey background. The luminance of the
background was adjusted to the overall mean luminance of the images (see
Fig. 3). The monitor was carefully calibrated in luminance and color using
a Photo Research PR 650 spectroradiometer and a Graseby Electronics
model S380 photometer.

2.2. Stimuli

Stimuli were digitized 256 x 512 pixel photographs of natural scenes
from the large commercial Corel Photo Library. A set of 700 images was
selected as targets containing one or more animals (birds, mammals and
insects) of a “reasonable” size in their natural environments. Another set
of 700 images was selected as distractors. These were photographs of land-
scapes, plants and rock formations. We excluded photographs when they
contained humans or were dominated by buildings or streets because of
their regular structure. The same images have been used in previous stud-
ies investigating animal categorization (Thorpe, Gegenfurtner, Fabre-
Thorpe, & Biilthoff, 2001).

2.3. Phase noise manipulation

The phase spectra of the images were manipulated by adding random
phase noise to the images. Random phase offsets from the interval
[—®, +®] with zero-mean were added at each spatial frequency. @ could
take values between 0° (unmodified images) up to 180° (0°, 30°, 60°, 90°,
120°, 135°, 150° and 180°). The phase manipulation yields images with
fewer edges and features. Fig. | illustrates the effect of global phase noise
on local features. In this figure, we decomposed a square wave into a series
of 100 sinewaves with frequencies 1, 3, 5, ..., whose amplitude decreases in
proportion to their frequency. During the recomposition, phase noise was
added to each of these component sinewaves. Increasing phase noise
results in less correspondence to the original pattern, which manifests itself
as an effective reduction in local feature contrast. The contrast reduction is
a cosine function of the average magnitude of the phase noise. Phase noise
in the interval [—90,+90] has an average phase noise magnitude of 45°,
resulting in a contrast reduction of factor cos (45) =0.72. For our natural
image stimuli, we added phase noise to each one of the coefficients of their
discrete Fourier transform. Since the DFT of real valued images are sym-
metric, i.e., at each frequency there is a component at the symmetric fre-
quency with the same real part and an illusory part of the reverse sign, we
only added noise to half of the coefficients and retained the symmetry. The
effect of the global phase noise on natural images was a reduction in the
correlation of the original image and the noisy image, according to the
same cosine function mentioned above. The absolute level of RMS con-
trast across the image remained constant, however, since the Fourier
amplitude spectra of the images were unaffected by the phase manipula-
tions. For the color images, the red, green and blue components of the
images were Fourier transformed separately, and the same phase noise
was applied to each one of the three color components. Note that the color
images were not equiluminant. They correspond to the original images.
For the black and white condition, the red, green and blue components at
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Fig. 1. Phase manipulation. (A) Shows a period of a square wave in black. The square wave can be decomposed into a series of sinewaves. For the red
curve, a random phase offset in the interval [—45,45] was added to each of these component gratings. For the green curve, the phase offset was from the
interval [—135,135]. (B) Many of these noisy square waves were averaged. This results in square waves of lower contrast. (C) Shows the correspondence

between the amount of phase noise and the local edge contrast.

each pixel were weighted by the luminance of the corresponding phos-
phors. This way, the colored and black and white images have the same
luminance at all corresponding pixels.

2.4. Contrast manipulation

To prevent overflows during the image processing operations, we
reduced the contrast of all images to half their original contrast before
adding phase noise. Contrast of the images was varied by scaling each
pixel relative to the luminance mean of the image. In Experiment 2, where
the contrast was varied, five different contrast level were chosen for testing:
5,10, 25, 50, and 100%, relative to the scaled images, i.e., the contrast levels

were 2.5, 5, 12.5, 25, and 50%, with respect to the original images. Exam-
ples for the effect of both image manipulations are given in Fig. 2. For the
color images, this manipulation was applied to the red, green and blue
components separately.

2.5. Task and subjects

In a two-alternative, spatial forced-choice procedure the subject was
asked to indicate which of the two simultaneously presented images con-
tained an animal (the target) by pressing either the left or right mouse but-
ton (see Fig.3). For each subject both the phase and the contrast
experiment were tested separately in a randomized sequence. The method

0 deg 15 deg 30 deg 60 deg 90 deg 120 deg 135 deg 150 deg 180 deg
Phase noise
Equivalent phase noise

0 deg 110 deg 142 deg 175 deg 177 deg

Original

50%

25%

10% 5%

Fig. 2. Example images. The top two rows show an image of a rhinoceros with various amounts of phase noise added. The top row shows the images in
color, the second row in black and white. The bottom row shows the same image at various contrasts, with the corresponding amount of phase noise indi-

cated on the scale between the panels.
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Fig. 3. Experimental stimuli. An animal and a distracter image with an identical amount of phase noise (135°) were displayed side by side on a computer

screen. The subject had to indicate the target image containing the animal.

of constant stimuli was used. For each subject we collected the responses
of 50 trials for each condition, resulting in 400 trials for the phase experi-
ments with eight phase noise levels and 200 trials for the contrast experi-
ment. The total duration of the experiment was 50-60 min per subject. For
both experimental conditions 13 subjects were tested. All subjects were
naive with respect to the aim of the study and had normal or corrected to
normal vision. Most of them were students of the University Giessen. The
subjects’ average age was 29 years for the experiment with black and white
images and 24 years for the experiment with colored images. Every subject
saw every image only once to exclude any potential confounds stemming
from learning or recognition memory for particular images.

2.6. Experimental variations

Two different conditions were tested: in one experimental condition
natural images were presented in black and white, in the other they were
shown in color (see Fig. 2). For each condition two different experiments
were run: In one part of the experiment the phase spectra of the images
were manipulated by eight different amounts of phase noise, in the other
part contrast was reduced in five steps.

3. Results
3.1. Experiment 1: Phase noise

Fig. 4 shows individual data from four representative
subjects for black and white stimuli. All subjects were
remarkably resistant to phase noise in our animal categori-
zation task. In Fig. 5 the average of all 13 subjects is shown
for both the color and black and white conditions. The pro-
portion of correct answers stays close to 100% correct with
490° noise-distorted images. Even with £120° noise sub-

jects were still well above 75% correct in both experiments.
In the color experiment the subjects’ categorization rate
was slightly better and the differences in performance rate
between the color and the black and white Experiment of
2-3% were small in magnitude but statistically significant.
The overall pattern of results, i.e., the slight but monotonic
decrease in performance with increasing noise was the
same, however.

In Figs. 4 and 5, the prediction of the cosine rule is plot-
ted as a solid curve. This prediction shows the level of
expected performance if recognition was proportional to
local image contrast. It can be seen that performance was in
all cases significantly better than the prediction based on
contrast reduction alone. This is counterintuitive, since sub-
jects should certainly not be any better than the prediction
from the contrast reduction. However, in the above equal-
ization we tacitly assumed that contrast translates linearly
into recognition rate. This is, of course, incorrect. To deter-
mine the proper amount of equivalent phase noise for each
contrast, we determined the nonlinear contrast response
function relating contrast to recognition for each individual
subject.

3.2. Experiment 2: Contrast reduction

Contrast processing in the visual system is highly nonlin-
ear (Burton, 1981; Henning, Bird, & Wichmann, 2002;
Legge, 1981; Legge & Foley, 1980; Wichmann, 1999, 2002).
In order to measure the effect of local contrast reduction we
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Fig. 4. Data from four representative subjects. Proportion of correctly categorized animals is plotted on the y-axis as a function of the amount of phase

noise on the x-axis. See the text for details of the phase manipulation.
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Fig. 5. Average data from 13 subjects for black and white stimuli (squares)
and colored stimuli (circles). Proportion of correctly categorized animals
is plotted on the y-axis as a function of the amount of phase noise on the
x-axis. See the text for details of the phase manipulation.

also tested our subjects’ ability to detect animals in natural
images whose contrast was reduced. Contrast measures are
relative to the original image contrast, as described above.
Fig. 6 shows data from four representative subjects.

In Fig. 7 the average correct categorization responses of
all 13 subjects is plotted as a function of image contrast—
relative to the original contrast of each image. At 5% image
contrast subjects were basically guessing, above 25% con-
trast their categorization rate is better than 75% correct in
both experiments. There is essentially no difference for cate-

gorization rates for color and black and white stimuli,
except for the highest contrast used. Unlike in the case of
the phase manipulation (Experiment 1) color information
does not improve the categorization rate when image con-
trast is reduced.

We can now graph the data from the contrast experi-
ments in the corresponding graphs for the phase noise. Rec-
ognition rate from the contrast experiment is plotted at the
phase noise angle corresponding to the contrast value
according to the cosine rule. Fig. 8 shows the result of this
procedure for the average data of all 13 subjects, both for
black and white and for colored stimuli. The results from
the phase noise manipulation are shown using circles, those
from the contrast reduction using squares.

Performance in the contrast experiment is significantly
higher than when phase noise is added to the images. In
other words, adding phase noise has more of a detrimental
effect on classification than just reducing the image con-
trast.

One interesting feature of all our data is that subjects
consistently were above chance even at the highest phase
noise of [—180,180]. In this case, all information about
phase is lost. However, the amplitude information is still
there. That is, the noisy images still have somewhat ori-
ented contours, if these orientations are prevalent in the
original images. In our task, where we have feedback to
the subjects, subjects seem to be able to use that informa-
tion to achieve a performance level that is just above
chance.
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Fig. 6. Data from four subjects. Proportion of correctly categorized animals is plotted on the y-axis as a function of image contrast measured relative to
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Fig. 7. Average data from 13 subjects for black and white stimuli (squares)
and color stimuli (circles). Proportion of correctly categorized animals is
plotted on the y-axis as a function of image contrast measured relative to
the image contrast of the original image on the x-axis.

4. Discussion
4.1. Summary

We varied the amount of phase noise in natural images
to study its effect on classification performance in a rapid
animal categorization task. Performance stayed remarkably
high for uniformly distributed phase noise up to 90°. When

equating phase-noise and contrast discrimination effects
according to the relationship shown in Fig. 1C, the subjects’
categorization rate was better in the contrast reduction
condition than in the phase noise condition. Thus, reduc-
tion of local contrast alone cannot explain the performance
in the phase noise experiment. Phase noise is more disrup-
tive than simple contrast reduction because it changes
visual features such as local edges, thereby degrading object
boundaries.

4.2. Relation to other psychophysical studies

On the one hand, our results agree with Burr (1980) and
Badcock (1984a, 1984b) in that we agree on the insensitivity
of the human visual system to phase manipulations. Burr
(1980) had measured 30° discrimination thresholds for 1-D
stimuli, so one may expect even larger resistance to phase
noise for the 2-D stimuli we used, assuming the large over-
lap of filters tuned to different spatial frequencies and ori-
entations resulting in better overall 2-D system estimation
of (average) local phase.

On the other hand, our result are in contrast to those
obtained using simple, low-level stimuli such as sums of
sinusoidal gratings as classification performance with natu-
ral images as stimuli cannot be solely attributed to local
contrast changes (Badcock, 1984a, 1984b, 1988; Hess &
Pointer, 1987; Lawton, 1984). However, even for simple
sinewave stimuli a dissociation between contrast and phase
has been shown. Tyler and Gorea (1986) varied exposure
duration in a task where the observers had to judge the
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Fig. 8. Contrast corrected average data from 13 subjects for (A) black and
white stimuli and (B) colored stimuli. Data from the phase noise condition
is shown using circles, from the contrast reduction condition using
squares. Proportion of correctly categorized animals is plotted on the
y-axis as a function of the amount of phase noise on the x-axis. See the
text for details of the conversion from image contrast to equivalent phase
noise angle.

position of a sinewave grating relative to a thin line. Phase
discriminability increased with exposure duration even
when the detectability of stimuli was held constant at all
durations. As mentioned in Section 1, our natural images
cannot be easily compared to simple f+ 3f sinewave com-
pounds. It is also difficult to relate our findings to the ele-
gant studies by Victor and Conte (1996) on texture
discrimination. In our experiments, subjects were not only
required to notice a difference in the animal and distractor
images, but they had to actually identify the image that
contained the animal.

4.3. Relationship to single unit studies

To a first approximation cells in primary visual cortex
provide an oriented spatially band pass filtering of the
image. This type of filtering is provided by simple cells,
which are sensitive to the phase of the stimuli, and by com-
plex cells, which respond irrespective of spatial phase
(DeValois & DeValois, 1988; Hubel & Wiesel, 1968;
Movshon, Thompson, & Tolhurst, 1978). While there has
been some debate whether these cells really form two sepa-
rate subpopulations (Martinez et al., 2005; Mechler, Reich,
& Victor, 2002), the basic fact that there exist cells sensitive
to the spatial phase is without doubt. The question how

well these cells could actually code the absolute phase has
been addressed in a number of studies. Based on theoretical
grounds, it has been suggested that neurons in V1 would be
either odd-symmetric edge detectors or even symmetric line
detectors (Morrone & Burr, 1988; Morrone & Owens,
1987). However, recordings from single neurons or pairs of
neighboring neurons in cat or monkey visual cortex have
shown that simple cells do not fall into these two categories
only. Instead, cells have all phases but neighboring cells
seem to have a tendency to have phase preferences approxi-
mately 90° apart (Field & Tolhurst, 1986; Pollen & Ronner,
1981). These quadrature pairs would be sufficient to calcu-
late the absolute phase of any local pattern but are more
likely to encode local contrast energy.

More recently, the neural coding of relative spatial phase
in V1 neurons has been determined by Mechler et al. (2002)
and Aronov et al. (2003). They found that spatial phase is
best coded by single cells and that a population of cells is
necessary to achieve phase sensitivity that can approximate
psychophysical performance. The picture that is emerging
from these studies is that, if expressed in terms of a Fourier
basis, phase is coded at a rather coarse level in primary
visual cortex. Alternatively, the same fact could be
expressed by stating that the Fourier basis may not be a
good basis in which to represent images if one is interested
in human or animal vision. Which ever way one chooses to
express this fact this is in perfect agreement with our psy-
chophysical results.

4.4. Relation to fMRI experiments with phase scrambled
images

In a study related to ours, Rainer, Augath, Trinath, and
Logothetis (2001) studied the contribution of phase coher-
ence in natural images to the fMRI activation in occipital
visual areas in anesthetized monkeys. Unlike perception
and recognition, which increased monotonically in
humans and monkey with increasing phase coherence, a
characteristic V-shaped noise-tuning was found in the
BOLD-signal striate and extra-striate visual areas. Like
the behavioral data of Rainer et al. we did find categoriza-
tion performance to be a monotonic function of both
phase noise and image contrast, even though the absolute
levels of performance cannot be compared because differ-
ent phase noise manipulations were used. The striking
non-monotonic BOLD-signal behavior found by Rainer
et al. might, however, have been caused by an artifact in
the noise-coherence manipulation of Rainer et al. (2001),
as pointed out by Dakin, Hess, Ledgeway, and Achtman
(2002). This interpretation is supported by the results of
Olman, Ugurbil, Schrater, and Kersten (2004) who did not
find a difference between regular and phase scrambled nat-
ural images in VI BOLD response. Thus, it appears as if
the BOLD-response in primary visual cortex is mostly
driven by RMS contrast of the stimuli, independent of par-
ticular phase relationships. Of course, this does not mean
that there are no neurons in V1 that are sensitive to phase.



1528 F.A. Wichmann et al. | Vision Research 46 (2006) 1520-1529

But since the individual neurons in V1 are sensitive to local
phase, the sum of all responses might not be affected very
much by varying global phase. Also, the fMRI response
measures the total activity, which might be dominated by
the more numerous complex cells.

4.5. Rapid visual categorization

Our results show that animal detection is robust against
adding large degrees of phase noise. In previous studies, it
has been observed that performance in this type of task is
not at all impaired even if the images are presented upside
down (Fabre-Thorpe, Richard, & Thorpe, 1998). Consis-
tent with this observation it has been suggested that observ-
ers might make use of rather simple cues based on the
amplitude spectrum of the images (Johnson & Olshausen,
2003; Torralba & Oliva, 2003). Indeed, for images taken
from the Corel database, combined with images from the
world-wide-web and their own digital images, Torralba and
Oliva (2003) showed that the global Fourier Amplitude
spectrum of a number of natural categories (e.g., forest,
beach, animal, man-made object, highway, mountain etc.)
are sufficiently different to allow spectral-based categoriza-
tion based on only the first three principal components of
the amplitude spectrum (SPC) of natural versus man-made
scenes to reach 80% correct. Somewhat more complex algo-
rithms allow for up to 94% correct classification based on
the power spectra of the images. Their results do not
exactly tell the level of performance that could be achieved
for our task and our images. However, it should be clear
from our results that subjects are very limited in their use of
the global amplitude spectrum. When the image phase is
random, performance is just barely above chance. This indi-
cates that the amplitude spectrum alone is not sufficient to
successfully perform this task.

Recently, Wichmann, Rosas, and Gegenfurtner (2005) as
well as Wichmann, Rosas, Drewes, and Gegenfurtner (in
preparation) explored this issue in greater detail. They
tested whether human observers make use of the power
spectrum when rapidly classifying natural scenes. In one
condition the original images were used for image classifi-
cation, in the other images whose power spectra were
equalized (each power spectrum was set to the mean power
spectrum over the ensemble of 1476 images). Thresholds for
75% correct were in the region of 20-30 ms presentation
time for all observers, independent of the power spectrum
of the images: this result makes it very unlikely that human
observers make use of the global power spectrum during
rapid image classification, pointing towards individual fea-
tures such as edges, lines or contours. Thus these studies
agree with the results of the current experiments.

4.6. Natural images and higher-order statistics
One very promising line of research is to study higher-

order statistics of images and to relate it to visual percep-
tion (Franz & Scholkopf, 2005; Thomson, 1999a, 1999b;

Thomson & Foster, 1997; Thomson et al., 2000). Minimally
we demonstrated that for natural images phase perturba-
tions, willy-nilly accompanied by higher-order statistics
perturbations, are more disruptive than the mere equivalent
contrast reduction effect found for simple stimuli. A future
goal is to attempt to identify which particular images may
have been more or less affected by the phase manipulations
and perhaps find correlates of these changes in some
higher-order statistics of the images.

4.7. Conclusions

Global phase per se does not seem to be coded in the
visual system in the sense of making phase explicit for
higher processing areas. Rather local phase—local
contrast energy or edge structure—is coded in the visual
system, but, because edges are represented across many
spatial scales (Marr, 1982), the visual system is very
robust against global phase manipulations. These results
we obtain with natural images differ from those obtained
for simple sinusoidal stimuli were performance changes
due to phase changes are explicable by local contrast
changes. Thus the global phase-change accompanying dis-
ruption of image structure at different spatial scales—
edges and object boundaries—reduces object classifica-
tion over and above the performance deficit resulting
from reducing contrast.

Acknowledgments

We are grateful to Matthias Franz, Mark Georgeson,
Concetta Morrone and an anonymous reviewer for their
helpful comments and suggestions. This research was sup-
ported by DFG grants Wi 2103/1 and Ge 879/6 as well as
the Max Planck Society.

References

Aronov, D, Reich, D. S., Mechler, F., & Victor, J. D. (2003). Neural coding
of spatial phase in V1 of macaque monkey. Journal of Neuroscience, 89,
3304-3327.

Badcock, D. R. (1984a). How do we discriminate relative spatial phase?
Vision Research, 24, 1847-1857.

Badcock, D. R. (1984b). Spatial phase or luminance profile discrimination?
Vision Research, 24, 613-623.

Badcock, D. R. (1988). Discrimination of spatial phase changes: Contrast
and position codes. Spatial Vision, 3, 305-322.

Burr, D. C. (1980). Sensitivity to spatial phase. Vision Research, 20, 391—
396.

Burr, D. C., Morrone, M. C., & Spinelli, D. (1989). Evidence for edge and
bar detectors in human vision. Vision Research, 29, 419-431.

Burton, G. J. (1981). Contrast discrimination by the human visual system.
Biological Cybernetics, 40, 27-38.

Dakin, S. C, Hess, R. F., Ledgeway, T., & Achtman, R. L. (2002). What
causes non-monotonic tuning of fMRI response to noisy images? Cur-
rent Biology, 12, R476-R477.

Derrington, A. M., & Henning, G. B. (1989). Some observations on the
masking effects of two-dimensional stimuli. Vision Research, 29, 241—
246.

DeValois, R., & DeValois, K. K. (1988). Spatial vision. New York: Oxford
University Press.



F.A. Wichmann et al. | Vision Research 46 (2006) 1520-1529 1529

Fabre-Thorpe, F., Richard, G., & Thorpe, S. J. (1998). Rapid categoriza-
tion of natural images by rhesus monkeys. Neuroreport, 9, 303-308.
Field, D. J. (1987). Relations between the statistics of natural images and
response properties of cortical cells. Journal of the Optical Society of

America A, 4,2379-2394.

Field, D. J., & Tolhurst, D. J. (1986). The structure and symmetry of sim-
ple-cell receptive-field profiles in the cat’s visual cortex. Proceedings of
the Royal Society of London B, 228, 379—-400.

Franz, M. O., & Schoélkopf, B. (2005). Implicit Wiener series for higher-
order image analysis. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.),
Advances in neural information processing systems (pp. 465-472, Vol.
17). Cambridge, MA, USA: MIT Press.

Gegenfurtner, K. R., & Rieger, J. (2000). Sensory and cognitive contribu-
tions of color to the recognition of natural scenes. Current Biology, 10,
805-808.

Henning, G. B, Bird, C. M., & Wichmann, F. A. (2002). Contrast discrimi-
nation with pulse-trains in pink noise. Journal of the Optical Society of
America A, 19, 1259-1266.

Henning, G. B., Hertz, B. G., & Broadbent, D. E. (1975). Some experiments
bearing on the hypothesis that the visual system analyzes patterns in
independent bands of spatial frequency. Vision Research, 15, 887-899.

Hess, R. F., & Pointer, J. S. (1987). Evidence for spatially local computa-
tions underlying discrimination of periodic patterns in fovea and
periphery. Vision Research, 27, 1343-1360.

Hubel, D., & Wiesel, T. N. (1968). Receptive fields and functional architecture
of monkey striate cortex. Journal of Physiology (London), 195,215-243.

Johnson, J. S., & Olshausen, B. A. (2003). Timecourse of neural signatures
of object recognition. Journal of Vision, 3,499-512.

Lawton, T. B. (1984). The effect of phase structures on spatial phase dis-
crimination. Vision Research, 24, 139-148.

Legge, G. E. (1981). A power law for contrast discrimination. Vision
Research, 21, 457-467.

Legge, G. E., & Foley, J. M. (1980). Contrast masking in human vision.
Journal of the Optical Society of America, 70, 1458-1471.

Marr, D. (1982). Vision: A computational investigation into the human rep-
resentation and processing of visual information. New York: Freeman.

Martinez, L. M., Wang, Q., Reid, R. C,, Pillai, C., Alonso, J. M., Sommer,
F. T, et al. (2005). Receptive field structure varies with layer in the pri-
mary visual cortex. Nature Neuroscience, 8, 372-379.

Mechler, F., Reich, D. S., & Victor, J. D. (2002). Detection and discrimina-
tion of relative spatial phase by V1 neurons. Journal of Neuroscience,
22,6129-6157.

Morrone, M. C., & Burr, D. C. (1988). Feature detection in human vision:
a phase-dependent energy model. Proceedings of the Royal Society of
London B, 1280, 221-245.

Morrone, M. C., & Owens, R. (1987). Feature detection from local energy.
Pattern Recognition Letters, 6, 303-313.

Morrone, M. C., Burr, D. C., & Spinelli, D. (1989). Discrimination of spatial
phase in central and peripheral vision. Vision Research, 29, 433-445.

Movshon, J. A., Thompson, I. D., & Tolhurst, D. J. (1978). Spatial summa-
tion in the receptive fields of simple cells in the cat’s striate cortex. Jour-
nal of Physiology, 283, 53-71.

Olman, C. A., Ugurbil, K., Schrater, P., & Kersten, D. (2004). BOLD fMRI
and psychophysical measurements of contrast response to broadband
images. Vision Research, 44, 669-683.

Oppenheim, A. V., & Lim, J. S. (1981). The importance of phase in signals.
Proceedings of the IEEE, 69, 529-541.

Piotrowski, L. N., & Campbell, F. W. (1982). A demonstration of the visual
importance and flexibility of spatial-frequency amplitude and phase.
Perception, 11, 337-346.

Pollen, D. A., & Ronner, S. F. (1981). Phase relationships between adjacent
simple cells in the visual cortex. Science, 212, 1409-1411.

Rainer, G., Augath, M., Trinath, T., & Logothetis, NK. (2001). Nonmono-
tonic noise tuning of BOLD fMRI signal to natural images in the
visual cortex of the anesthetized monkey. Current Biology, 11, 846-854.

Rousselet, G. A., Fabre-Thorpe, M., & Thorpe, S. J. (2002). Parallel pro-
cessing in high-level categorization of natural images. Nature Neurosci-
ence, 5,629-630.

Thomson, M. G. (1999a). Visual coding and the phase structure of natural
scenes. Network, 10, 123-132.

Thomson, M. G. (1999b). Higher-order structure in natural scenes. Journal
of the Optical Society of America A, 16, 1549-1553.

Thomson, M. G., & Foster, D. H. (1997). Role of second- and third-order
statistics in the discriminability of natural images. Journal of the Opti-
cal Society of America A, 14,2081-2090.

Thomson, M. G., Foster, D. H., & Summers, R. J. (2000). Human sensitiv-
ity to phase perturbations in natural images: a statistical framework.
Perception, 29, 1057-1069.

Thorpe, S. J., Fize, D., & Marlot, C. (1996). Speed of processing in the
human visual system. Nature, 381, 520-522.

Thorpe, S. J., Gegenfurtner, K. R., Fabre-Thorpe, M., & Biilthoff, H. H.
(2001). Detection of animals in natural images using far peripheral
vision. European Journal of Neuroscience, 14, 869-876.

Torralba, A., & Oliva, A. (2003). Statistics of natural image categories.
Network: Computation in Neural Systems, 14(2003), 391-412.

Troscianko, T., & Harris, J. (1988). Phase discrimination in chromatic
compound gratings. Vision Research, 28, 1041-1049.

Tyler, C. W., & Gorea, A. (1986). Different encoding mechanisms for phase
and contrast. Vision Research, 26, 1073-1082.

van der Schaaf, A., & van Hateren, J. H. (1996). Modelling the power spec-
tra of natural images: statistics and information. Vision Research, 36,
2759-2770.

Victor, J. D., & Conte, M. M. (1996). The role of high-order phase correla-
tions in texture processing. Vision Research, 36, 1615-1631.

Westheimer, G. (2001). The Fourier theory of vision. Perception, 30, 531—
541.

Wichmann, F. A. (1999). Some aspects of modelling human spatial vision:
Contrast discrimination. PhD thesis. Oxford University.

Wichmann, F. A. (2002). Modelling contrast transfer in spatial vision
(Abstract). Journal of Vision, 2, 7a.

Wichmann, F. A., Sharpe, L. T., & Gegenfurtner, K. R. (2002). The contri-
bution of colour to recognition memory for natural scenes. Journal of
Experimental Psychology: Learning, Memory and Cognition, 28, 509—
520.

Wichmann, F. A., Rosas, P., & Gegenfurtner, K. R. (2005). Rapid animal
detection in natural scenes: Critical features are local (Abstract).
Journal of Vision, 5, 376a.

Wichmann, F. A., Rosas, P., Drewes, J., & Gegenfurtner, K. R. (in prepara-
tion). Rapid animal detection in natural scenes: Critical features are
low-level and local.



	Phase noise and the classification of natural images
	Introduction
	Human phase-sensitivity using simple stimuli
	Phase-spectra of natural images and higher-order statistics
	Phase-alignment across spatial scales: Edges, lines and contours
	Experimental paradigm: Rapid animal categorization in natural images

	General methods
	Experimental set-up
	Stimuli
	Phase noise manipulation
	Contrast manipulation
	Task and subjects
	Experimental variations

	Results
	Experiment 1: Phase noise
	Experiment 2: Contrast reduction

	Discussion
	Summary
	Relation to other psychophysical studies
	Relationship to single unit studies
	Relation to fMRI experiments with phase scrambled images
	Rapid visual categorization
	Natural images and higher-order statistics
	Conclusions

	Acknowledgments
	References


