
NeuroImage 42 (2008) 1056–1068

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r.com/ locate /yn img
Predicting the recognition of natural scenes from single trial MEG recordings
of brain activity

Jochem W. Rieger a,⁎, Christoph Reichert a, Karl R. Gegenfurtner b, Toemme Noesselt a, Christoph Braun c,
Hans-Jochen Heinze a,d, Rudolf Kruse e, Hermann Hinrichs a

a Department of Neurology II, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
b Department of Psychology, Giessen University, Otto-Behaghel-Str. 10, 35394 Giessen, Germany
c MEG-Center, Eberhard-Karls University, Otfried-Müller-Str. 47, 72076 Tübingen, Germany
d Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
e Department of Knowledge Processing and Language Engineering, Otto-von-Guericke University, Magdeburg, Germany
⁎ Corresponding author. Fax: +49 391 67290224.
E-mail address: jochem.rieger@med.ovgu.de (J.W. Ri

1053-8119/$ – see front matter © 2008 Elsevier Inc. All
doi:10.1016/j.neuroimage.2008.06.014
a b s t r a c t
a r t i c l e i n f o
Article history:
 In our daily life we look a

Received 5 December 2007
Revised 8 May 2008
Accepted 9 June 2008
Available online 24 June 2008
t many scenes. Some are rapidly forgotten, but others we recognize later. We
accurately predicted recognition success with natural scene photographs using single trial magnetoence-
phalography (MEG) measures of brain activation. Specifically, we demonstrate that MEG responses in the
initial 600 ms following the onset of scene photographs allow for prediction accuracy rates up to 84.1% using
linear Support-Vector-Machine classification (lSVM). A permutation test confirmed that all lSVM based
prediction rates were significantly better than qguessingq. More generally, we present four approaches to
analyzing brain function using lSVMs. (1) We show that lSVMs can be used to extract spatio-temporal
patterns of brain activation from MEG-data. (2) We show lSVM classification can demonstrate significant
correlations between comparatively early and late processes predictive of scene recognition, indicating
dependencies between these processes over time. (3) We use lSVM classification to compare the information
content of oscillatory and event-related MEG-activations and show they contain a similar amount of and
largely overlapping information. (4) A more detailed analysis of single-trial predictiveness of different
frequency bands revealed that theta band activity around 5 Hz allowed for highest prediction rates, and these
rates are indistinguishable from those obtained with a full dataset. In sum our results clearly demonstrate
that lSVMs can reliably predict natural scene recognition from single trial MEG-activation measures and can
be a useful tool for analyzing predictive brain function.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Human observers extract information from natural scenes
at a glance and the memory for them is outstanding
(Nickerson, 1965; Standing, 1973). Only a few tens of
milliseconds are required to extract essential information
from a scene, allowing us to rapidly scan the environment.
Brain-networks for analyzing (Thorpe et al., 1996; Grill-
Spector et al., 2000; Rieger et al., 2005) and storing (Brewer
et al., 1998; Osipova et al., 2006) the content of natural
scenes have been described. What remains unknown,
however, is if and how reliable brain activation recordings,
taken during scene processing, can predict a participant's
ability to recognize the scene later on.

Studies using pattern masking to restrict the length of
the interval in which information from the scene is
eger).
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available (Gegenfurtner and Rieger, 2000; Grill-Spector et
al., 1998; Rieger et al., 2005; Rieger et al., 2008) have
revealed that only 60 ms of undistorted processing is
sufficient to extract enough information for the reliable
later recognition of a scene photograph (Rieger et al., 2005).
The information available after these short processing
intervals includes scene colors (Gegenfurtner and Rieger,
2000), scene orientation (Rieger et al., 2008), knowledge
about objects in the scene (Rieger et al., 2008), and even
knowledge about semantic matches between objects and
the scene context (Rieger et al., 2008). Recordings of event
related potentials (ERP) or event related magnetic fields
(EMF) indicate that these scene features are processed
relatively early. ERP-signatures of neuronal object proces-
sing are found in event related responses between 130 ms
and 200 ms after the stimulus onset (Jeffreys, 1996; Thorpe
et al., 1996; Allison et al., 1999) and EMFs indicate that
within 160 ms of processing basic information about the
scene content is extracted (Rieger et al., 2005).
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Memory related effects in MEG and EEG have been
reported in a latency range longer than basic perceptual
processing. Success or failure of memory encoding of visual
material is reflected in amplitude modulations starting from
200–300 ms after stimulus onset. These differences may last
for several hundred milliseconds (Paller and Wagner, 2002)
and have been denoted the qdifference in subsequent
memoryq (DM) effect (Paller et al., 1987). This DM-effect has
been extensively studied using event-related potentials,
magnetic fields, intracranial recordings, and functional mag-
netic resonance imaging. The DM-effect with visual material
is reflected by modulations within a widespread, dynamic
cortical network that includes temporal, prefrontal, and
parietal cortices (for reviews see Wagner et al., 1999; Fried-
man and Johnson, 2000; Paller and Wagner, 2002). Further-
more, recent EEG-studies indicate that success or failure of
memory encoding is also reflected in slow wave oscillatory
responses (Klimesch et al., 1996, 1997; Sederberg et al., 2003;
Osipova et al., 2006; Jensen, 2005). The functional role of
these slow-wave oscillations is still under discussion. How-
ever, it has been proposed, that these wide spread oscillations
reflect the coordinated activation of a distributed brain
network during successful memory encoding (Klimesch et
al., 1997; Friedman and Johnson, 2000; Ward, 2003; Seder-
berg et al., 2003; Jensen 2005). Thus, both the event-related
responses reflected in time series representation and the
frequency representations obtained by decomposing the time
series into frequency bands may provide information useful
for predicting a participant's recognition success or failure.
The exact role of specific frequency bands in recognition
remains to be investigated.

Turning to a more methodological issue, studies investigat-
ing brain processes involved in recognition typically compare
averages of brain activations between conditions (e.g. between
recognition failure or success) to detect statistically significant
differences in neuronal processing. Although this approach has
been successfully applied to investigate neuronal processing, it
remains unclear how predictive these statistically significant
effects are of trial-by-trial processing. Information about
single-trial relevance of brain activation differences is lost
because p-values of statistically significant outcomes are
dependent on the number of measurements included in the
analysis, and because the applied significance level is based on
an arbitrary agreement. In contrast to statistical significance
measures the proportion of correct predictions obtained with
single trial classification is a measure of relevance of specific
brain activation differences. Single trial classification can
provide an answer to the question how well brain networks
could discriminate in single trials between different cases
based on the informative brain activation patterns retrieved by
the classifier. Furthermore, such a classification approach can
be used to extract the informative portions of brain activity
used by the classifier.

Here we tested whether single trial EMFs allow for
accurate predictions of recognition success or failure. Speci-
fically, using linear support vector machines (lSVM) (Vapnik,
1995), a state of the art approach to classification, we aimed to
predict from single trial EMFs recorded during the encoding
of briefly visible natural scene photographs whether a person
will recognize the photograph later on. We used time- and
wavelet-derived frequency representations of the data to
make single trial predictions because they may highlight
complementary functional interpretations of processing dif-
ferences between recognized and forgotten scenes. Impor-
tantly, we tested the reliability of our classification results,
extracted brain activations informative about recognition
success, and tested how deterministic these processes are
over time.

Material and methods

Participants

Seven voluntary participants took part in the experiment
after giving their informed consent (4 females, 3 males, mean
age 24.6 years). The experiment was in compliance with the
Declaration of Helsinki. All participants had normal or
corrected-to-normal visual acuity and were paid for their
participation.

Stimulus presentation and psychophysical paradigm

Photographs of natural scenes were presented with a
Liesegang model ddv810 DLP-projector running at 72 Hz
refresh rate. The projector was located outside the MEG
shielding chamber and rear projected through awaveguide via
a mirror system onto a screen placed at 1.2 m distance from a
participants head.

Each experimental trial began with a fixation cross shown
for a random duration between 1000 ms and 1400 ms (Fig. 1).
Then a photograph of a natural scene was presented for 37 ms
and immediately followed by a patternmask that remained on
the screen for a random duration between 1000 ms and
1400 ms. After the mask a red and a green square were
presented. Participants were instructed to rate at this time
whether they were confident to recognize the scene. They
judged they would recognize the scene by lifting the finger on
the side of the green rectangle, and judged they would fail by
lifting the finger on the side of the red rectangle. The finger
movements opened a light barrier, and a signal was recorded
in parallel with the MEG. The confidence rating was delayed
and jittered with respect to the initial encoding phase to
temporally decouple the scene encoding and confidence
rating periods. Participants were instructed to rate their
confidence of recognizing the scene only after the appearance
of the colored squares. After the confidence ratingwasobtained,
four different scenes were presented simultaneously. One of
them was the previously presented target scene. Participants
indicated the location of the correct target by lifting the finger
assigned to its position (four alternative forced choice (4AFC)
delayed match-to-sample task). The scene mask stimulus
onset asynchrony (SOA) was selected to be short enough to
produce a sufficient number of trials in which the participants
succeeded or failed to recognize the scene (Rieger et al., 2005).

Correct labeling of trials is extremely important for the
successful training of a classifier and for the evaluation of the
classification results. Therefore, we included only those trials
into the analysis in which the participant's confidence rating
was concordant with the later recognition success (class
correct: judgment and response correct, class false: judgment
and response false). The reasoning behind this selection
criterion was that with these trials the likelihood was greatest
that estimations of success were based on an evaluation of
internal processing. Inconsistent predictions had a greater
likelihood of being due to guessing or erroneous finger
movements. They were therefore less reliably related to



Fig. 1. The figure depicts the psychophysical paradigm. After a variable fixation interval (1000–1400 ms) a photograph of a natural scene was briefly presented (37 ms) and
immediately replaced by a mask which remained on the screen for 1000–1400 ms. Next, a red and a green square appeared. Participants were instructed to judge their confidence in
recognizing the scene only after the appearance of these squares. They indicated they were confident in subsequently recognizing by lifting the finger on side of the green square and
lifted the finger on the side of the red square if they judged they would fail. After this judgment, four scene photographs were presented and the participants used finger movements
to indicate the position of the previously presented target. The MEG-recordings used to predict the participant's recognition success on each trial started at the onset of the scene and
lasted for 600 ms.
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processing differences and less reliable in indicating actual
recognition success or failure.

MEG recording and preprocessing

MEG was recorded with a CTF-Omega 151 channel first
order gradient system at 625 Hz, digitally low-pass filtered at
40 Hz and then down sampled to 120 Hz. The filtering
effectively suppressed the noise from the power line (50 Hz)
and from the projector (72 Hz). The higher sampling
frequency during recording served to avoid the aliasing of
higher harmonics into the low frequency band we analyzed. A
photo diode was placed at the upper edge of the screenwhere
a small rectangle switched from black towhite simultaneously
with the presentation of the target scene. The signal from the
photo diode was sampled parallel with the MEG and used to
segment the MEG data around the time of the occurrence of
the target scene. Epochs with 800ms duration starting 200ms
prior to scene onset were extracted for analysis. The baseline
was calculated from the 200 ms pre-scene interval and the
600 ms interval starting from scene onset was used for
classification. Epochs containing artifacts exceeding 3 pT
(peak-to-peak) were rejected. The data from one sensor had
to be excluded due to frequent malfunction. Each epoch used
for classification consisted of 10950 samples (150 sensors×73
samples).

Classification

We estimated the classification performance generalization
by using leave-one-out cross validation (LOOCV). In LOOCV
one trial is held out and the classifier is trained on the
remaining n−1 trials. Then the trained classifier is used to
predict the class label of the excluded trial. This procedure is
repeated n-times. Finally, the class labels assigned by the
classifier are compared to the experimentally obtained class
labels to calculate the estimated correct prediction rate. In
each LOOCV-iteration test data and training data are strictly
separated. This prevents the inclusion of information about
the test data into the classifier. Otherwise, the estimated
classification performance would be biased towards good
classification at the cost of generalization of performance.
LOOCV provides an almost unbiased estimate of the general-
ization error (Lunts and Brailovskiy, 1967; Joachims, 2002)
because leaving out one example produces only a small
change in the training data set. The disadvantage of LOOCV is
the high computational cost entailed by the n trainings of the
classifier. Although we tested four different classifiers (SVMs,
decision trees, naïve bayesian, and a simple similarity
classifier) we report results only from lSVM-classification,
because this classifier led to the best and most reliable classi-
fication performance.

Guessing level estimation and permutation tests

In a next step classification results were compared to the
guessing level to evaluate their reliability. This comparison
should reveal whether classification performance obtained
with the measured dataset is based on information provided
by the data or based on guessing. But how can we obtain a
good estimate of the guessing level?

An often used theoretical estimate of the guessing level is
the reciprocal of the number of classes in the classification
problem. In our study with two classes this would predict the
guessing level to be at 50% correct classifications (perfect coin
flip). However, other factors might also have an influence on
the guessing level. In experiments with probabilistic out-
comes the two classes are likely to contain an unequal
number of trials. A classifier that only learns the relative
frequencies of two class labels is expected to converge
towards the theoretical guessing level Pguess (see Appendix
A for derivation):

Pguess ¼ P cð Þ2−P fð Þ2 ð1Þ

Here P(c) is the probability that the scene was recognized
in a trial and P(f) is the probability that the participant failed
to recognize the scene (false trial). A third alternative is for the
classifier to assign all trials to the class holding more trials if
no other information is available. In this last case one would



Table 1
Recognition/classification contingency table

Classified as

Correct Failed

Recognition Correct P(c∩c′) P(c∩ f ′)
Failed P(f∩c′) P(f∩ f ′)

The contingency table describes the possible combinations of a participant's recognition
success and the class assigned by the classifier.
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expect the guessing level to correspond to the proportion of
trials in the larger group. With equal class sizes all three
guessing strategies predict a 50% guessing level. However,
with unequal class sizes the last two, class size dependent,
strategies would result in guessing levels exceeding 50%
correct predictions. In addition, other effects that are either
hard to consider analytically, or that may have gone unnoticed
could have an influence on the guessing level. Empirical
estimates of the guessing level are more likely to capture such
effects.

Therefore, we used a permutation procedure to calculate
multiple empirical estimates of the guessing level. From
these estimates we derived two parameters: The mean
guessing level and the confidence interval of the guessing
level. In this permutation procedure class labels were
permuted among the training data (i.e. the single trial
MEG-measurements) in a dataset. In the next step a full
LOOCV was performed on the permuted training set to obtain
one guessing level estimate. Permutation and LOOCV were
repeated 500 times for each participant's dataset, if not
otherwise stated. The resulting 500 estimates of the guessing
level were used to estimate the individual mean guessing
level and its 95% confidence interval. The prediction rate
obtained with the actually measured combinations of class
label and single trial MEG-activation should exceed the 95%
confidence interval of this estimate. Only then we can
assume that the classifier learned from the data and that
the results are meaningful (Good, 2005). When all class labels
and training data combinations are tested this approach
corresponds to Fisher's exact randomization test (Fisher,
1935) which provides an exact 95% confidence interval for
the dataset being evaluated. Here, each permutation estimate
was based on between 144,000 and 208,500 single trainings
of the classifier and corresponding classifications, depending
on the total number of trials in a dataset. Importantly, in the
permutation approach the guessing level is understood as a
random variable varying for different combinations of class
labels (recognized/failed) and single trial measurements.
Given the fact that empirical data are noisy and contain a
limited number of training sets this assumption appears to be
more realistic than assuming one fixed guessing level.
Furthermore, in contrast to theoretical estimates of guessing
levels the permutation estimate is non-parametric.

Here, we report empirical guessing level estimates and
compare them to guessing levels expected from theoretical
considerations.

Support VectorMachine classification and retrieval of informative
brain activation

SVM classifiers are applied in many machine learning
problems. Recently, SVMs have been used for single trial
classification of fMRI (e.g. Cox and Savoy, 2003; Mourão-
Miranda et al., 2005; Haynes et al., 2007), EEG (Hinterber-
ger et al., 2003) and MEG data (Guimaraes et al., 2007).
Here we used a publicly available SVM matlab-toolbox
(http://ida.first.fraunhofer.de/~anton/software.html) for sin-
gle trial classification.

SVMs are known to have good classification and general-
ization performance because the classifier's complexity does
not depend on the complexity of the feature space. This
independence is especially important when classifying high-
dimensional brain imaging data (Cherkassky and Mulier,
1998). In particular, SVMs can implement linear and non-
linear classification boundaries by using non-linear kernel
functions to transform the data from feature space data into a
high dimensional classification space. Here, we only report
results from linear classification in the original feature space
for two reasons. First, initial tests indicated that the use of
higher order polynomial or radial basis function kernels did
not increase classification but reduced the generalization
performance. Second, our aim was to extract the informative
features from the classifier for the analysis of brain function.
This is not directly possible with non-linear kernels, although
approximative methods have been suggested (Schölkopf et al.,
1999). Training a linear classifier provides a normal vector Yw
defining the orientation of the separating hyperplane in
feature space and an offset b of the hyperplane. Once the
classification function is calculated the classification of a trial
involves a simple dot product. The classification function is
yi ¼ sign Yw �Yxi þ b

� �
where Yxi is the feature vector of the ith

trial to be classified, and yi is the class assigned to the trial
based on the sign of the calculation's result. High entries in Yw
weight the features in Yxi stronger than entries close to zero.
Furthermore, high Yw entries indicate the directions in which
the margin between classes is wider (the criterion optimized
during the training of the SVM) and therefore in the directions
of feature space that allow for the best separation. The
absolute value of the entries in Yw can be interpreted as a
measure for the information a feature provides for classifica-
tion. If the classification is performed on the time series data
each entry in Yw represents the weight for the reading from a
specific sensor taken at a specific time. Therefore, the entries
in Yw can be visualized as a time series of topographies of
informative brain activation similar to regular MEG-time
series topographies.

Measures for the evaluation of the classification results

We evaluated the classification performance with three
different measures derived from the recognition/classification
contingency table (Table 1).

The first measure, proportion of correct predictions, is the
percentage of all trials the classifier correctly assigned to the
empirically observed recognized/failed classes:

Pcorrect predictions ¼ P c \ cVð Þ þ P f \ f Vð Þ ð2Þ

The symbols c and f denote class labels “correct” and “false”
assigned empirically (i.e. the measured label). The symbols c′
and f ′ denote the class labels assigned by the classifier (see
also Table 1). The proportion of correct predictions is the
outcome reported in most studies using classification and has
a simple interpretation, but, as previously noted, the guessing
level may deviate from 50% depending on the relative group
sizes.

http://ida.first.fraunhofer.de/~anton/software.html
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Recall and precision are two other measures that evaluate
whether the classifier exploits group information contained in
the data and are insensitive to group size differences. These
measures relate to the rows and the columns in the
contingency table (Table 1), respectively. Recall is the propor-
tion of trials that belong to a certain empirical class (observed
recognition or failure) and were assigned to this class by the
classifier. It measures how well the classifier was able to
“recall” the participant's recognition from the MEG-measure-
ments, for example the proportion of the set of trials the
participant recognized a scene was actually classified as
“scene recognized”. The recall reported here is the average
of the recalls calculated separately for each class according to
the following equation:

Recall ¼ 1
2

P c \ cVð Þ
P c \ cVð Þ þ P c \ f Vð Þ þ

P f \ f Vð Þ
P f \ f Vð Þ þ P f \ cVð Þ

� �
ð3Þ

Precision takes a complementary perspective. It starts from
a set of trials created by the classifier (predicted recognition or
failure) and calculateswithin this set the proportion of trials in
which the classification result is in concordance with the
participant's recognition performance. Thus precision pro-
vides information about how precise a classifier is in its class
assignments. Precision was calculated as:

Precision ¼ 1
2

P c \ cVð Þ
P c \ cVð Þ þ P f \ cVð Þ þ

P f \ f Vð Þ
P f \ f Vð Þ þ P c \ f Vð Þ

� �
ð4Þ

Note that expected average recall and precision guessing
level is 50% independent of relative group sizes for all three
guessing strategies previously discussed. It can be shown that
this guessing level can be expected for all guessing strategies
that assign class labels independent of the experimentally
obtained labels (see Appendix B).

Results

Psychophysical performance

Table 2 summarizes the proportion of trials obtained with
all four possible combinations of confidence judgments (sure/
unsure) and recognition success (recognized/failed). On
average the seven participants correctly recognized the target
scene photograph in 65.3% of all trials. In 59.7% of all trials the
participants correctly judged that they would be successful at
Table 2
Portion of judgment/recognition combinations

Participant Number of trials Judgment/recognition

Sure/
recognized
[%]

Sure/
failed
[%]

Unsure/
recognized
[%]

Unsure/
failed
[%]

P1 423 54.0 1.2 30.5 14.0
P2 463 60.0 10.1 11.4 18.3
P3 485 69.4 5.2 13.1 12.2
P4 411 53.3 8.3 14.1 24.3
P5 533 59.7 12.0 9.6 18.8
P6 480 64.8 9.4 18.8 10.8
P7 424 56.6 10.6 12.0 19.8
Average
(SE)

459.9
(16.5)

59.7
(5.8)

8.1
(3.7)

15.6
(7.2)

16.9
(4.8)

The total number of trials per participant and the portion of trials obtained with all
possible combinations of confidence judgments (sure/unsure) and recognition success
(recognized/failed). The bottom row lists the averages along with the respective
standard errors.
recognizing the target scene, and in 16.9% of the trials the
participants correctly judged that they would fail to recognize
it. Only these congruent trials were used in the following
analysis. In these trials we can be relatively sure that
recognition success or failure is a consequence of differences
in neuronal processing and less likely due to other causes such
as lucky guesses or careless errors. Please bear in mind, that
reliable labels are essential for training the classifier and for
evaluating the classification results.

Time series single trial classification

Between 288 and 417 trials were available per participant
for classification after rejection of epochs containing artifacts
and epochs in which the judged and actual recognition
success were incongruent. However, these epochs were not
equally distributed among the two classes. On average 77.9%
of the epochs were recorded in correct trials (sure/recognized)
and the remaining 22.1% of the epochs were from false trials
(unsure/failed).

SVM-classification on the full dataset

First we used the time series data of all available trials to
predict scene recognition in a LOOCV procedure. Here, linear
SVM classification correctly predicted recognition success or
failure on average in 78.8% of all single trials. The individual
correct prediction rates are depicted in Fig. 2A, and the exact
values are listed in Table 3 together with the theoretical
guessing level calculated according to Eq. (1).

A correct prediction rate of at least 83% was achieved for
the three best participants. For each of the seven participants,
the proportion of correct predictions exceeded the 95%
confidence interval of the guessing level determined by class
label permutation.

Furthermore, the guessing levels predicted with Eq. (1) are
nearly identical to the empirical guessing levels (Fig. 2A,
average 66.6%) for every participant, but deviate substantially
from 50%. The guessing levels expected when the classifier
assigns all trials to the larger group exceed the empirical
guessing levels on average by 11.3% (standard error 1.2%). This
suggests that in our data the classifier learned the relative
group sizes when the class labels were permuted.

The average recall was 66.2% and the average precisionwas
68.1%. The average recall guessing level was 49.8% (average
95% confidence interval for guessing 44.8% to 54.9%) and the
average precision guessing level was 49.8% (average 95%
confidence interval 44.8% to 55.4%). Together these results
clearly indicate that the classifier uses information contained
in the MEG-time series to predict the participant's recognition
success.

However, at this point it is not clear to what extent the
elevated guessing levels (due to the different number of trials
in the two classes) may have contributed to the high correct
prediction rates. This was investigated in a follow-up analysis.

SVM-classification with equal number of training samples

We removed trials from the larger sample until both groups
had an equal number of cases. This was done to investigate to
what extent unequal class sizes may have increased not only
the guessing level, but also the rate of correct predictions. The
high correct prediction rates can be assumed to be based on



Fig. 2. The figure shows for each participant the recognition prediction accuracies
obtained from the time series data using lSVMs (gray squares), together with the results
from the permutation estimate of the guessing level (gray disks), the 95% permutation
derived confidence intervals for guessing (gray error bars), and a theoretical estimate of
the guessing level calculated with Eq. (1) (black crosses in (A) and black horizontal line
in (B)). The results in (A) were obtained using the full dataset for training. All correct
prediction rates (average 78.8%) exceed the confidence interval for guessing. Theoretical
guessing levels fell always close to the permutation derived guessing levels, but deviate
substantially from 50% correct predictions. In (B) we discarded trials in the larger
training set until equal class sizes were reached. The guessing rate was reduced close to
the 50% level, but the correct prediction rate remained nearly unaltered and all
prediction rates were significantly better than guessing. This indicates that the good
prediction rates obtained with the full dataset were due to information in the training
data instead of an elevated guessing level.
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information in the MEG-time series rather than on a pedestal
contribution from an elevated guessing level if a reduction of
the guessing level does not cause a reduction of correct
prediction rates (i.e. there is independence of guessing level
and correct predictions).

The reduction of the number of training samples led, as
expected, to a reduction of the guessing level, which dropped
to close to 50% (a reduction of 16.2%). However, the proportion
of correct classifications remained nearly unaltered (Fig. 2B,
Table 3
LOOCV results for lSVM trained on the MEG time series

Participant Full dataset

Correct predictions
[%]

Guessing level: theoretical
(empirical) [%]

Recall
[%]

Precis
[%]

P1 83.0 67.0 (67.8) 70.8 74.3
P2 78.8 64.1 (64.7) 68.2 70.1
P3 83.6 74.6 (75.4) 63.1 66.2
P4 70.2 57.0 (56.9) 64.7 65.2
P5 73.1 63.5 (63.9) 62.5 62.8
P6 84.1 75.6 (76.2) 63.5 66.2
P7 78.7 61.6 (61.5) 70.9 72.2
Average (SE) 78.8 (2.0) 66.2 (2.6) 66.2/(1.4) 68.1 (

(66.6 (2.7))

The left four columns list results obtained with lSVMs trained with the full dataset: the perc
permutation test derived (empirical) guessing level for the portion of correct predictions, the
amount of trials in each class are listed in the four columns on the right.
and Table 3). On average the rate of correct predictions was
only 3.2% lower (average 75.6% correct classifications)
compared to the full datasets. This slight reduction is most
likely due to the average 56.3% reduction of the examples
available for training the classifier. As with the full dataset the
classification performance exceeded the individually deter-
mined confidence intervals for guessing. Notably, with equal
class sizes recall and precision improved to 75.6%, and 75.7%
respectively. Both measures exceed the permutation derived
confidence intervals and improved to the same level as the
correct prediction rate. These results suggest that the unequal
number of training samples contributed only little, if any-
thing, to the recognition prediction we obtained with the full
dataset.

In sum these results show that lSVMs can retrieve
information fromMEG-data for accurate single trial prediction
of success of the later recognition of briefly seen natural
scenes.

SVM-classification with congruent and incongruent labels

We hypothesized that the selection of trials based on
congruent prediction and recognition success contributes to
the accurate single trial predictions. We evaluated this
hypothesis by determining the prediction performance with
the incongruently labeled trials included. In this approach we
used the trials with the more reliable congruent labels for the
construction of the classifier and tested on all trials in a cross
validation. Using this approach the overall prediction accuracy
dropped in all datasets compared to using reliable labels
during training and testing (average 72.7%, range 65.1% to
78.2%, average 78.8% using only the trials with congruent
labels). The reason for this drop was chance level prediction
accuracy of recognition success for the portion of trials with
incongruent labels (average 49.2%, range 40.2% to 66.4%).
Moreover, prediction accuracy further dropped in six out of
seven datasets when we repeated the LOOCV ignoring the
judgment labels during training and testing (average 70.7%,
63.7% to 80.3%). These results further corroborate our
assumption that the labels of incongruent trials are less likely
to represent recognition success or failure related to differ-
ences in neuronal scene processing. Probably, trials with
incongruent labels may provide only very limited useful
information for training the classifier and for assessing the
accuracy of the classification results.
Equal training class sizes

ion Correct predictions
[%]

Guessing level: theoretical
(empirical) [%]

Recall
[%]

Precision
[%]

80.8 50.0 (49.6) 80.8 81.0
76.5 50.0 (49.7) 76.5 76.5
77.1 50.0 (49.4) 77.1 77.1
63.5 50.0 (49.4) 63.5 63.5
75.0 50.0 (49.9) 75.0 75.0
78.9 50.0 (49.8) 78.9 78.9
77.4 50.0 (49.4) 77.4 77.5

1.6) 75.6 (2.1) 50.0 (0.0) 75.6 (2.1) 75.7 (2.2)
(49.6 (0.1))

entage of single trial correct prediction, the theoretical (see Eq. (1) in the text) and the
recall, and the precision. The same parameters obtained with datasets equalized for the



Table 4
LOOCV results obtained with lSVMs trained on the wavelet coefficients of all frequency
bands

Participant Correct
predictions [%]

Guessing level: theoretical
(empirical) [%]

Recall
[%]

Precision
[%]

P1 81.9 67.0 (67.7) 71.4 72.5
P2 79.6 64.1 (64,7) 69.9 71.4
P3 82.6 74.6 (75,5) 63.2 64.7
P4 71.2 57.0 (56.8) 66.0 66.3
P5 72.4 63.5 (63,8) 61.7 61.9
P6 83.3 75.6 (76.1) 61.4 64.0
P7 79.6 61.6 (61,4) 71.9 73.5
Average 78.7 (1.9) 66.2 (2.7) 66.5 (1.7) 67.7 (1.8)

See Table 3 for a description of the parameters in the single columns.
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SVM classification on wavelet pyramid coefficients

So far, lSVMs have been trained on the time series of the
MEG-sensor readings in this study. However, MEG data are
often interpreted in terms of oscillatory brain mechanisms
that are represented by certain frequency components in the
MEG-data. Moreover, these alternative representations, time
series and frequency, may offer different functional inter-
pretations. We were interested in seeing if the classification
approach offers different insights when different data repre-
sentations are used. Therefore, we decomposed the MEG time
series into five frequency bands by means of a wavelet
pyramid decomposition using the wavelet-toolbox in Matlab
R14 (MathWorks Inc, MA, USA). The center frequencies
roughly corresponded to those of the five frequency bands
which are thought to reflect different functional processes in
the brain (Freeman,1975; Varela et al., 2001; Basar, 2005): The
delta band (around 2.5 Hz center frequency), the theta band
(around 5 Hz), the alpha band (around 10 Hz), the beta band
(around 20 Hz), and the (low) gamma band (around 40 Hz).

Single trial SVM-classifiers trained simultaneously on the
wavelet coefficients of all the frequency bands provided
results that were nearly identical to those obtained with the
time series data. The average rate of correct predictions is
virtually identical with the rates obtained with the time series
representations (Fig. 3A) and amounted 78.8% (std: 4.5%). The
Fig. 3. (A) The figure compares the correct prediction rates obtainedwith the time series
data to the rate obtained with the full set of wavelet coefficients. Therefore, individual
correct prediction rates obtained in each feature space are plotted against each other.
The results of the two analyses are very similar, and the average rates are virtually
identical (see text). The slope of a linear regression does not differ significantly from 1
(r=0.98). Panel (B) depicts the average correct prediction rates (squares) obtained with
wavelet coefficients from different frequency bands (delta: 2.5 Hz, theta: 5 Hz, alpha:
10 Hz; beta: 20 Hz and low gamma: 40 Hz). For all frequency bands but the theta band
correct prediction rates were lower as those obtained with the full set of wavelet
coefficients (black horizontal line, see Table 5 for the statistical tests). This indicates that
the theta band is highly informative about recognition success. The gray horizontal line
represents the average theoretical guessing level (over participants). Error bars and
dashed lines indicate the standard errors of the means over subjects.
average recall was 66.6% (std: 4.5%) and the average precision
was 67.9% (std: 4.8%). Again, all values exceed the individually
determined confidence intervals (Table 4).

This result shows that the frequency representation and time
series representation permitted indistinguishably accurate
single trial predictions when all the available information was
used. This outcome is compatible with the idea that the two
representations provide similar information for classification.
We tested this idea further by comparing the classification
planes used in both feature spaces. To do this, we transformed
the normal vectors Yw of the planes into a common space by
applying the inverse wavelet transform to the normal vector
obtained in wavelet space. This approach allows for a direct
comparison of the information used to predict recognition in
wavelet and time series space because after the transform the
entries in bothYw correspond to the samples taken at a specific
time in a specific sensor. The 3% of the entries that were most
informative with these two approaches overlapped by 59.9%.
An overlap this high is very unlikely to occur by chance, with a
probability of less than 1e−327 (calculated by the odds of
binomial coefficients). In sum, the virtually identical prediction
rates and extensive overlap of informative dimensions indicate
that time series and wavelet derived frequency representations
contain a virtually identical amount of information and
analogous informative features that allow the prediction of
single trial recognition success.

The preceding analysis makes use of the full set of wavelet
coefficients. However, different frequency bands are thought
to reflect different underlying processes, and these processes
may contribute differently in the match-to-sample task
employed here. We therefore tested specifically whether the
delta, theta, alpha, beta and lowgamma frequency bands differ
with regard to the information they provide about recognition
success. The average correct prediction rates obtained sepa-
rately with each frequency band are shown in Fig. 3B and are
listed in Table 5.
Table 5
Average frequency band specific correct prediction rates

Delta
(2.5 Hz)

Theta
(5 Hz)

Alpha
(10 Hz)

Beta
(20 Hz)

Gamma
(40 Hz)

Corr. pred. [%] 75.3 77.8 73.0 74.0 72.2
Δ full wc set [%] −3.4 −0.9 −5.7 −4.7 −6.5
t-value (6 df) 3.0 1.3 5.3 6.7 10.4
p-value 0.02 0.24 0.002 b0.001 b0.001

The top row lists the average correct prediction rates obtained using only the wavelet
coefficients of the respective frequency band. The second row lists the average
difference of band limited prediction rates and prediction rates obtained with the full
set of wavelet coefficients (wc). The third and fourth rows list the results of a paired t-
test comparing band limited and full wc-set prediction rates.



Table 6
Individual theta-band derived prediction rates

Participant Correct
predictions [%]

Guessing level: theoretical
(empirical) [%]

Upper 95%
conf.int. [%]

P1 80.9 67.0 (67.7) 72.2
P2 77.7 64.1 (67.2) 71.4
P3 83.3 74.6 (77.0) 79.8
P4 69.6 57.0 (57.0) 62.1
P5 75.3 63.5 (66.8) 70.5
P6 83.6 75.6 (76.5) 79.8
P7 74.4 61.6 (62.0) 66.7
Average 77.8 (1.9) 66.2 (2.6) 71.7 (2.4)
(SE) (66.7(2.7))

The second column lists the individual correct prediction rates obtained using only the
theta band wavelet coefficients for classification. The third column lists the respective
theoretical and the mean empirical guessing levels, and the fourth column lists the
upper 95% confidence intervals for guessing. The theoretical guessing level was
calculated with Eq. (1).
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Remarkably, the coefficients from the theta band alone
allowed for correct prediction rates that were nearly as high as
those obtained using the full set of wavelet coefficients. Using
only the theta band coefficients we obtained on average 77.8%
correct predictions (Fig. 3B). A set of post hoc t-tests
comparing individual (n=7) prediction rates obtained with
the full set of coefficients to prediction rates obtained with a
specific frequency band confirmed a significant reduction of
the correct prediction rates for all but the theta band (delta,
alpha, beta, and gamma, see Table 5). Moreover, all individual
theta band prediction rates were better than guessing in a
randomization test (Table 6).

This result has several implications. First, it strongly
suggests that a wavelet basis can provide an efficient
representation for single trial classification of MEG-data. In
our study the theta band requires only 750 wavelet coeffi-
cients per trial whilst the full time series includes 10950
samples, and both allow for indistinguishable good classifica-
tion. This suggests that information about recognition success
may concentrate in the theta band. Second, the differences in
predictiveness between frequency bands allow for a func-
tional interpretation of the classification results: The fact that
the theta band activity permitted the best single trial
prediction of recognition success in our delayed-match-to-
sample task is concordant with the current view that theta
Fig. 4. The figure depicts the group average of the information used by the linear SVM classifie
temporal patterns are overlaid onto a standard head. The reddish-yellowish blobs the mos
processing intervals informative data tend to cluster in occipito-temporal sensors, indicating
success. During a later interval, starting from 200–300 ms, predictive activation was found
band activity is associated with the encoding of information
into working memory (Klimesch et al., 1996, 1997; Paller and
Wagner, 2002; Sederberg et al., 2003; Ward, 2003; Osipova et
al., 2006). In the next section we investigate another analysis
approach which may further contribute to this functional
interpretation of the single trial classification results.

The spatio-temporal-structure of information used by
the classifiers

In this section we report an analysis of the spatio-temporal
MEG-activation patterns that allowed for the good prediction
of recognition success using the full time series. The relative
predictiveness of the MEG-samples in a trial is represented by
the absolute value of the entries in the weight vector Yw of a
trained lSVM. Higher absolute values in Yw indicate directions
in feature space that allow for better class separation. These
feature space directions can be visualized as forming a spatio-
temporal pattern because they are linked to readings taken by
specific sensors at specific times. In the top row of Fig. 4 we
show the 3% most predictive features of the group average
weight vector and plotted them as topographic maps. In the
bottom row we show the 3% most predictive features of an
illustrative participant.

It is evident in Fig. 4 that the most predictive features tend
to cluster together. This indicates that the linear SVM captures
some of the spatial and temporal correlations produced in
MEG-data by temporally and spatially extended brain activa-
tions. In an early activation phase, between 100 ms and
200 ms after scene onset, clusters of highly predictive MEG-
data concentrate at the occipito-temporal sensors. This
suggests that occipito-temporal brain processes involved in
visual encoding can already provide information predictive of
scene recognition success. Later on, between 200 ms and
600 ms, predictive MEG-activity tends to be distributed at the
anterior temporal, parietal and frontal sensors, suggesting
activation in a widely distributed brain network that includes
temporal, parietal and lateral frontal cortex. Such networks
have been associated with the encoding of information into
working memory (e.g. Brewer et al., 1998; Takashima et al.,
2006; Friedman and Johnson, 2000; Paller andWagner, 2002).
The data from the single participant follow that basic pattern,
rs (top row), and individual data of an illustrative participant (bottom row). Both spatio-
t informative dimensions (highest 3%) for predicting recognition success. During early
that already relatively early visual processing differences are predictive of recognition

in more anterior sensors thought to be involved in memory encoding.



Table 8
Average LOOCV results for lSVMs trained on 100 ms MEG-intervals (n=7)

Interval Correct predictions (SE) [%] Recall (SE) [%] Precision (SE) [%]

0–100 ms 70.0 (2.8) 53.2 (1.3) 54.8 (1.8)
100–200 ms 74.4 (2.1) 60.2 (2.0) 63.1 (2.1)
200–300 ms 74.7 (2.5) 59.9 (1.7) 63.4 (1.7)
300–400 ms 73.8 (2.8) 58.3 (2.3) 61.1 (2.7)
400–500 ms 75.2 (1.9) 62.0 (1.5) 65.1 (1.4)
500–600 ms 77.2 (1.8) 63.5 (1.5) 67.4 (1.4)

1064 J.W. Rieger et al. / NeuroImage 42 (2008) 1056–1068
although individual deviations are evident. These deviations
can be expected because of the strong dependence of the
magnetic field topographies on the individual brain anatomy,
and because of individual cognitive processing differences.

Together, these results suggest that lSVM allows the
retrieval of interpretable spatio-temporal patterns of single
trial MEG activity that permit the prediction of recognition
success or failure. These patterns indicate that both early,
perceptual processing related, and later, memory encoding
related brain processes may contribute to recognition success
in our paradigm.

Finally we analyzed the coupling of early and late MEG-
activation differences.

Analysis of the serial dependence of brain processes

We used the classification approach to estimate the degree
of determinism in the sequence of brain processing from the
sensory to cognitive and memory formation stages. Therefore,
we split each participant's MEG time series in six 100 ms
intervals, and performed separate single trial classifications on
each interval. This provided six ordered sets of single trial
classification results (predicted recognition success or failure
in each trial). We then calculated the correlations of the
ordered sets of trial-by-trial class labels (−1, 1) between all
interval pairs (see Table 7). The rationale behind this approach
is that in a strongly determined processing sequence class
labels should be more strongly correlated over time than in a
weakly deterministic sequence. In other words, we asked
whether the single trial recognition predictions derived by
classification were related over time.

We found that all pairwise correlations were statistically
significant at a Bonferroni corrected level (pb0.0033), but the
correlations were low. This was especially the case for the
correlations between the earliest interval (0 to 100 ms) and
the later intervals occurring after 300 ms. These correlations
explained less than 0.5% variance. The highest correlations
were found between temporally adjacent intervals along the
first diagonal in Table 7. However, even the maximal
correlation coefficient of 0.28 explains only 7.8% variance.
These outcomes suggest that predictions about success or
failure are correlated over the processing sequence, and the
coupling is somewhat stronger for consecutive compared to
non-consecutive intervals. However, given the small amount
of variance explained, the coupling over processing intervals
with respect to predicted recognition success does not appear
to be very tight.

It is conceivable that the relatively low correlations we
found are due to insufficient classification performancewithin
Table 7
Correlation of single trial class labels over time intervals

Later interval

100–200
ms

200–300
ms

300–400
ms

400–500
ms

500–600
ms

Earlier
interval

0–100 ms 0.17 0.07 0.07 0.06 0.07
100–200 ms 0.16 0.14 0.15 0.13
200–300 ms 0.25 0.12 0.16
300–400 ms 0.23 0.18
400–500 ms 0.28

The correlations between class labels assigned by lSVMs trained on MEG-activity from
different temporal intervals. All correlations are statistically significant at pb0.0033
(Bonferroni correction for 15 comparisons).
the specific intervals rather thanweak coupling between brain
processes. However, the prediction rates, the average recall,
and the average precision are reasonable (Table 8), except for
the earliest interval from 0 to 100mswhere all threemeasures
for the classifier's performance are lowest. Moreover, the
correlations did not improve when we doubled the interval
length (three intervals with a duration of 200 ms each).

Discussion

We have shown that brain activity measured with MEG
during the initial processing of a briefly presented natural
scene can be used to make reliable trial-by-trial predictions of
the subsequent recognition of these scenes. Using a non-
parametric randomization test we confirmed that the predic-
tion rates we obtained with lSVM classification are signifi-
cantly better than guessing. The use of different feature space
representations allowed for different but converging func-
tional interpretations of the classification process. The
comparison of prediction rates across frequency bands
revealed that theta band oscillations, thought to be indicative
of memory encoding success, are highly predictive of scene
recognition success. The spatio-temporal patterns of brain
activation that are informative of recognition success provide
additional support for the role of memory encoding processes,
but also indicate that early perceptual processing differences
may predict success or failure in later recognition tests.
Moreover, the analysis of the recognition predictions of
successive intervals starting from scene onset indicate
significant serial coupling between earlier and later brain
processes predictive of scene recognition success. Altogether,
our results demonstrate that lSVMs can be used to for reliable
prediction of behavior and for the analysis of MEG-measures
of brain activation.

Functional interpretation of the informative brain activation
used by the classifiers

A central requirement for successful recognition in our
delayed-match-to-sample task is the encoding of information
about scene content into working memory. Participants are
likely to fail to recognize a target scene when either the visual
encoding process or the formation of an adequate memory
failed. The comparison of predictiveness across frequency
bands revealed that theta-band activity was the best predictor
of the participant's scene recognition success. Theta band
activations allowed for single trial classification performance
as good as that observed with the full feature space.
Interestingly, the modulation of theta-band activations has
been linked to successful memory encoding (Klimesch et al.,
1996, 1997; Paller and Wagner, 2002; Düzel et al., 2003;
Sederberg et al., 2003; Osipova et al., 2006) and recognition
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success (Klimesch et al., 2000; Osipova et al., 2006). Theta-
band activation is thought to reflect cortical activation induced
by cortico-hippocampal feedback loops (e.g. Miller, 1991;
Buzsaki, 1996). However, because earlier studies analyzed
statistical differences between mean theta activations, it
remained unclear how well theta differences could discrimi-
nate the success or failure of memory encoding in single trials.
Our results provide to our knowledge first evidence that theta
band activation can be highly predictive of recognition success
in single trials, and thereby emphasize the functional role of
theta oscillation modulations in working memory.

The informative brain activation we extracted from time
series classification complements and extends this finding. In
agreement with previous studies of the DM-effect (for reviews
see Paller andWagner, 2002; Friedman and Johnson, 2000),we
found widely distributed clusters of informative frontal,
temporal and parietal brain activation. There, long lasting
event related MEG-differences that discriminate success and
failure in the recognition of pictorial material and words have
typically been observed beginning 200 ms to 300 ms after the
onset of stimuli in parietal, frontal and temporal sensors
(Takashima et al., 2006; Friedman and Johnson, 2000). Like
theta band oscillations, these brain activation differences have
been attributed to the encoding of information into memory
for later recognition and to maintenance in working memory
(for a recent review see e.g. D'Esposito, 2007). Despite their
wide distribution, these activations must be highly reprodu-
cible across trials orwewould not have obtained such high and
reliable prediction rates.

In addition, SVM-analysis revealed early clusters of pre-
dictive activation differences in the interval up to 200 ms after
a scene onset in occipito-temporal sensors. The early clusters
indicate, that in addition to memory encoding processes,
earlier visual processes can be predictive of later recognition
success. We think that our use of masked presentations may
account for this finding. Pattern masks effectively limit the
time available for the extraction of information from visual
displays during visual processing (Rolls and Tovee, 1994;
Kovacs et al.,1995; Grill-Spector et al., 2000; Rieger et al., 2005,
2008). We have shown in a previous study that employed a
similar picturemasking paradigm that patternmasks aremost
effective during the interval between 110 ms and 170 ms after
scene onset, when information about scene content is first
being acquired (Rieger et al., 2005). This was the same latency
range in which we observed predictive MEG differences.

The selection of trials by concordant rating and recognition
success may not only improve the reliability of the labels but
also raises the question whether brain activation uniquely
related to the rating was included into the construction of the
classifier. We attempted to temporally decouple scene encod-
ing and rating by instructing participants to rate their
confidence only in a rating interval which started 400 ms to
800 ms after the encoding interval used for classification had
ended. Despite this experimental precaution, we cannot fully
exclude the possibility that participants sometimes judged
their success in memory formation prior to the start of the
rating interval. Studies in patients (Schnyer et al., 2005) and a
recent fMRI-study (Kao et al., 2005) indicate that frontal cortex
and more specifically ventromedial prefrontal cortex (VMPC)
is involved in judgments of learning. Activationmodulations in
VMPC due to different confidence ratings would therefore be
expected in prefrontalMEG-sensors. However, as shown in Fig.
4 frontal sensors appear to contribute only little information
for single trial prediction, indicating that the temporal
decoupling was successful. Furthermore, an activation genu-
inely related to the rating processwould only be learned by the
classifier if it occurred consistently over trials and time locked
to the stimulus. Thus, we think that brain activation related to
participant's judgments of recognition success contributed
only a little, if anything, to classification performance.

Another question we addressed is how deterministic the
processing sequences underlying recognition success or fail-
ure are, i.e. to what extend later informative brain activation
differences depend on earlier differences. The statistically
significant correlations we found between processing inter-
vals suggest that differences in earlier processing intervals
determine to some extent the outcomes observed in later
processing intervals. However, the small amount of variance
explained by these correlations indicates that this coupling
may be relatively weak. The weak coupling could either be
due to the analysis approach or reflect properties of the brain
processes involved in visual processing and memory encod-
ing. We think that the analysis approach is an unlikely
explanation because the prediction performance obtained
with the short intervals was still good, and because the
correlations did not improve when we doubled the length of
the analysis intervals. Furthermore, authors relating beha-
vioral decisions to single cell recordings when investigating
decision making in monkeys have also concluded there is
substantial indeterminacy in the investigated sequence of
brain processes (Shadlen et al., 1996; Dorris and Glimcher,
2004; for a review see Glimcher, 2005). Thus, we speculate
that the low correlation reflects to some extent indeterminacy
in the sequence of brain processes involved in our task. The
short scene-mask SOAs we have used in our experiment may
have introduced uncertainty that contributed to this indeter-
minacy. Failures during the early formation of internal
representations may have been somewhat independent of
failures during the subsequent formation of an enduring trace
(Paller andWagner, 2002). However, further investigations are
needed to clarify the causal relationship between brain
processes. We suggest that single trial classification may be
a helpful analysis tool in these investigations.

Comparison of information about recognition success in
frequency and time series representations

Oscillating brain activations are thought to reflect the
integration of brain networks at different spatial scales.
Different frequency bands have been distinguished and
assigned to different cognitive functions (for reviews see
Freeman, 1975; Varela et al., 2001; Basar, 2005). On the other
hand, event related responses such as time locked deflections
in the EEG and MEG time series, are thought to reflect a series
of discrete but partly overlapping processing steps. The
functional units, which are termed components, are deflec-
tions that appear after a relatively fixed latency with a certain
scalp topography (reviewed in Rugg and Coles, 1995).
Comparisons between these two approaches to the analysis
and interpretation of brain function are complex when
standard statistical approaches are employed. Studies that
have sought to make such comparisons have often had to
focus on data from a single sensor, and analyses required
many assumptions (e.g. Klimesch et al., 2000; Düzel et al.,
2005; Makeig et al., 2002). Single trial classification offers an
alternative approach by comparing single trial predictive
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information among the two types of data representations. The
indistinguishably high single trial recognition prediction rates
we found indicate that oscillatory and event related brain
activations provide a similar amount of information (in the full
dataset). However, an equal amount of information does not
necessarily imply that the identical information is used by
lSVMs in the two data representations. Similar prediction
rates could have been achieved with different hyperplanes
separating classes within different subspaces of the two data
representations. Despite this possibility, the substantial over-
lap of the informative dimensions we found in the two feature
spaces was very unlikely to have occurred by chance. This
suggests that the classifier separated classes in similar ways in
both the time series and frequency representations of the
MEG-data. We therefore conclude that evoked response time
series and oscillations provide similar information for single
trial classification, at least in our recognition task. This
conclusion is further supported by our finding that both the
time series and the frequency representations showed
memory related brain activation modulations that were
predictive of recognition success.

Assessment of classification quality

The large number of data points recorded in each trial
during brain imaging creates a potential problem for single
trial classification because the number of dimensions in the
feature space (data points acquired in each trial) typically
exceeds the number of trials available for training the
classifier. Therefore, it is essential to assess the reliability of
the achieved prediction rates even when these appear high.
This has often been done by comparing the empirically
obtained correct classification rate to a theoretical guessing
level derived from the number of alternatives in the
classification problem (e.g. Suppes et al., 1997; Haynes and
Rees 2005; Cox and Savoy, 2003; Haxby et al., 2001).
Classification rates exceeding this theoretical guessing level
are assumed to be significant. Our approach was to use an
empirical permutation test for the validation of the classifica-
tion. Our results strongly suggest that the expected guessing
level of the correct prediction rate is not only a function of the
number of classes. Empirical guessing levels in our data were
much higher than the 50% theoretically expected in a two
class problem, indicating that other factors must have an
influence. In our study the linear SVM learned the relative
class sizes when the class labels were permuted. The good
prediction of the empirical guessing level by Eq. (1) is a strong
indication for this conclusion. Other classifiers may adopt
other strategies that result in different guessing levels (e.g.
assigning all trials to the larger class). Unfortunately, unequal
class sizes are a frequent problem in cognitive studies inwhich
these sizes are not rigorously bound by the stimulus
presentations, such as studies involving spontaneous percep-
tual switches. Moreover, it is important to note that different
class sizes are not the only possible source of bias. For
example, temporal correlations in the time series obtained
with fMRI may also introduce a bias in the guessing level
when single functional volumes are classified. Therefore, we
suggest that guessing levels should always be empirically
determined, by means of a permutation test. The non-
parametric permutation procedure we employed is well
suited to estimate the guessing level even when a bias is
introduced by unknown sources.
In addition, the permutation method we adopted provides
confidence intervals for guessing that can be used for non-
parametric significance tests. Only correct classification rates
falling outside these confidence bands would be considered
significantly different from guessing. Using this procedure we
found that single trial prediction rates derived with lSVMs
significantly exceeded guessing in every single participant.
Importantly, the correct prediction rates achieved with the
experimentally obtained class labels were relatively indepen-
dent on relative group sizes, indicating that unequal class size
had only little influence on lSVM classification in our study.
One factor contributing to the good classification results we
obtained with respect to correct prediction and expected
generalization may be the fact that the test error is limited for
soft margin classifiers (SVMs) and does not depend on the
dimensionality of the feature space (Duda et al., 2001, p.265).
In accord with these theoretical considerations, we found that
the relatively few theta band coefficients predicted recogni-
tion success as well as the full time series despite the 14.6-fold
dimensionality reduction of feature space. This is a strong
indication that class information in the data rather than the
dimensionality of the classification space accounts for the
good classification performance we obtained with lSVMs.

Another factor contributing to the good classification
results in our study was to select trials in which the
participants correctly predicted recognition success or failure.
The MEG-data in these trials most likely reflect differences in
neuronal scene processing and can be used for analyzing brain
function. Conversely, trials with incongruent labels are
probably caused by accidental wrong responses or lucky
guesses. Thus recognition success or failure assessed by the
button press is less likely to be correlated with the neuronal
processing recorded during these trials. This assumption is
corroborated by our finding that performance dropped when
trials with incongruent labels were used for classification and
that prediction accuracy for trials with incongruent labels was
at chance level. One may argue that selecting trials with
congruent labels introduces a bias towards higher accuracy
because clear cases are selected. However, reliable labels
(labels that correlatewith processing differences) are desirable
on at least two levels of the classification process to obtain
reliable results. First, trials with labels assigned by unclear
causes are not useful to train a classifier, andwould prevent the
interpretation of the classifier and the classification results.
This notion is in line with the results of permutation test and
with the results obtained with all trials included in the
analysis. Second, testing a classifier's accuracy on data with
unclear labels may provide less interpretable results and will
most likely underestimate a classifier’s achievable accuracy.

Proportion of correct predictions and statistical significance

The non-parametric test for the significance of the correct
prediction rate we used does not imply that single trial
classification and standard statistical testing rely on similar
principles. The proportion of correct predictions provided by
the classification approach is a relatively simple measure of
the relevance of measured brain activity that is hard to derive
from results of statistical significance test, e.g. a statistical
comparison between average activations measured in differ-
ent experimental conditions. The reason is that statistical
significance depends on the standard error of the mean (SEM)
instead of the population variance of the measurements. In



1067J.W. Rieger et al. / NeuroImage 42 (2008) 1056–1068
theory, the size of the SEM decreases with an increasing
number of trials, leading to increasing significance levels for a
fixed difference unequal zero. On the other hand, with an
increasing number of trials, the estimated population variance
converges on the value of the underlying population. It is
important to note that the population variance, not the
standard error of the mean, is a limiting factor in single trial
predictions. Thus, it can be expected that single-trial-
classification will converge with an increasing number of
examples towards a fixed prediction rate (most likely below
100%). Conversely, with conventional statistical testing small
differences that could be of little relevance when a brain must
solve a task on a trial-by-trial basis will exceed significance
when the number of examples included is sufficiently large.
Better predictiveness of task outcomes in classification can be
interpreted as signifying higher relevance of a portion of brain
activity for solving the task, given that the classifier uses
relevant information contained in the data. Viewed in this
manner, the proportion of correct predictions has a relatively
simple interpretation.

Conclusions

Our results show that it is possible to use linear Support-
Vector-Machine Classification to accurately predict a human
observer's ability to recognize a natural scene photograph
from the first half second of brain activation following the
presentation of the scene. Randomization tests provide a
relatively simple although computationally intensive way of
validating the classification results. Furthermore, we demon-
strated four ways to extend the classification approach to
analyze the interplay of brain states with behavior usingMEG-
data: The comparison of the predictiveness of different
frequency bands and different feature space representations,
the extraction of spatio-temporal patterns of informative
brain activation, and an approach to investigate the coupling
of brain processes predictive of scene recognition success. Our
results are consistent with and extend studies using standard
statistical approaches. We conclude that single trial classifica-
tion is a promising approach for analyzing brain networks
predictive of behavior. Moreover, classification provides an
easily interpretable measure of the relevance of the informa-
tive brain activations: the proportion of correct predictions.
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Appendix A. Theoretical guessing level for a classifier
learning only the relative class sizes

We assume that the classifier learned only the relative
frequencies of the class labels in the training data and assigns
class labels with the same relative frequencies during
classification. After classification each trial has two class
labels: One label was assigned during data-acquisition and the
other during classification. The expected guessing level of the
classifier is the proportion of trials that received the same
class labels in both processes.
Webegin the derivation of the guessing level by assuming a
first step (the data acquisition) in which a Bernoulli-process
assigns class labels c with probability P(c) and class labels f
with the probability P fð Þ ¼ 1−P cð Þ to single trial MEG-time
series. Then a second, independent Bernoulli-process (the
classifier) assigns a second class label c′ or f ′with probabilities
P(c′) and P(f ′) to the MEG-time-series. Four combinations are
possible:

P c \ cVð Þ; P f \ f Vð Þ; P c \ f Vð Þ; P f \ cVð Þ

and the guessing level is:

Pguess ¼ P c \ cVð Þ þ P f \ f Vð Þ ðA:1Þ

We assumed the classifier learned the ratio of class labels
from the measured data and uses this information to assign
class labels with same probabilities. Thus:

P cð Þ ¼ P cVð Þ ðA:2Þ

and

P fð Þ ¼ P f Vð Þ ðA:3Þ

Because both processes are independent

P c \ cVð Þ ¼ P cð Þ2 ðA:4Þ

and

P f \ f Vð Þ ¼ P fð Þ2 ðA:5Þ
The theoretical guessing level is then:

Pguess ¼ P cð Þ2þP fð Þ2 ðA:6Þ

Appendix B. Guessing level for average recall and precision

Here we derive that the expected average recall and pre-
cision guessing level is independent of relative group sizes and
independent of the applied guessing strategy. Similar to
Appendix A we define guessing the process of assigning class
labels independent of the experimentally obtained labels. In
other words, the process of assigning a label during data-
acquisition is completely independent of the process of
assigning a label by a guessing classifier. In this case, the
joint probabilities in Eq. (3) can be calculated as a product:

Recall ¼ 1
2

P cð Þ � P cVð Þ
P cð Þ � P cVð Þ þ P cð Þ � P f Vð Þ þ

P fð Þ � P f Vð Þ
P fð Þ � P f Vð Þ þ P fð Þ � P cVð Þ

� �

ðB:1Þ

Since the probability P(f ′)=1−P(c′) we can substitute P(f ′).
Moreover the probabilities P(c) and P(f) vanish:

Recall ¼ 1
2

P cVð Þ
P cVð Þ þ 1−P c′ð Þ þ

1−P c′ð Þ
P cVð Þ þ 1−P c′ð Þ

� �
ðB:2Þ
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The expression in parenthesis is 1 and therefore

Recall ¼ 1
2

ðB:3Þ

This is the average guessing level for the recall under the
assumption that class labels assigned during the experiment
and class labels assigned by the classifier are statistically
independent. The expected average guessing level
Precision ¼ 1

2 can be derived in a similar way.

Appendix C. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.neuroimage.
2008.06.014.
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