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Abstract We used a virtual reality setup to let partici-
pants grasp discs, which differed in luminance, chroma-

ticity and size. Current theories on perception and action

propose a division of labor in the brain into a color profi-
cient perception pathway and a less color-capable action

pathway. In this study, we addressed the question whether

isoluminant stimuli, which provide only a chromatic but no
luminance contrast for action planning, are harder to grasp

than stimuli providing luminance contrast or both kinds of

contrast. Although we found that grasps of isoluminant
stimuli had a slightly steeper slope relating the maximum

grip aperture to disc size, all other measures of grip quality

were unaffected. Overall, our results do not support the
view that isoluminance of stimulus and background

impedes the planning of a grasping movement.

Introduction

Current theories on vision divide the visual system into two
major pathways (Ungerleider and Mishkin 1982; Milner

and Goodale 1995). One of these models distinguishes a

ventral pathway that is mainly concerned with conscious
perception from a dorsal pathway, which is responsible for

the development of action plans (Goodale and Milner 1992;

Milner and Goodale 1995). Corresponding to the different
purposes both pathways are supposed to serve, they receive

different parts of the available visual information. The

ventral system, responsible for delivering a perseverative
percept of objects and their spatial relation to each other,

has a low temporal but high spatial resolution and a high

sensitivity to chromaticity of visual stimuli. This has been
shown in numerous studies in monkeys (Zeki 1973, 1978;

Komatsu et al. 1992; Takechi et al. 1997; Huxlin et al. 2000)

and humans (Meadows 1974; Damasio et al. 1980; Lueck
et al. 1989; Zeki 1990; Hadjikhani et al. 1998; Beauchamp

et al. 2000; Wade et al. 2002). This can be understood based

on the response characteristics of the cells in area V4, which
constitute the main source of input for this visual subsystem

(Zeki 1980, 1983; Heywood et al. 1992; Felleman and van

Essen 1991). The dorsal system on the other hand, receives
its main input from area MT which has only a small number

of color sensitive neurons (Saito et al. 1989; Gegenfurtner
et al. 1994) and whose cells mainly respond to motion

(Dubner and Zeki 1971; Maunsell and van Essen 1983;

Maunsell et al. 1990; Born and Bradley 2005). This leads to
a lower sensitivity for color and fine spatial resolution

compared to the ventral system. Instead, temporal resolu-

tion and thus movement sensitivity are better in the dorsal
than the ventral pathway.

Since the ventral system is proposed to be the major, if

not the exclusive source of our conscious percept of the
world (Goodale and Milner 1992; Milner and Goodale

1995), it has been a challenge for researchers to come up

with experiments where conscious perception and motor
planning are at odds. These experiments rely for example

on the sensitivity for certain visual illusions, which are
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thought not to influence motor plans, while being perfectly

visible to an observer (e.g. Aglioti et al. 1995 but see Franz
et al. 2000; Franz 2001; Franz and Gegenfurtner 2008).

Another branch of research has dealt with neurological

patients showing selective deficits assumed to result from a
confined lesion to one or the other pathway (c.f., Milner

and Goodale 1995; Himmelbach and Karnath 2005). Cur-

rently also the effects of stimulating regions associated
with one or the other pathway by means of rTMS are

investigated (e.g. Schenk et al. 2005).
In this study, we were interested whether the chroma-

ticity of objects is a sufficient feature to establish motor

plans for grasp movements. Because only a small fraction
of MT neurons responds to chromatic information, one

could suppose that movement planning is impaired when a

chromatic difference is all which distinguishes the target of
a movement from its background. In this case, the dorsal

system either somehow has to deal with the limited infor-

mation it possesses, which should lead to an impaired
movement, or it has to draw upon the information available

in the ventral pathway which should delay movement

execution. The latter was shown for example by Pisella
et al. (1998) who found a longer latency in a perturbed

pointing task when color instead of position was the

stimulus attribute (but see Brenner and Smeets 2004). If we
would find an impaired or delayed movement towards a

perceptually clearly visible target, this would be an argu-

ment in favor of two distinct channels for movement
planning and conscious object perception. If on the other

hand, chromatic information is sufficient to plan and exe-

cute the movement in a completely normal fashion, this
would suggest a more holistic view of the perception/action

system or at least the notion that crosstalk between the

systems is more profound than is commonly thought. This
is also what Gentilucci et al. (2001) suggested when they

found a color effect on target size estimates. In their study,

they showed that red targets are overestimated and green
targets underestimated. This, however, was not only true in

a manual size estimation task but also observed in grasping

movements, pointing to a general process underlying both,
perception and action.

In this study, we therefore assessed the quality of grasp

movements towards stimuli, which differed in luminance
and chromaticity. Our special interest was on those stimuli,

which only had a chromatic contrast to the background

while their luminance was equal to it (isoluminant stimuli).
We wanted to know if those stimuli, because they are

solely defined by a property which is not an optimal input

for the dorsal stream, impose a challenge to the motor
system or are grasped just as stimuli providing luminance

contrast or chromatic and luminance contrast together.

In order to assess the quality of a grip we used several
measures which have been shown to be related to the

availability of object information for movement planning.

As the main measure of interest, we calculated the maxi-
mum grip aperture (MGA). Since in the well-known

studies of Jeannerod (1984, 1986), the MGA has proven to

be a reliable indicator of size information availability in the
visuo-motor system. Usually, one finds a linear relationship

between object size and MGA with a slope coefficient of

about 0.82 (average slope value in the Smeets and Brenner
1999 review of 35 studies). When the amount of visual

information about the object is reduced, the normal reac-
tion of participants is a general increase of MGA. This was

found in cases where the object was retinally sampled on a

coarser scale because it was presented in the periphery of
the visual field (Brown et al. 2005; Schlicht and Schrater

2007). It was also observed when sight onto the object was

removed before movement initiation (Wing et al. 1986;
Berthier et al. 1996; Franz et al. 2009; Hesse and Franz

2009) or during the movement (Jakobson and Goodale

1991; Franz et al. 2009; Hesse and Franz 2009) such that
the movement had to be executed relying on memorized

information, which is subject to a rather rapid decay (Hesse

and Franz 2009).
In contrast to the clear effect of reducing the amount of

visual information on the absolute size of MGA, the linear

scaling of MGA to object size usually remains surprisingly
unaffected. In the studies of Jakobson and Goodale (1991),

Brown et al. (2005) and Franz et al. (2009), scaling

remained the same for all conditions, which changed the
amount of visual information as can be inferred from

missing interactions of those conditions with the factor

object size. Hesse and Franz (2009) even addressed the
issue directly by statistically testing the slope of the scaling

function and found no effect of viewing condition. A sig-

nificant interaction between viewing condition and object
size, however, was found in the study of Berthier et al.

(1996). Here, the authors used a full vision condition, a

reduced vision condition where the target object was
glowing in an otherwise dark room and a condition without

vision where subjects blindly grasped towards an object,

which was previewed before the trial but whose position
was only indicated by a sound during the actual grasp trial.

In this study, the slope got shallower for the conditions

where visual information is reduced. This result though
should be interpreted cautiously since the main source of

the interaction effect seems to originate from two objects

which were unusually small (4 and 9 mm) compared to
sizes used in the abovementioned studies (ranging between

20 and 50 mm) which are more representative for the

literature on precision grip grasping.
Another important indicator of grip quality is the time of

MGA occurence. Smeets and Brenner (1999) report in their

review that MGA most often can be found in the last third
of the movement. They also show that the timing of MGA
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depends on target size (see also Schettino et al. 2003).

Furthermore, Weir et al. (1991) discovered that the relative
time of MGA is earlier for objects with more slippery

surfaces. These findings indicate that grasps which are

more difficult may have an earlier occurence of MGA. We
would therefore expect that a target, which is less visible to

the motor system, would also elicit such a change in MGA

timing.
There are two more temporal markers that have been

shown to be sensitive to diminished information about the
target object of a grasp movement: the movement time

(MT), which gets longer (Schettino et al. 2003), and the

reaction time (RT) from trial onset to start of the grip (see
for example Mon-Williams et al. 2001). Both measures

should be prolonged if the motor system is forced to rely on

degraded or delayed information.
As the last indicator of grip quality, we assessed the

variance of the trajectory. We hypothesized that this vari-

ance should increase in conditions with less availability of
object information to the dorsal stream.

In order to compare possible effects occurring in the

motor domain with the perceptual domain, we also sub-
jected our participants to a perceptual task. Here, we asked

them to perform size estimates of our stimuli.

Methods

Participants

We measured ten participants on three occasions. All
participants were right-handed (Edinburgh Inventory,

Oldfield 1971) without color deficiencies (Ishihara 1995)

and naı̈ve to the purpose of the experiment. The age
average of the sample was 28 years. Half of the partici-

pants were female. For their participation, participants

were rewarded with eight euro per hour.

Stimuli

Our stimuli were discs of three different diameters (30, 35,

40 mm) and 13 different colors. The discs were displayed

on a computer monitor and seen via a mirror (see the
description of the setup below). The set embodied ten discs

of green chromaticity (CIE: x = 0.281, y = 0.583). One of

these discs was isoluminant with the background according
to the CIE standard observer (photometric isoluminance).

In order to deal with the natural variability in individual

isoluminance between observers, another green disc was
made individually isoluminant for the participant by means

of heterochromatic flicker-photometry (subjective isolu-

minance). The luminance contrast of this disc with the
background therefore varied in a range between ?1.8 and

?10.9% (!x ¼ 6:5%; r = 2.8%). The luminance of the

remaining eight green discs was varied around photometric
isoluminance (-8, -4, -2, -1, ?1,?2, ?4, ?8 percent of

luminance contrast with the background) in order to assess

effects which may occur around the point of isoluminance.
In addition, we presented three achromatic discs, two

above (?3 and ?43 percent) and one below (-12 percent)

the luminance of the background which was at 25 cd/m2.
In the grasp task, aluminium discs of 5 mm height

matched up with the perceived position and diameter of the
projected discs. In the perceptual task, the standard disc

which was used as a comparison was always achromatic

and bright (143% of background luminance).

Setup

Participants were seated in front of a virtual-reality setup,

which consisted of a monitor/mirror projection system and

the table where our target discs for grasping were placed
upon (Fig. 1). The monitor image was projected onto the

mirror and produced a virtual image of the display. Dis-

tances and angles between monitor, mirror and the table
under the mirror were chosen such that the virtual image

when looked at was perceived being at the height of the

table surface. When a stimulus was displayed on the

mirror

monitor

Fig. 1 Experimental setup. Participants looked into a mirror which
reflected the image of the monitor. Distances and angles were chosen
in a way that the perceived surface was at the height of the table onto
which discs in the grasp task were placed
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monitor participants, who sat in front of the mirror there-

fore perceived the stimulus to lie on the table in front of
them. In our grasp task, we positioned the real target disc at

exactly the position where the virtual disc image was

congruent with it. The perceived distance of the stimuli
was then at about 50 cm from the participants eye.

Grasp movements were recorded with an Optotrak 3020

infrared tracking system at a sampling rate of 100 Hz.
Three infrared markers were attached to the nails of the

index finger and thumb. Using three markers per digit
allowed for measuring the touch points on the participants

pad surfaces in relation to those markers. At the same time,

the pad surfaces stayed free for the grip, allowing full
tactile feedback.

The perceptual size estimates and the heterochromatic

flicker isoluminance values were collected on the same
setup with a computer mouse.

Procedure

In the first experimental session, we determined the indi-

vidual point of isoluminance for the participant by means
of flicker-photometry (c.f. Kaiser and Boynton 1996): a

green target disc was flickered with a frequency of 15 Hz

on a background of the same gray as was used later in the
experiment. Participants adjusted the luminance of the disc

from a random start point until the perception of flicker was

minimized or vanished totally. The average luminance
value of 15 trials (three disc sizes 9 five trials) was used to

determine the subjective point of isoluminance.

For measuring the grasp movements, participants sat in
front of the mirror setup and looked at the virtual surface

produced by monitor and mirror. Prior to each trial, the

experimenter placed the aluminium disc, which corre-
sponded to the presented virtual disc onto a small plastic

pin, which served as a mount for the disc. The trial started

as soon as the image of the virtual disc was projected onto
the gray background. Participants then had 4-s time to

grasp the disc with a precision grip of index finger and

thumb and transport it to a goal area. After the grasp par-
ticipants moved the fingers back to the starting point, a

small pin affixed to the experimental table, and the next

trial was prepared. All movements were made under open
loop conditions, that is no visual feedback of hand or finger

position was provided because the digits were obscured by

the mirror. The projected target disc image was visible
from the beginning of the trial until the real disc was

grasped and lifted 20 mm. In each of the three experi-

mental sessions, participants grasped every size/color
combination three times which makes 117 grasps per ses-

sion and 351 grasp trials for every participant in total.

In the perceptual task, participants had to match the
radius of the target disc to a standard disc of 30, 35 or

40 mm diameter. The initial diameter was randomly cho-

sen between 25 and 45 mm in steps of 1 mm. The target
appeared either to the left or to the right of the standard

disc. The diameter adjustment was made in 0.2 mm steps

by hitting the left and right buttons of a computer mouse.
Participants could take as much time as they wanted for the

adjustment. When the adjustment was finished, participants

hit the center mouse button and the next target/standard
pair appeared. In each session, participants adjusted every

size/color combination two times which resulted in 78
trials per session and 234 trials total per participant across

all three sessions.

In each experimental session, there was one block for
the perception task and one for grasping. The order of

blocks was reversed in the next session and counterbal-

anced between participants.

Results

Grasp parameters

Figure 2 shows the mean MGA for the different disc colors

and disc sizes. While there was a clear effect of disc size on

MGA, the effect of disc color was nonsignificant as was the
interaction. Thus, the absolute size of MGA was not

affected by changing the color of stimuli.

The slopes of MGA as a function of disc size in the
different color conditions are shown in Fig. 3. We calcu-

lated a least square linear regression of MGA on disc size

luminance contrast (%)
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Fig. 2 Mean MGA for different disc sizes and color conditions.
Values on the abscissa depict the luminance contrast with the
background in percent. /: photometric isoluminance. w: subjective
isoluminance. Error bars are ±1 standard error of the mean (between
subjects)
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for each participant and computed a repeated measures

ANOVA of the slope coefficients. There was a main effect
of disc color (see Table 1 for all F values). Fisher LSD

adjusted post hoc tests revealed significant different slopes

between the subjective isoluminant condition and all other
color conditions (all P\ 0.05) except for the green discs

with -4 and ?8 percent deviance from background lumi-

nance. The overall slope of MGA on disc size across all
participants and color conditions was 0.77.

All temporal measures of the grip were unaffected by
variations of disc size and color as can be seen in Table 1.

Mean RT was at 394 ms (r = 133 ms), mean MT at

788 ms (r = 255 ms) and mean time of MGA at 449 ms
(r = 137 ms).

The analysis of our last movement-quality measure, the

movement variance, also showed no effect of disc size or
color on the movement.

Perceptual size estimates

The data of perceptual size estimates are shown in Figs. 4

and 5. The ANOVA revealed significant main effects for
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Fig. 3 Mean slope of MGA in the different color conditions.
Values on the abscissa depict the luminance contrast with the
background in percent. /: photometric isoluminance. w: subjective
isoluminance. Error bars are ±1 standard error of the mean
(between subjects)

Table 1 Results of repeated
measure ANOVAs

* P\ 0.05, ** P\ 0.01,
*** P\ 0.001
a Because the slopes are
calculated across all sizes there
is no factor size for them

Measure Mean SE Factor df1 df2 F P

MGA 65 mm 2.875 Size 2 18 99 \0.001***

Color 12 108 0.96 0.49

Interaction 24 216 1.2 0.24

Slope of MGAa 0.766 0.069 Size – – – –

Color 12 108 1.9 0.038*

Interaction – – – –

Time of MGA 449 ms 31.448 Size 2 18 1.6 0.23

Color 12 108 0.79 0.66

Interaction 24 216 1.1 0.35

MT 788 ms 51.497 Size 2 18 2.9 0.079

Color 12 108 1 0.41

Interaction 24 216 1.3 0.15

RT 394 ms 18.717 Size 2 18 2.1 0.15

Color 12 108 1.4 0.17

Interaction 24 216 0.95 0.54

Finger variance 150 mm2 14.149 Size 2 18 0.68 0.52

Color 12 108 0.65 0.79

Interaction 24 216 1 0.45

Thumb variance 138 mm2 12.963 Size 2 18 0.49 0.62

Color 12 108 0.67 0.78

Interaction 24 216 1 0.43

Perceptual size estimates 34 mm 0.278 Size 2 18 5,847 \0.001***

Color 12 108 15 \0.001***

Interaction 24 216 0.55 0.96

Perc. size est. slopesa 0.989 0.012 Size – – – –

Color 12 108 0.6 0.84

Interaction – – – –
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disc size as well as disc color. The interaction was insig-

nificant. Several Bonferroni adjusted post hoc tests were
significant at P\ 0.001. The complete results can be found

in Table 2. Significant comparisons are only found for the

achromatic stimuli. Especially, the achromatic stimuli with
-12 and ?3 percent of background luminance were

underestimated compared to the other stimuli.

An ANOVA, which was computed across the individual
slopes of the perceptual size estimate as a function of disc

size did not reveal any influence of stimulus color (see
Table 1; Fig. 5).

Discussion

We examined the influence of color information on the
quality of grasp movements. We found that the absolute

value of MGA, a measure that has proven to be sensitive to

the availability of visual information in the visuo-motor
system, is not influenced by changing the color of grasp

targets. This is also true if the target is isoluminant with the

background. For the perceptually isoluminant targets, the
ones for which the point of isoluminance was determined

with flicker photometry, the slope of the MGA related to

target size was significantly higher than for most other
targets. This finding might hint to a different processing of

these stimuli when the movement plan ist made by the

brain. The result though is not in accordance with what one
would expect if there were less size information about the

target available in the motor system. In this case, the slope

of MGA should rather decrease than increase with a con-

comitant increase of the average MGA: participants are
unsure how large the object is and produce the same very

wide opening of their digits in each trial to cover all pos-

sible object sizes. This is also what Berthier et al. (1996)
found in the only study with significant effects of viewing

condition on MGA slope we are aware of. Here, however,

we found an increased slope with constant average MGA.
Although with a value of 1.14 the slope for the perceptually

isoluminant targets comes even closer to a physically

perfect scaling than do the slopes found in most other
conditions we also do not think that size information

obtained from isoluminant targets is more veridical. Such
an effect should also be seen in the perceptual data, which

was not the case in our study.

All other measures of grip quality did not show signif-
icant differences between the isoluminant targets and the

other ones. Neither MT, RT, the timing of MGA nor the

variance in the movement path were affected by the color
of target stimuli. Our findings are in line with the results of

White et al. (2006) who found no differences in movement

accuracy and latency between isoluminant and non-isolu-
minant targets as did Anderson and Yamagishi (2000) and

Braun et al. (2008). White et al. (2006) also critically

reviewed earlier studies reporting longer latencies for
isoluminant stimuli in a reaction-time task involving button

presses (Burr et al. 1998; Schwartz 1992) or saccades

(Perron and Hallett 1995; Satgunam and Fogt 2005; van
Asten et al. 1988). Isoluminant stimuli thus do not seem to
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generally delay motoric responses although Braun et al.

(2008) recently reported such a delay for smooth pursuit

eye movements on isoluminant targets.
On assessing the perceptual size estimates, we found

that the two achromatic stimuli with ?3 and -12 percent

of background luminance led to smaller size estimates than
many of the other. It is known that size perception may

depend on the luminance of a stimulus especially for low-

contrast stimuli (Kulikowski 1975; Gelb and Wilson 1983;
Georgeson 1985; Davis et al. 1986). The fact that the

smaller estimated disc size for two of the achromatic

conditions was not reflected by a smaller MGA in the grasp
task is most likely due to the larger variability of the

measure than due to a different processing of stimuli in
grasping and in perception.

In summary, we conclude that the quality of grasp

movements is not profoundly affected by isoluminance of
target and background. Since also the finding of a steeper

MGA slope in the subjective isoluminance condition does

not point to a diminished amount of size information one
has to assume that targets solely defined by a chromatic

contrast are as suitable for movement planning as targets

having a luminance or a luminance and chromatic contrast.
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