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One aspect of human image understanding is the abi
depends on the redundancy of the representation use

Tech. J. 30,50 (1951)] showed how to estimate bounds on the entropy an
ure of the limits to exror-free information compaction. An

predictability data. The entropy, in turn, gives a meas

experiment was devised in which human observers interac
the redundancy ranged from 46%, for a complicated picture of

pic_tures with 16 gray levels. For eight images,
foliage, to 74%, for a picture of a face. For almost-comp
can be matched by a nearest-neighbor predictor.

One of the distinguishing characteristics of intelligent sys-
tems is the ability to make accurate and reliable predictions
from partial data. OQur own ability to interpret the images
that our eyes receive involves making inferences about the
environmental causes of image intensities, often from in-
complete data. This ability to make predictions or infer-
ences depends on the existence of statistical dependencies or
redundancies in natural images. Despite the fact that the
prediction of information from natural images plays an im-
portant role in image understanding, there have been rela-
tively few quantitative studies of the ability of humans to do
this. In this paper a simple example of this ability, that of
restoring missing pixel gray levels in natural images, is ex-
plored. These results are, in turn, related to quantitative
estimates of the redundancy of natural images. Although
this is a simple prediction task, the technique should be easy
to extend to the investigation of more-complicated aspects
of our ability to predict picture information.
Some years ago, Attneave! and Barlow?? pointed out that
a principal task of biological vision may be to encode the
visual image into a less redundant form. In this context,
rather than searching for features in an image, the visual
system codes a given image with regard to its relation to the
statistical properties of the set of natural images. Because
the space of possible pictures is so great, it makes good sense
to utilize naturally occurring redundancy to recode image
information into a less redundant form. Efficient coding
can result in the transmission of the same amount of infor-
mation with fewer neurons o with smaller dynamic range.
In addition to numerous communication-engineering appli-
cations to image compaction,! there have been recent quan-
titative explanations of nonlinear transduction, lateral inhi-
bition, and opponent-color processing as redundancy-reduc-
tion mechanisms-8 Further upstream, the image-
asks that the cortex faces may be simplified

understanding t: : o
by a redundancy reduction in the image specification. For

example, eigenvector transformation of pictures of faces can
make possible a large reduction of dimensionality, which
may be useful for economical representation and retrieval ®
Recent work on autoassociative networks is providing tools
for searching for compact image or shape codes.'*"!

In order to demonstrate the relationship between predict-
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lity to estimate missing parts of a natural image. This ability
d to describe the class of images. In 1951, Shannon [Bell. Syst.

d redundancy of an information source from
tively restored missing gray levels from 128 X 128 pixel

lete pictures, but not for noisy pictures, this performance

ability and redundancy, Fig. 1(a) shows a 128 X 128 pixel
image with 16 possible gray levels, where about 150 pixels
have been deleted. Here, deletion means that the original
gray levels were replaced at random by one of the 16 gray
levels chosen from a uniform distribution. The reader
should have little difficulty spotting the deleted pixels, and,
as will be shown below, it is fairly easy to make good guesses
about what the gray levels should be. InFig. 1(c) 150 pixels
have also been deleted. Not only is it impossible to deter-
mine which pixels were deleted; it is also impossible to deter-
mine what gray levels should be used to replace them. Fig-
ure 1(a) belongs to the class of natural images, which is
highly redundant. Figure 1(c) is an example of white visual
noise with uniformly distributed gray levels, a class of pic-
tures that has no redundancy.

The redundancy for an information source was originally
defined quantitatively by Shannon.!? Consider a class of
digitized natural images that might be presented on a graph-
ics display. Suppose that they are specified by & pixels with
m bits of gray-level resolution per pixel. The nth-order
conditional entropy for this class of pictures, Fp, is the ex-
pected value of the negative log (base 2) of the probability of
gray level i conditional on the values of n neighbors (over
some defined neighborhood structure):

F,== Y pli,b)log, plilb), 68
i

where b; is the jth block of the n neighborhood pixels j =1
to2mn | =1to2m). Asn approaches &, Fy, approaches the
minimum average number of bits per pixel required to code
this class, for arbitrarily small error. If the probability of
pixel gray levels is constant and independent of all others,
the entropy is a maximum value of m bits per pixel. This
provides a useful baseline to quantify predictability and
redundancy. Redundancy is

F,
1—-— &)
m

In actual practice, it is impractical to calculate high-order
conditional probabilities and thus redundancy. However,
in the 1950’s Shannon!? showed that if a device exists that
can predict unknown alphabet members from known ones in
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a text, it is possible to compute bounds on the entropy and
the redundancy of a language. The redundancy estimates
getl better as the predictor approaches ideal. Although we
are probably not ideal predictors, human observers implicit-
ly possess an enormous store of knowledge about natural
images. In this paper the human ability to predict missing
pixel gray levels is measured and used to estimate image
redundancy for a particular image quantization.

In contrast to numerous applications of Shannon’s guess-
ing game to language studies,'? there have been only a few
studies of the redundancy of pictures by using human pre-
diction. Two such studies!®1® investigated gray-level pre-
dictability for a small set of natural images, and a third!®
measured predictability in simple contour line drawings. In
1965, Parks't reported on the predictability of half-tone
gray-level pictures covered by a 36 tile X 44 tile grid. Start-
ing with a completely covered picture, the subject chose a
tile and guessed the gray level until the correct answer was
obtained (binary guessing was used if the subject was un-
sure). This tile was removed, and the subject went on to the
next tile. The gray level was estimated subjectively (for
both the subject and the scorer) by comparison with a quan-

Daniel Kerstep

Fig. 1. Picture hbb quantized to 128 X 128 X 4 bits. (a), (b), and
(c) have increasing fractions of deleted pixels. About 1% and 100%
of the pixels have been deleted from (a) and (c), respectively.

tized gray-level card. Entropy was estimated as the ratio of
the number of guesses to the number of tiles. For a picture
of a girl (2.5 bits/tile) and a picture of sailor (3 bits/tile), the
redundancy estimates were 60 and 74%, respectively. I“_
another study, Tzannes et al.!® used the same measure of
entropy for a 50 X 50 pixel lunar-surface photograph quan-
tized to 8 levels. Two subjects were familiarized with sam-
ples of images from a class of lunar-surface photographs.
For the two subjects, the redundancies were 39 and 56%. It
is shown below that the measure of entropy used in these
studies typically underestimates the lower bound on redun-
dancy.

In this study we extend previous work in several ways.
Computer graphics makes it easy to improve the guessing
game, over previous studies, by using interactive subgtntu—
tion. Here, the observer can see the results of a particular
choice before making a commitment. This makes it reason”
able to use higher spatial resolution and more gray levels.
The technique also promises to be a useful tool for future
studies of the predictability of image features that are not
pixel based. The performance of several simple ‘}eareSt'
neighbor models are compared with human prediction per-

|
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One of these nearest-neighbor models does well
mage is relatively noise free but breaks down for
have a large fraction of deleted pixels.

formance.
when the 1
images that

METHOD

The experiment was set up as follows‘. Eight pictures were
digitized to 128 X 128 pixels.!” The pictures were a close-up
of foliage (leaves), a stream in a w00(.is (woods/stream), a
cityscape consisting of skyscrapers (city), a woman’s face
(face), Half-dome at Yosemite Park (half-dome), a picture of
four elderly people in a shack (four elders), a man’s face
(hbb), and a Gaussian pseudofractal image (fractal) with a
power spectrum corresponding to a fractal dimension of 2.5
and a rms contrast of 31%.18 Pictures with large areas of
open sky or other regions of uniform gray level were not
used. Each pixel subtended a 10 min X 7 min rectangle at
the eye. The gray-level histogram was stretched to full
range (0 to 255 gray levels), and then the gray-level scale was
quantized to 16 levels (4 bits). The dimmest and brightest
pixels were 0.3 and 34 nits, respectively. The effective gam-
ma of the display was 1.3. The alphabet or basis set consist-
ed of these quantized pixels. The reason for using only 16
levels was that this was judged to be the right compromise
between having enough gray levels for image intelligibility
and not so many as to complicate the results by making the
viewer unable to discriminate contrast. When 5 bits/pixel
were used, it was difficult in some instances to discriminate
one gray level from a nearby value in the picture. At the
other extreme, binary pictures are often perceptually diffi-
cult to interpret. Under certain conditions, 3-bit/pixel
quantization is adequate for recognition, so 4-bit/pixel
quantization was about right.® However, both spatial and
gray-level quantization alter the statistical structure of a
class of pictures in a way that may make it difficult to
generalize redundancy to other quantizations (see the Dis-
cussion section).

i’13§§ Before the observer was allowed to see the picture, a pre-
determined fraction of the 16,384 pixels was deleted (Fig. 1).
For observer DJK, deletion was defined as above. For ob-
server DCK, deletion meant setting the gray level to zero.
tiool The observer’s task was to set the level of a deleted pixel to
cture
o GRAY-LEVEL PREDICTABILITY
vl —
. = a0
e E% | IR
dun- s 7 §/ R - N
cular ‘s == 07. deletad
;zznls : A ‘// unz deleted
e el T
i'esl- :;ivi The percentage of trials for which the observer got the right
per (1to 1r635 a function of the per cent deleted and the number of tries
) for observer DJK for the picture of the man’s face (hbb).
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what it had been before deletion. To do this, the observer
requested the computer (by pushing the right-hand button
of a mouse) to show which pixel was to be reset. This pixel
would blink. When ready, the observer would try out vari-
ous gray levels from the palette shown beneath the picture.
The computer painted the pixel with the gray level behind
the cursor cross hairs on the palette. When satisfied with
the choice, the observer would click the left-hand button. If
the choice was right, the observer was informed of that fact
and went on to the next pixel. If the choice was wrong, the
observer kept guessing until he got it right. A marker was
placed on the palette indicating wrong choices, so that the
observer would not pick those again. Because there were
only 4 bits/pixel, the maximum number of guesses for a pixel
was 16. Several deletion levels were used, but most data
were collected with only 1% deleted. There were 100 trials
for each percent deletion. Both observers had normal acu-
ity. The author was one of the observers.

RESULTS

Figure 2 shows the percentage of trials in which the observer
guessed the right answer as a function of the percent deleted
and the number of tries for observer DJK for the picture of
the man’s face (hbb) in Fig. 1. When 100% of the pixels were
deleted, the observer had no clue about what to guess, and to
guess correctly took anywhere from 1 to 16 tries for a given
pixel on a given trial.2® At the other extreme, when only 1%
of the pixels were deleted, the observer guessed the correct
gray level on the first guess 78% of the time. More than
three guesses were never required.

Shannon!? showed that upper and lower bounds on the
entropy, F, can be calculated from predictability data such
as those in Fig. 2. If g;V is the proportion of trials in which
the observer guessed right on the ith try, the bounds are
given by

2"\

upper bound = — z g log,q™, (3)
i=1
gm

lower bound = — Z (g = qiyMlogyl. 4)

i=1

For example, g; is the value of the height of the bars in Fig. 2
divided by 100. N is the number of known or undeleted
pixels. The sum is taken over the 2™ gray levels for a given
N. The upper entropy bound provides an upper limit on the
average number of bits per pixel required to encode the class
of pictures considered with an arbitrarily small error. The
Jower bound is provisional in that it is guaranteed to be valid
only if the predicting device isideal. Ideal prediction means
choosing, for the first guess, the mode of the probability of
the pixel gray-level distribution conditional on the known
pixel values. If the first guess is wrong, the second guess
should be the next most probable, and so forth. Because of
this, the lower entropy bound is of limited meaning. It
should be made clear that entropy is an ensemble statistic.
In this experiment, the pixel gray-level predictability data
are averaged over space for a single picture. Ergodicity is
assumed, and ensemble averages are replaced by spatial
averages. In two other pixel-based studies, entropy has
been estimated by the ratio of the number of guesses to the
number of trials.1415 However, this estimate, in all cases
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Table 1.

Daniel Kersten

Upper Entropy Bounds Estimated from Gray-Level Predictability

Upper Entropy Bound (bits/pixel)
for the Following Image

Observer or Predictor  Leaves Woods/Stream  City Face Half-Dome Four Elders hbb  Fractal = Average SE
DJK 2.06 1.34 1.70 0.96 1.30 1.05 0.89 1.27 1.32 0.13
DCK 2.23 1.66 1.00 1.20 1.47 1.61 1.20 1.38 1.47 0.13
Third-order serial 2.59 2.38 2.44 1.64 2.24 2.19 1.56 1.79 2.15 0.14
entropy
Mode predictor 2.70 1.97 2.52 1.36 2.20 2.04 1.27 1.83 1.99 0.17
Average predictor 2.14 1.73 2.00 1.55 1.90 1.69 1.16 1.53 1.71 0.10
Median predictor 2.14 1.45 1.15 1.05 1.68 1.47 1.03 1.38 1.42 0.12

ENTROPY BOUNDS 4 x 128 x 128 Picture: HBB

4
= Upper bound
a Provisionol lower bo i
3.57 0 Medion predictor
Observer DK
34 N N
= AN
@ o \} PR ¢
x 2.5 \
Q. — \\
27 AN \
AN
N ~— N
> 1.5 e~
é .\ \\}: ~ '7Q*\\\
E 17 \\\ N \Un
by
5-1 aiea
L "

P T R E
NUMBER OF UNDELETED PIXELS (x 1000)

Fig. 3. Upper and lower entropy bounds, in bits per pixel, are
shown for the picture of the man’s face as a function of the number
of undeleted pixels, that is, the number of known pixels for observer
DJK (triangles). Upper entropy bounds are also shown (squares)
for a median predictor that chooses the second brightest gray-level
of the four nearest neighbors as its first guess (see the text for more
details).

studied here, produces entropy estimates higher than that of
Eq. (3). For example, the data for the eight pictures from
observer DCK (Table 1) give a mean ratio of guesses re-
quired to trials of 1.7 bits/pixel, an average of 0.23 bit too
high.

Figure 3 shows upper and provisional lower entropy
bounds, in bits per pixel, for the picture of the man’s face
(hbb) as a function of the number of undeleted pixels. As
more and more pixel information becomes available to the
observer, the predictability increases, and the entropy
bounds decrease. As one would expect, with all the pixels
deleted (left-hand side of the graph), we have upper-bound
estimates of about 4 bits/pixel (not shown) and, with 10,000
undeleted pixels, 2 bits/pixel. By the time most of the
original pixel values are available (right-hand side of the
graph), the estimated entropy is no more than 0.9 bit/pixel.
The second observer, DCK, produced similar results. The
most interesting entropy bounds are the small values on the
far right-hand side of the graph. They can be interpreted as
estimates of upper and lower entropy bounds for the class of
128 X 128 X 4 bit natural images with no deleted pixels.
Table 1 shows the estimated upper entropy bounds in bits
per pixel for the eight pictures with only 1% of the pixels
deleted for the two observers. Alsoshown in Table 1 are the
results for three simple nearest-neighbor predictors and the

third-order serial entropy (discussed below). The average
upper entropy bounds across the pictures are 1.32 and 1.47
bits/pixel for observers DJK and DCK, respectively. The
values range from slightly more than 2 bits/pixel to slightly
less than 1 bit/pixel. The average provisional lower bounds
were 0.78 (standard error of 0.1) and 0.95 [standard error
(SE) = 0.09] bits/pixel for DJK and DCK, respectively.

1t is convenient to measure entropy relative to the number
of bits per pixel required if there were no statistical depen-
dencies among pixels and if each gray level were equally
likely. Recall that redundancy is defined as 1 minus the
ratio of the actual entropy to the maximum entropy (which
is 4 bits/pixel in our case). The average lower and (provi-
sional) upper bounds on redundancy for observer DJK were
67 and 81%, respectively. For observer DCK, the average
lower and upper redundancy bounds were 63 and 76%, re-
spectively. If DJK is an ideal gray-level predictor, then,
allowing for sampling error, 81% is an actual upper bound on
redundancy for the class of 4 X 128 X 128 bit images. How-
ever, it is not clear how close people are to being ideal predic-
tors. We have calculated the actual redundancy for the
class of Gaussian pseudofractals from which the fractal pic-
ture was drawn to be 69%.2! The estimated upper and lower
redundancy bounds based on predictor DJK are 81 and 68%,
respectively. In this case, the lower bound is close to the
actual redundancy, and the provisional upper bound is con-
servative.

DISCUSSION

The processes of spatial averaging and quantization used to
generate the 128 X 128 X 4 bit pictures will, in general, alter
the conditional probabilities. This makes it difficult to gen-
eralize the redundancy estimates obtained to other quanti-
zation levels.22 However, the processes of spatial averaging
and quantization are inherent to the degradation of an image
by any optical device. Even under the best of conditions,
because of the particle nature of light, an ideal sensor effec-
tively quantizes the range of light levels that it receives
according to Poisson statistics. Further, because of the
wave nature of light, diffraction limits the spatial resolution,
causing spatial averaging, and thus reduces the effective
number of pixels. In addition, biological eyes spatially

quantize images because of discrete receptor spacing, and
intensity quantization occurs because of stochastic neural
codes. Consider a picture that subtends a 1 deg X 1 deg
square at the eye and is on for 33 msec, with a luminance
range of 1-10 nits (at 555 nm) and viewed with a pupil size of
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s, T8 effectively gua.ntized to a}bout 125 X 125 X 4 bits,
about the samme quantization used in these experiments.?*
The problem of Spatlal‘ reSOlufZlf)n used in a predictability
experiment would be of greater importance %f we wanted to
estimate the entropy of a more narrowly defined source, for
1lection of human faces viewed from 1 m with a

example, a COL A
specified imaging system. Here, the spatial scale would be
important. On the other hand, a property of many natural

images is scale invariance.’8

We can use the redundancy bounds to answer the some-
what whimsical question, How many meaningful pictures
could be presented on a 128 X 128 X 4 bit screen? To the
extent that the reader is willing to believe that the pictures
used were a representative sample of the class of natural
images (and any natural image is meaningful), an upper
entropy bound of about 1.4 bits/pixel, that is, 65% redundan-
¢y, translates into not more than 106905 (21.4X128X128y natyral
pictures of a total possible number of 10!%7%.  Because of
the coarse quantization, these should all be discriminable,
albeit with painstaking scrutiny. This is a substantial re-
duction over the number of possible pictures but, of course,
still a ridiculously big number.

There are at least two ways in which predictability mea-
sures may be useful for understanding human vision. One
approach is to understand what limits human performance
at pixel gray-level predictability. Here, the goal is to seek
models that can account for human performance. A second
method is to measure predictability for alternative basis
elements. The goal, in this case, would be to search for a
minimal but perceptually complete scheme for describing
images, a scheme that yields chance performance at the
predictability test. If found, this scheme would provide a
better answer to the question of the number of meaningful
pictures.

To pursue the first direction, Table 1 shows results from
three simple predictors that come close to matching human
performance under some conditions. Table 1 shows mode,
mean, and median predictors that use gray-level data from
the nearest, neighbors. For comparison, third-order entro-
pies have been directly computed from adjacent pixels along
a horizontal raster. This calculation makes use of the gray
1eyels of the two previous adjacent pixels.?* The average
third-order entropy is 2.15 bits/pixel.?> The mode predictor
compiles a histogram based on the gray levels of the eight
nearest neighbors and then guesses the most-frequent level,

sol the next-most-frequent level, and so forth. Because there
alte are more possible levels than neighbors, this predictor makes
oEEr random guesses once it reaches the zero entries. Its average
et upper bound is 1.99 bits/pixel. The average predictor uses
r.agmi }__he Quantized average over the four nearest neighbors as the
:;:;Es tlr-s tguess. If wrong, it chooses the next-dimmer value. If
leffecj inilts‘ lf wrong, it chooses the next-brighter value above its
ceives ;nguess and continues alternating until it is cor?ect.
o the is1.71 ef{fge upper entropy bound for the average predlct.or
ution, Lor ‘eXc'e he me.dian predictor resembles thfa average predic-
ective of the fp U that its first guess is the third brightest gray level
stially takin t}?ur nearest neighbors. The usual .conventlf)n of
5, and D()Orei ° mean of the two middle values yielded slightly
reurd per entf rediction. The median predictor produ.ces an up-
1 deg . estiopy bound of 1.42 bits/pixel, which is quite close to
nance *he meg}ates based on data from the human predictors.
size of the ave 1an predictor seems to cope with edges better than

'2ge predictor. At first glance, the close match of the

A
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median predictor’s performance to that of human predictors
suggests that it may be a good model of human gray-level
prediction. Although this may be true for relatively noise-
free images, Fig. 3 shows that when a large fraction of pixels
is deleted, human observers do better than the median pre-
dictor, probably because of the ability of humans to make
use of long-range information. We have collected some data
on the predictability of gray levels as a function of the size of
the neighborhood. For human subjects, there is little im-
provement in performance beyond the eight nearest neigh-
bors. Observer DCK scored average upper-bound entropy
estimates of 1.43 [standard error (SE) = 0,1] and 1.47 (SE =
0.19) with 8 and 1224 nearest neighbors visible, respectively.
Although the information from the nearest neighbors may
be sufficient to match human performance in the relatively
noise-free case, it is not necessary for better-than-chance

prediction. When a 3 X 3 black annulus surrounded each of
the 100 pixels to be estimated, the upper entropy bound for

observer DJK (picture hbb) rose from 0.89 to 2.43 bits. In

contrast to the first-order entropy of 8.76, this is substantial-

ly better.

The fact that a simple median predictor does so well when
the image is relatively noise free suggests that more-sophis-
ticated predictors may give us even better estimates of re-
dundancy. Communication-engineering research has pro-
duced image-compaction algorithms that can reduce 8-bit/
pixel images to less than 1 bit/pixel.# Much of this work
depends on the high correlations between nearby pixel gray
levels exemplified by Gaussian Markov-source models.?627
In addition to reducing redundancy, these algorithms
achieve part of their success by tolerating distortion to which
human observers are insensitive. Thus it is difficult to pre-
dict the success of these algorithms when adapted to the
gray-level predictability test. One error-free scheme pre-
sented in Ref. 28 yielded 1.4, 2.1, and 3.8 bits/pixel for 4-bit
original pictures of a girl’s face, the cameraman photograph,
and a crowd, respectively. Although difficult to compare
directly, these results correspond to an average redundancy
of 39%, somewhat lower than the 65% obtained in this study.

Rather than trying to account for gray-level ability, we
could ask, How predictable are alternative basis elements?
Tt is clear that the simple pixel-based description used here
is analogous only up to receptor coding. Studies of human
and primate vision have suggested minimal but perceptually
complete basis sets to describe images and thus to allow for
distortion tolerance.29-31 However, our ability to discrimi-
nate two images does not necessarily imply that we can
replace a missing basis element in a natural image. This
suggests the following challenge of the predictability test.
Given a minimal but perceptually complete representation
to describe the class of natural images, how predictable is a
missing element? If a missing part is very predictable, giv-
ing a high redundancy figure, then there is higher-level cod-
ing that needs to be understood. On the other hand, if
missing components are hard to predict, that is, if one possi-
bility is as good as another, we have arrived at a code, not
necessarily unique, that embodies the observer’s knowledge
of natural images.
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