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The term priority map is commonly used to describe a map of

the visual scene, in which objects and locations are

represented by their attentional priority, which itself is a

combination of low-level salience and top-down control. The

aim of this review is to examine how such a map may be

represented at the neuronal level. We propose that there is not

a single, common map in the brain, but that a number of cortical

areas work together to generate the resultant behavior.

Specifically, we suggest that the lateral intraparietal area (LIP)

of posterior parietal cortex provides a simple representation of

attentional priority, which remaps across saccades, so that

there is an apparent allocentric map in a region with

retinocentric encoding scheme. We propose that the frontal

eye field (FEF) of prefrontal cortex receives the responses from

LIP, but can suppress them to control the flow of eye movement

behavior, and that the intermediate layers of the superior

colliculus (SCi) reflect the final saccade goal. Together, these

areas function to guide eye movements and may play a similar

role in allocating covert visual attention.
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Introduction
The concept of a priority map is derived from the saliency

map models of Itti, Koch and colleagues [1], which were

aimed at modeling shifts of visual attention. These mod-

els were primarily driven by low-level salience, with a

modicum of top-down inputs. Attention was allocated, in

a winner-take-all manner, to the peak of the map, which

was then inhibited so that attention could move on to the

next highest point. However, a whole host of factors

influence the allocation of attention, so we [2] and others
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[3,4] prefer to use the term priority map to describe the

map that ultimately is used to guide eye movements and

covert visual attention. We define a priority map as a map

of the visual scene, in which activity is driven by low-level

salience and by a range top-down influences, such as task

rules and goals, experience, expectations and saccade

plans (Figure 1). Below, we will describe regions of the

non-human primate brain thought to act as priority maps

and propose a mechanism for how these areas work

together to guide saccades and the allocation of covert

attention.

Brain areas involved in priority map
processing
A number of cortical and subcortical areas of the brain

have been proposed as priority maps. These include the

lateral intraparietal area (LIP) of posterior parietal cortex,

the frontal eye field (FEF) of prefrontal cortex, the

superior colliculus (SC) and several visual cortical areas

[5–8,9�,10]. Given that our definition of a priority map is

one, in which the activity is primarily driven by atten-

tional priority and which is involved in the allocation of

covert attention and the guidance of eye movements, we

think it unlikely that visual areas can act as true priority

maps because their responses are primarily driven by

stimulus features. However, it is clear that many visual

areas include enhanced responses to salience within the

feature space that they encode [5,6,10], so it may not be

inappropriate to call them saliency maps. Indeed, the

term saliency map is still used in several contexts, so it is

worth differentiating them here. Some use the term to

describe what we have called a priority map, that is a map

that integrates both top-down and bottom-up inputs to

guide attention and eye movements [8]. However, the

term has also been used to illustrate the way visual area V1

[5] and the superficial layers of the superior colliculus

[9�,11] preferentially respond to salient stimuli. A recent

work has noted that the salience response emerges in the

superficial layers of the superior colliculus before it

emerges in V1 [11], which may be a result of the evolution

of attentional behaviors in animals without a neocortex

[12�, but see Ref. 13].

LIP, FEF, and the intermediate layers of the superior

colliculus (which we shall abbreviate as SCi) seem to fit

the profile for a priority map. Each has responses that are

modulated by low-level salience [14–16] and a variety of

top-down factors [17�,18–23,24��]. In addition to being

driven by the right sort of factors, LIP, FEF, and SCi are

involved in both the guidance of eye movements and

covert attention [17�,25–30].
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Figure 1

Screen Priority map

Current Opinion in Psychology

A hypothetical priority map (right panel) in response to an array of

stimuli (left panel), in which the subject is asked to find a circle. Each

stimulus is represented by a response. The popout (yellow triangle) is

represented by a slightly higher response due to its low-level salience,

and the circle is represented by a much higher response as this

represents the goal of the task, that is a top down input. Note that top

down influences are not limited to task rules and goals; in natural

behavior, they can be driven by influences such as experience,

saccade plans, memories, and expectations.
The priority map for saccade goal selection
Behaviorally, we tend to think of a priority map as the

final common map for guiding attention [31,32]. This is

because behavioral studies can only manipulate external

factors and then interpret the resulting behavior. As noted

above, however, at least three brain areas in the non-

human primate have been proposed as priority maps.

This has led to questions about the underlying hypothesis

[33�], such as: if there are multiple maps, which map is

used to allocate attention or guide saccades? Here, we

propose a way for these areas to work in concert to act,

effectively, as a single priority map.

To elucidate the roles played by each area in more natural

behavior, we refer to data from a series of studies using

free viewing visual search tasks. In our work, we have

used a visual foraging task, in which multiple target

stimuli are presented among distractors, but only one

target stimulus will give the animal a reward. This leads

each animal to visually forage among the stimuli, until it

finds the reward-bearing target. By aligning the stimuli so

that one stimulus is in the recorded neuron’s receptive

field when the animal is fixating another stimulus, data

can be collected across multiple eye movements within a

single trial and a representation of all aspects of the map

can be built up within and across trials. Using this task, we

have identified a number of differences between LIP and

FEF, which allow us to identify the different roles they

play in behavior.

Responses in LIP seem to make up a simple priority map.

In the visual foraging task, the majority of neurons

respond more to a target than to a distractor and the

remaining neurons tend to not have task-related

responses [34]. When a saccade is to be made into a
www.sciencedirect.com 
neurons’ receptive field, many neurons show a burst of

activity leading up to the saccade, suggesting that they get

top-down feedback indicating the goal of the upcoming

saccade. The task-responsive neurons also tend to show a

reduced response to a target, if that target had been

looked at earlier in the trial and did not give a reward

[34]. This is similar to the inhibition of return incorpo-

rated into saliency map models [1], but is not as effective:

neuronal responses are only slightly reduced. Most impor-

tantly, once the array of stimuli has appeared, responses

stay fairly consistent during each fixation and are

remapped after each saccade. We use the term remapped

to describe the shifting of responses within LIP, analo-

gous to the shifting of the image on the retina after an eye

movement, but that occurs before the information could

reach LIP from the retina. In the visual foraging task, LIP

robustly reflects the identity of the stimulus in neurons’

receptive fields 20 ms after a saccade [35]. This means

that, except for a brief period immediately after an eye

movement, the representation of the entire visual field is

present in LIP at all times during the task. Thus, LIP

activity seems to be a simple priority map: most neurons

have responses that are driven by the task demands and

they respond the same way throughout the trial and across

saccades.

FEF activity in this task is subtlety different. The major-

ity of neurons in FEF respond like priority map neurons,

that is, they preferentially respond to targets more than to

distractors and have reduced responses to previously

fixated targets. However, unlike LIP neurons, the FEF

responses get suppressed while animals make purposeful

fixations [36]. Approximately 150 ms after the eyes stop

moving, the responses of these neurons drop down to

below baseline levels. If one thinks of FEF as creating a

map to identify saccade goals, then the suppression of the

map makes sense: when the animal wants to keep its eyes

stable, it removes any activity that could lead to the

generation of a saccade. The neuronal responses reacti-

vate about 150 ms before the next saccade, which could

allow for the sort of rise-to-threshold decision-making

process that has been hypothesized to occur in FEF

[8], and it would do so on a saccade by saccade basis.

For short fixations, the activity remains elevated through-

out the fixation, just as it does in LIP. We hypothesize

that while LIP provides a priority map at all times, the

modulations in FEF allow the animal to control the

timing and flow of saccades. When FEF inhibition is

released, it uses the input from LIP to make the decision

about where to look. This is consistent with other studies

that have examined FEF activity in free viewing behavior

of natural stimuli and which have found responses that

primarily represent the goal of the next saccade [37–39].

On the basis of these results, we suggest that during

natural visual behavior, in which eye movements are

made 2–3 times per second, LIP acts as the default
Current Opinion in Psychology 2019, 29:108–112
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priority map, combining top-down and bottom-up inputs.

When things change, whether externally or based on

internal goals, the activity in LIP will change [40]. The

priority map in FEF, on the other hand, can choose to use

the activity from LIP to generate an eye movement or can

remain silent to keep the eyes stable. We hypothesize

that SCi would reflect the output of FEF and is unlikely

to be active during stable fixation. Indeed, we expect that

SCi is likely to represent the winner-take-all aspect of the

priority map process, with activity that primarily identifies

where and when the next saccade will go. Only two

studies have examined responses of neurons in SCi

during free viewing. In both, activity was almost silent,

unless an eye movement was about to go into the neuron’s

receptive field [9�,41].

The priority map for covert spatial attention
Most previous studies have examined activity in LIP,

FEF and SCi using tasks in which animals were allowed

to make only a single saccade. Unlike the free viewing

responses described above, activity in these sorts of tasks

is usually elevated throughout the duration of fixation in

FEF and SCi [15,42]. These tasks rely on explicit covert

visual attention—if the animals make the wrong eye

movement, then they will forfeit their reward—so they

must be sure, covertly, that their saccade goal is the

correct one before generating the eye movement. Such

a behavior is relatively uncommon in natural conditions

(with the caveat that it can occur in non-human primates

with social hierarchy rules that limit eye contact with

dominant males). Instead, we tend to use eye movements

to probe the visual scene. As such, it is unclear whether

the activity in these conditions is different because the

system is in a different state, in which covert attention is

being explicitly used while the eyes do not move, or

because different neurons become active during this

behavior. Whatever the genesis, data from these experi-

ments give important insight into how the activity in

these areas might work as priority maps to guide covert

attention.

We suggest that covert attention follows the same process

as overt attention, particularly given the automatic allo-

cation of attention at the goal of a saccade [28,43–45] and

the interactions between microsaccades and covert atten-

tion [46,47]. The only exception would be that covert

attention is allocated to the peak of a priority map on a

moment-by-moment basis. However, understanding this

process is hindered because the neural correlates of covert

attention [48–50] have recently been dissociated from

behaviors that would classically be described as covert

attention [51��,52]. This can lead to different interpreta-

tions of what roles areas play, depending on how one

defines covert attention. So, for example, pharmacological

activation of FEF modifies the attentional modulation of

activity in visual areas [53], but the inactivation of SC

does not [51��], yet the inactivation of SC has a much
Current Opinion in Psychology 2019, 29:108–112 
greater effect on behavior [30] than the inactivation of

FEF [54].

Our hypothesis is that the priority map system is similar

for overt and covert attention: LIP activity creates a first

level priority map, influenced by both top-down and

bottom up factors. FEF, which appears to remain active

during periods of explicit covert attention, receives inputs

from LIP and feeds back to visual areas to modulate their

responses. SC, which likely represents similar activity to

FEF and LIP via feedforward networks, seems to be

critical in controlling the behavioral use of the activity

represented in FEF and LIP. Under this hypothesis,

during ongoing visual behavior, when FEF and SC are

mostly suppressed, the corollary discharge sent to FEF

from SC before an eye movement [55] is likely to drive

the pre-saccadic benefit of attention seen at the goal of

the saccade [28,43,44].

There are a number of experimental predictions that are

born from this hypothesis, but the most obvious is that if

FEF and SC are mostly silent during ongoing search, then

one might predict that we should not see traditional atten-

tional modulation in visual cortical areas during ongoing

visual search. We knowthat V4 neurons show feature-based

attention during ongoing search [6,56], and that they have

clear modulation when saccades are made to neurons’

receptive fields [57], but whether they show the sort of

responses seen in covert attentional tasks [48–50] is not

known. It may seem counterintuitive to suggest that these

effects are not present in natural viewing behaviors, but we

have recently shown that covert attentional modulation is

absent while animals perform a change detection task with

multiple items [52], yet as soon as they utilize explicit

covert attention, the attentional modulation is seen. The

presence of feature-based attentional modulation during

ongoing search could mean that feature-based attention is

driven by LIP [58], which is active during each fixation, or

FEF [18], which is active during short fixations, but it is also

possible that it is driven by pre-frontal areas other than FEF

[59]. While it is commonly thought that feature-based

attention is not spatial, it is implemented in a spatial-based

system,so it ispossible thatpriority maps couldplaya role in

this process.

This review has focused on the process occurring in the

non-human primate, given our ability to probe the activity

of individual neurons. Functional imaging and various

electrophysiological methods have shown somewhat sim-

ilar activity in putative priority maps in the human [60].

However, it is clear that the human has a more complex

network. As such, it is also possible that the control of

covert attention is even more complex than in the non-

human primate. This possibility is supported by the

subtle perceptual differences in the effects of covert

attention in the human when driven by different mecha-

nisms [61].
www.sciencedirect.com
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