
Choice (-history) correlations in sensory cortex:
cause or consequence?
Jakob H Macke1 and Hendrikje Nienborg2,y

Available online at www.sciencedirect.com

ScienceDirect
One challenge in neuroscience, as in other areas of science, is

to make inferences about the underlying causal structure from

correlational data. Here, we discuss this challenge in the

context of choice correlations in sensory neurons, that is, trial-

by-trial correlations, unexplained by the stimulus, between the

activity of sensory neurons and an animal’s perceptual choice.

Do these choice-correlations reflect feedforward, feedback

signalling, both, or neither? We highlight recent results of

correlational and causal examinations of choice and choice-

history signals in sensory, and in part sensorimotor, cortex and

address formal statistical frameworks to infer causal

interactions from data.
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Introduction
In neuroscience, we want to unravel the brain mecha-

nisms that lead to cognitive behavior. Often, we start out

by measuring correlations. For example, to probe how

sensory neurons are linked to perceptual choices, one

approach is to measure choice-related signals. We

repeatedly measure perceptual choices in a challenging

perceptual task, and correlate choices with trial-by-trial

neural activity. A correlation between choices and fluc-

tuations in neural activity across multiple trials with

identical stimuli is then referred to as a choice-related

signal. Such choice-related signals (often termed choice-

probability or choice-correlation) have been reported for

numerous tasks and sensory areas (e.g. Refs. [1–17]).

The interpretation of these choice-correlations, that is,

whether they reflect feedforward or feedback signaling,
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or both, or neither- and their dependence on inter-

neuronal co-variability in response to an identical stim-

ulus (‘noise correlations’ [18–20]) has received substan-

tial attention (e.g. Refs. [21–26]). These questions

exemplify the challenge of inferring causal structure

from observational data (Figure 1). The conceptual

challenges will likely persist with the ability to record

from larger and larger neuronal populations [27]. The

interpretational challenge increases when additionally

considering that a choice is not an isolated event, which

is solely determined by the current stimulus and task.

Rather, choices are also affected by the behavioral his-

tory of the subject: Previous choices and stimuli might

influence both the behavior of the animal [28–37], and

associated neural activity [38��,39�,40�,41,42], further

complicating the search for causal interpretations of

choice-related neural activity. Here, we will discuss

these challenges, as well as recent empirical results

and progress in the context of correlational and causal

examinations of choice and choice history signals in

sensory and, in part, sensorimotor cortex.

Interpreting choice signals in sensory cortex
Inferring the structure and directionality of the interactions

that give rise to choice correlations in sensory neurons is

complicated for a number of reasons (Figure 1a–d): Wiring in

the brain is highly recurrent, and sensory neurons receive

both feedforward, feedback and modulatory inputs. Neuro-

nal responses show slow fluctuations [43–45], which can be

unspecific global fluctuations in internal state (e.g. Ref. [46]),

such as an animal’s motivation [47] that may change over the

course of a session. Such fluctuations might affect both neural

activity and behavior, leading to choice-correlations even in

the absence of a direct causal link in either direction. Even

with modern recording technologies, it is only possible to

record from a small subset of neurons in any cortical area

simultaneously, and it is thus generally impossible to rule out

common input between neurons (or a common influence on

activity and behavior) from neurons whose activity is not

observed directly (indeed, in most experimental settings, the

majority of inputs will likely be coming from unobserved

neurons [48]).

While, in general, such inputs pose major challenges for

any causal analysis, in practice unspecific common input is

not likely to drive systematic choice correlations across a

population of neurons in feature discrimination tasks

(e.g. discriminating upward versus downward direction

of motion, as opposed to, e.g. a detection task): choice

correlations in feature discrimination tasks are typically
www.sciencedirect.com
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Interactions that can result in choice correlations.

(a) A causal effect of the (sensory) neuron on choice, reflecting feedforward processing. (b) A causal effect of the choice on the neural activity,

reflecting feedback processing. (c) A common input has a causal effect on both, the choice and the neuron, resulting in a correlation between

these. Such a common input may not be observable, and is also termed confounder. (d) Recurrent connections between the sensory neurons and

neurons encoding choices, for example, reflecting the combination of (a) and (b). (e) Possible causal interactions when also considering inter-trial

dependencies.
signed [1], that is, quantified with respect to a neuron’s

preferred feature, for example, upward rather than down-

ward motion (cf. Figure 2a). It would thus require the

correlation of the common input with choice to change

signs depending on the tuning preference of the simulta-

neously recorded neurons, an unlikely scenario. More-

over, if a balanced population of neurons preferring either

feature to be discriminated is simultaneously recorded

during such a feature discrimination task, an unspecific

common input would result in positive choice correlations

for neurons preferring one feature while negative choice

correlations in neurons preferring the other feature, such

that on average, the population would not be correlated

with choice.

Choice signals in sensory cortex: cause and
consequence
A landmark study discovered choice-correlations in neu-

rons in the middle temporal visual area MT of macaques

during a motion discrimination task [1]. It is worth noting

that before this study, the same group had established a

causal role of this area for motion discrimination [49]

using electrical microstimulation. (That is electrically

stimulating clusters of MT neurons selective for a partic-

ular direction of motion systematically biased the mon-

keys’ choices towards that direction.) The discussion

about how to interpret choice signals in MT was therefore

less about whether these reflect a causal relationship but

rather whether they only reflect the causal effect of

(correlated noise between) these neurons [19] on choice

(Figure 1a), as opposed to feedback from the choice to the

neuron (Figure 1b,d). (We will not discuss the implica-

tions of correlated noise for choice correlations, nor the

origin of noise correlations and their role for population

coding [50,51], as these have been extensively addressed
www.sciencedirect.com 
elsewhere [52–54]). Choice signals are often measured

over the duration of a trial, thus allowing time for feed-

back to modulate an initial feedforward sensory response

(cf. Figure 1d). Indeed, a comparison of the temporal

profile of the choice signals with that of the correlation

between the stimulus and choices suggests that choice

signals at least later in the trial are primarily driven by

feedback [55,56], and can be well accounted for by

models that incorporate feedback from the decision vari-

able to the sensory neurons. In these models, the activity

of the sensory neurons maintains a causal role on the

decision despite the feedback, unless the subject com-

mits to a decision before the end of the trial and the

feedback to the sensory neurons persists (post-decision

feedback). In such a scenario choice signals early in the

trial would reflect the causal effect of the sensory activity

on choice, while after the subject committed to a choice

towards the end of the trial choice signals would reflect

the consequence of the decision. Self-reinforcing feed-

back [56,57] can result in a mixture of both, and the trial

averaged choice signal then reflects both cause and

consequence [55,56].

Choice signals and the decoding of sensory
information
A related general question is what we can learn from choice

signals about the sensory read-out. That is, how is the

activity from the sensory neurons is decoded [13,58–60]?

For a number of areas and tasks both perturbation experi-

ments have been performed and choice signals have been

measured [4,7,61–69], and a pattern is emerging. For ear-

lier, predominantly sensory, areas, perturbation experi-

ments result in effects, which are consistent with a causal

role, largely in line with their choice correlations. For

sensorimotor areas for which neural activity showed
Current Opinion in Neurobiology 2019, 58:148–154
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Figure 2
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Findings highlighting the difficulties interpreting choice correlations.

(a) Schematic of the original pooling model (after Shadlen et al. [19]). It consists of a sensory stage of neurons whose activity is pooled and a

read-out stage. It was devised to aid the interpretation of choice correlations (exemplified for an updown direction discrimination task), and on

how choice correlations depend on noise correlations between sensory neurons within and across the two pools (here ignored). (b) During a

heading discrimination task (Yu and Gu [68�]) performed by macaques, the partial correlation of the neuronal responses in MST with the stimulus

when accounting for the correlation with choice, (‘R-tuning’) or the partial correlation of the responses with the choice when accounting for the

correlation with the stimulus (‘R-choice’, each x-axis) was measured. R-tuning and R-choice were compared to the size of the behavioral bias

induced by electrical microstimulation (shift of the point of subjective equality, PSE-shift, y-axis). R-tuning was correlated with the size of the

behavioral bias across the population. In contrast, R-choice was positively correlated with PSE-shift for units whose choice correlation was

consistent with the tuning (‘choice congruent’ units), but negatively correlated for units whose choice correlation was opposite to the tuning

(‘choice opposite’ units). It exemplifies the difficulties to infer the decoding of the units from choice correlations (modified from Yu and Gu [68�],
with permission). (c) During a disparity discrimination task the spike counts of neurons in visual area V2 of macaques were predicted from

experimental covariates. Model parameters (color coded) were included cumulatively such that the height of each bar quantifies the predictive

effect attributable to individual parameters. Note that behavioral history (previous choice and target, light blue and yellow) had a sizeable

predictive effect when included as initial parameters (top) but not when conditioned on, that is, included after, the current choice (blue) or the

preceding spike count (pink) (bottom, modified after Lueckmann et al. [39�], with permission). (d) During a navigation-based discrimination task in

mice, the trajectories of the population activity in the posterior parietal cortex (PPC) differed as a function of the choice of the previous trial (green

and black circles mark the beginning and end of a trial, respectively; modified after Morcos and Harvey [40�], with permission).
pronounced correlation with choice the effects of pertur-

bative manipulations were often weak [63] or absent

(e.g. Refs [62,64,68�,69], but see also recent findings which

identified a causal role of parietal cortex under certain
Current Opinion in Neurobiology 2019, 58:148–154 
conditions [70]). These results call into question influential

accounts of the decision process based on, in part, choice

signals in sensorimotor areas [66]. However, note that a

weak effect on choice is expected for an area that integrates
www.sciencedirect.com
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sensory evidence [63], and the interpretation of perturba-

tive manipulations themselves can be problematic [71]. For

example, given the redundancies in the brain it is possible

that even if an area is causally involved in a task, such

redundant mechanism might compensate and no loss of

function is apparent when this area is silenced.

Perhaps the most detailed insights into the what can be

learned from choice correlations about the decoding of

sensory neurons come from an elegant series of studies

using a cue-combination task in a virtual reality environ-

ment [72]. Macaque monkeys were trained to discrimi-

nate heading direction using vestibular, visual or both

cues [72]. The researchers then recorded neurons in

several areas, including the dorsal portion of the medial

superior temporal area (MSTd) and discovered that some

cells had incongruent tuning across sensory conditions: for

example they would prefer rightward heading in the

visual condition and leftward heading in the vestibular

condition. Interestingly, these ‘opposite’ cells, were, on

average, negatively correlated with choice in the visual

condition but positively correlated with choice in the

vestibular condition. A variant of the original pooling

model [19] (Figure 2a) with appropriate noise correlations

could account for these findings when assuming that

signals from opposite cells are decoded according to their

vestibular tuning preference (‘selective decoder model’

[73]). Since MSTd is a predominantly visual area, such

decoding according to the vestibular preferences seems

surprising, and a valuable prediction. A recent study could

test this by comparing the choice correlations and pertur-

bation effects using microstimulation [68�] directly on a

site-by-site basis. These experiments were restricted to

the visual condition and congruency between the visual

and vestibular condition could therefore not be evaluated

directly. But the authors identified a subset of units in

MST that were negatively correlated with choice, which

suggests that these were largely ‘opposite’ units. And

even for these putative ‘opposite’ units the causal effects

were consistent with their visual tuning, and opposite to

their choice signals (Figure 2b). This contradicts the

above model predictions of selective decoding according

to the units’ vestibular tuning. Note that this conclusion

assumes that these neurons were indeed ‘opposite’ cells

as previously characterized [74], that the electrical per-

turbation was sufficiently similar to the physiological

neural response subspace [71] to be interpretable, and

that the perturbed [75] and recorded units were roughly

equivalent. But under these assumptions, these results

show that it can be misleading to infer decoding rules

from choice signals, even when the neurons are causally

linked to the decision process.

Interpreting choice-history signals in sensory
cortex
A further complication arises from the fact that both choices

and neural activity are not determined by the current trial
www.sciencedirect.com 
alone, but can be influenced by experimental history.

Psychophysics in humans and animals has long revealed

that choices are often biased both by previous stimuli, as

well as by a subject’s preceding choices [28–34,36,37].

Recent studies have characterized how such choice history

leads to loss in performance (e.g. Refs. [29,31,33�]), how it

adapts to the statistics of the task [33�], or how it depends on

motor commands [34,36]. Evidence for a sensory involve-

ment of such effects comes, for example, from the obser-

vation of choice-history signals in sensory cortex [42]. Thus,

both choices and neural activity are correlated with each

other, as well as with previous choices and previous neural

activity (Figure 1e); this can make it complicated to disen-

tangle the statistical structure that gives rise to choice-

history signal in sensory neurons, let alone gain insights into

the underlying causal mechanisms.

A recent study [39�] addressed this question and found

that choice history was predictive both of the spiking

activity and the choice on the current trial (Figure 2c,

top). But when asking whether this effect was statistically

independent of the effect of the preceding spike count

and the current choice (by conditioning on the preceding

spike count and the choice of the current trial) the study

found that the previous predictive effect of choice history

largely disappeared (Figure 2c, bottom), arguing against

an effect of choice history on spiking activity indepen-

dent of the inter-trial fluctuations in the neural activity. In

addition, the partial correlation between neural activity

and choice (i.e. when taking out the effect predicted by

trial-history, not shown in Figure 2c) was comparable to

the total correlation, suggesting that choice-correlations

are dominated by within, rather than across-trial

(cf. diagonal arrows in Figure 1e) effects in this task.

Even if they cannot provide conclusive evidence for causal

relations, correlations may be guidance for causal explora-

tion: For example, a signature of such choice-history signals

has been observed in the posterior parietal cortex (PPC) in

mice (Ref. [40�], Figure 2d), and inactivating the PPC

optogenetically reduced the choice-history induced bias

[76] in support of a causal involvement. Since choices

typically co-vary with the stimulus it can be difficult to

dissociate the effect of choice history from that of stimulus

history, which also have been shown to have a pronounced

influence on current choices. When disentangling these, a

recent study in rats [38��] observed a more pronounced

effect of stimulus history rather than choice history, on

current choices. This study also found evidence for a causal

involvement of the PPC, consistent with a role of working

memory inferred from psychophysical studies [35,37].

Formal statistical frameworks for inferring
causal interactions from data
What – if any – inferences can we draw from correlations

about underlying mechanisms? Extensive work in diverse

fields such as epidemiology, econometrics [77], statistics
Current Opinion in Neurobiology 2019, 58:148–154



152 Computational neuroscience
and machine learning (e.g. Refs. [77,78,79��]) has studied

when and how one can make statements about underlying

causal interactions from observational data. Many of these

approaches are based on the notion of ‘directed causal

graphical models’ (or causal Bayesian Networks [78]): In

these causal diagrams (cf. Figure 1a–c), each’ node’

represents a component of the system of interest

(e.g. neural activity in a brain region, the current choice,

previous choices), and directed edges (‘arrows’) represent

assumptions about the presence (or absence), as well as

about the directionality of interactions between these

components. These models can be used to mathemati-

cally reason about the effect of perturbing some nodes on

other nodes, via a mathematical framework known as ‘do-

calculus’ [78]. Importantly, each such a causal diagram

implies a set of conditional independencies. For example,

in Figure 1c, the choice and neuron are independent,

when conditioning on the common input. These condi-

tional independencies can be thought of as a generaliza-

tion of partial correlations—therefore, by characterizing

partial correlations, one could rule out underlying causal

graphs.

However, while some graphs can be distinguished from

each other based on such conditional independence tests,

there are many graphs, which give rise to the same

conditional independencies. These therefore cannot be

distinguished from observational data alone (the most

simple, and worrisome, example being X ! Y and

Y ! X, i.e. the fact that the direction of causal interac-

tions between two observables cannot generally be deter-

mined from data alone). To distinguish any two such

graphs, either interventions (i.e. targeted perturbations),

additional assumptions [80] or specific task-properties

(e.g. in regression discontinuity designs [81]) need to

be exploited.

However, even beyond these fundamental limitations,

there are also many practical ones which make direct

application of these formal approaches to identify causes

underlying choices challenging: First, choices might be

influenced by ‘confounders’ (cf. the common input in

Figure 1c) which cannot be measured directly, and for

which it is difficult to make reasonable assumptions about

how they interact with observable components. In these

cases (and in particular if confounders dominate the

interactions, likely a common scenario in some neurosci-

ence settings), it can be impossible to make any causal

statements [48]. Second, recurrent connections are ubiq-

uitous in the brain, which can be challenging to capture in

directed graphical models. Third, conditional indepen-

dence tests typically require large amounts of data, and

this can make it difficult to detect weak, or highly

nonlinear, interactions (or provide evidence for its

absence). Because of these limitations, formal approaches

to causal inference are still rarely used explicitly in

neuroscience, but see Refs. [82,83].
Current Opinion in Neurobiology 2019, 58:148–154 
Conclusion
Focusing on correlations between perceptual choices and

the activity of sensory neurons, we here highlighted

challenges to infer causal structure from correlations, both

from a formal statistical perspective and by addressing

recent experimental studies. In general, it is problematic

to infer causal structure, functional significance or decod-

ing strategies from choice correlations of sensory neurons:

The fact that one can decode choices from the activity of

certain neurons does not imply that the brain, too,

decodes these neurons to guide the choice. However,

neither does a lack of a causal role imply that these signals

are merely the result of confounders, or that they are

meaningless for the brain. An illustrative analogy might

be the concept of an efference copy in the motor system:

it provides a signal that is correlated with the current

motor command but is not causally involved, and yet

important for subsequent motor control. Moreover,

choice signals or other correlations can be informative

to identify relevant population subspaces for further

exploration [71]. They are also useful for testing predic-

tions of algorithmic models of perceptual decision making

(cf [57,84]) and linking these two elements of neural

computation [60].
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