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Context-dependent computation by
recurrent dynamics in prefrontal cortex
Valerio Mante1{*, David Sussillo2*, Krishna V. Shenoy2,3 & William T. Newsome1

Prefrontal cortex is thought to have a fundamental role in flexible, context-dependent behaviour, but the exact nature of
the computations underlying this role remains largely unknown. In particular, individual prefrontal neurons often
generate remarkably complex responses that defy deep understanding of their contribution to behaviour. Here we
study prefrontal cortex activity in macaque monkeys trained to flexibly select and integrate noisy sensory inputs
towards a choice. We find that the observed complexity and functional roles of single neurons are readily understood
in the framework of a dynamical process unfolding at the level of the population. The population dynamics can be
reproduced by a trained recurrent neural network, which suggests a previously unknown mechanism for selection
and integration of task-relevant inputs. This mechanism indicates that selection and integration are two aspects of a
single dynamical process unfolding within the same prefrontal circuits, and potentially provides a novel, general
framework for understanding context-dependent computations.

Our interactions with the world are inherently flexible. Identical sensory
stimuli, for example, can lead to very different behavioural responses
depending on ‘context’, which includes goals, previous expectations
about upcoming events, and relevant past experiences1,2. Animals can
switch rapidly between behavioural contexts, implying the existence of
rapid modulation, or ‘gating’, mechanisms within the brain that select
relevant sensory information for decision-making and action. A large
attention literature suggests that relevant information is selected by
top-downmodulationof neural activity in early sensory areas3–8, which
may take the form of modulation of firing rates3,5–7, or modulation of
response synchrony within or across areas4,5,8. The top-down signals
underlying such ‘early’ modulations of sensory activity arise, in part,
fromprefrontal cortex (PFC)2,5, which is known to contribute to repre-
senting and maintaining contextual knowledge, ignoring irrelevant
information, and suppressing inappropriate actions1,2,9,10. These obser-
vations have led to the hypothesis that early selection may account for
the larger effect of relevant as compared to irrelevant sensory informa-
tion on contextually sensitive behaviour.
Herewe test this hypothesiswith a task requiring context-dependent

selection and integration of visual stimuli. We trained two macaque
monkeys (A and F) to perform two different perceptual discrimina-
tions on the same set of visual stimuli (Fig. 1). The monkeys were
instructed by a contextual cue to either discriminate the direction of
motion or the colour of a random-dot display, and to report their
choices with a saccade to one of two visual targets (Fig. 1a). While
monkeys performed this task, we recorded extracellular responses from
neurons in and around the frontal eye field (Extended Data Fig. 1a, f),
an area of PFC involved in the selection and execution of saccadic eye
movements11,12, the control of visuo-spatial attention13, and the integ-
ration of information towards visuomotor decisions12,14.
We found no evidence that irrelevant sensory inputs are gated, or

filtered out, before the integration stage in PFC, as would be expected
from early selection mechanisms3–8. Instead, the relevant input seems
to be selected late, by the same PFC circuitry that integrates sensory
evidence towards a choice. Selection within PFC without previous

gating is possible because the representations of the inputs, and of
theupcoming choice, are separable at thepopulation level, even though
they are deeply entwined at the single neuron level. An appropriately
trained recurrent neural network model reproduces key physiological
observations and suggests a newmechanismof input selection and inte-
gration. The mechanism reflects just two learned features of a dyna-
mical system: an approximate line attractor and a ‘selection vector’,
which are only defined at the level of the population. Themodel mech-
anism is readily scalable to large numbers of inputs, indicating a gen-
eral solution to the problem of context-dependent computation.

Behaviour and single-unit responses
Themonkeys successfully discriminated the relevant sensory evidence
in each context, while largely ignoring the irrelevant evidence (Fig. 1c–f,
monkey A; Extended Data Fig. 2a–d, monkey F). To vary the difficulty
of the discrimination,we changed the strengthof themotion and colour
signals randomly from trial to trial (Fig. 1b). In themotion context, the
choices of the monkeys depended strongly on the direction of motion
of thedots (Fig. 1c),whereas thechoices dependedonlyweaklyon colour
in the same trials (Fig. 1d). The opposite pattern was evident in the
colour context: the now relevant colour evidence exerted a large effect
on choices (Fig. 1f) whereas motion had only a weak effect (Fig. 1e).
As is common inPFC1,2,15–18, the recorded responses of singleneurons

appeared to represent several different task-related signals at once, includ-
ing the monkey’s upcoming choice, the context, and the strength of
motion and colour evidence (ExtendedData Figs 1 and 3). Rather than
attempting to understand the neural mechanism underlying selective
integration by studying the responses of single PFCneurons, we focussed
on analysing the responses of the population as a whole. To construct
population responses, we pooled data from both single and multi-unit
recordings, which yielded equivalent results. The great majority of
unitswere not recorded simultaneously, but rather in separate sessions.
Units at all recording locations seemed to contribute to the task-related
signals analysed below (ExtendedData Fig. 1) andwere thus combined.
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Overall, we analysed 388 single-unit and 1,014 multi-unit responses
from the two monkeys.

State space analysis
To study how the PFC population as a whole dynamically encodes the
task variables underlying themonkeys’ behaviour, we represent popu-
lation responses as trajectories in neural state space17,19–25. Each point
in state space corresponds to a unique pattern of neural activations
across the population. Because activations are dynamic, changing over
time, the resulting population responses form trajectories in state space.
We focussed our analyses on responses in a specific low-dimensional

subspace that captures across-trial variance due to the choice of the
monkey (choice 1 or 2), the strength and direction of the motion
evidence, the strength anddirectionof the colour evidence, and context
(motion or colour). We estimated this task-related subspace in two
steps (Supplementary Information). First, we used principal component
analysis (PCA) to obtain an unbiased estimate of the most prominent
features (that is, patterns of activations) in the population response. To
‘de-noise’ the population responses, we restricted subsequent analyses
to the subspace spanned by the first 12 principal components. Second,
we used linear regression to define the four orthogonal, task-related axes
of choice,motion, colour and context. The projection of the population
response onto these axes yields de-mixed estimates of the correspond-
ing task variables, which are mixed both at the level of single neurons
(Extended Data Fig. 3) and at the level of individual principal compo-
nents (Extended Data Fig. 4c, g; see also ref. 26).
This population analysis yields highly reliable average response

trajectories (Fig. 2 and Extended Data Fig. 4q, r) that capture both
the temporal dynamics and the relationships among the task variables
represented in PFC. In particular, four properties of the population
responses provide fundamental constraints on the mechanisms of
selection and integration underlying behaviour in our task.
First, integration of evidence during presentation of the random

dots corresponds to a gradual movement of the population response

in state space along the axis of choice (Fig. 2a, f). In both contexts, the
trajectories start from a point in state space close to the centre of the
plots (‘dots on’, purple point), which corresponds to the pattern of
population responses at baseline. During the dots presentation the
responses then quickly move away from this baseline level, along the
axis of choice (red line; Fig. 2a, f). Overall, the population response
moves in opposite directions on trials corresponding to the two differ-
ent saccade directions (Fig. 2, choice 1 versus choice 2). The projection
of the population response onto the choice axis (ExtendedData Fig. 5b, f)
is largely analogous to the ‘choice-predictive’ signals that have been
identified in past studies as approximate integrationof evidence during
direction discrimination tasks27.
Second, the sensory inputs into PFC produce patterns of popu-

lation responses that are very different from those corresponding to
either choice, meaning that these signals are separable at the level of
the population. Indeed, the population response does not follow straight
paths along the choice axis, but instead forms prominent arcs away
from it (Fig. 2a, f). The magnitude of each arc along the axes of motion
or colour reflects the strength of the corresponding sensory evidence
(see scale), whereas its direction (up or down) reflects the sign of the
evidence (towards choice 1 or 2, filled or empty symbols, respectively).
Whereas the integrated evidence continues to be represented along the
axis of choice even after the disappearance of the random dots (‘dots
off’), the signals along the axes ofmotion and colour are transient—the
arcs return to points near the choice axis by the time of dots offset.
These signals thus differ from integrated evidence both in terms of the
corresponding patterns of activation and in their temporal profile. For
these reasons, we interpret them as ‘momentary evidence’ from the
motion and colour inputs in favour of the two choices. This interpreta-
tion is also consistent with the observed population responses on error
trials, for which the momentary evidence points towards the chosen
target, but is weaker than on correct trials (Extended Data Fig. 5c, d;
red curves).
Third, context seems to have no substantial effect on the direction

of the axes of choice, motion and colour, and only weak effects on the
strength of the signals represented along these axes. When estimated
separately during the motion and colour contexts, the two resulting
sets of axes span largely overlapping subspaces (see Supplementary
Table 1); thus, a single set of three axes (the red, black and blue axes in
Fig. 2a–f, estimated by combining trials across contexts) is sufficient
to capture the effects of choice, motion and colour on the population
responses in either context. A comparison of the population responses
across contexts (Fig. 2a–c versus d–f) reveals that a single, stable
activity pattern is responsible for integrating the relevant evidence
in both contexts (the choice axis), while similarly stable activity pat-
terns represent the momentary motion and colour evidence in both
contexts (motion and colour axes). Notably, motion and colour inputs
result in comparable deflections along the motion and colour axes,
respectively, whether they are relevant or not (compare Fig. 2a to d
and f to c).
Fourth, although the directions of the axes of choice, motion and

colour are largely invariant with context, their location in state space is
not. The responses during the motion and colour contexts occupy
different parts of state space, and the corresponding trajectories are
well separated along the axis of context (Extended Data Fig. 6a, b).

Comparison to models of selection and integration
These properties of the population responses, which are summarized
schematically in Fig. 3a, can be compared to the predictions of current
models of context-dependent selection and integration (Fig. 3b–d).
We first focussed on three fundamentally different mechanisms of
selection that could each explain why the motion input, for example,
influences choices in the motion context (Fig. 3, top row) but not in
the colour context (Fig. 3, bottom row). In the framework of our task
the threemodels predict population responses that differ substantially
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Figure 1 | Behavioural task and psychophysical performance. a, Task
structure. Monkeys were instructed by a contextual cue to either discriminate
the motion or the colour of a random-dot stimulus, and indicate their choice
with a saccade to one of two targets. Depending on context, monkeys were
rewarded for choosing the target matching the prevalent direction of motion
(motion context) or the prevalent colour (colour context) of the random dots.
Context was indicated by the shape and colour of the fixation point; offset of
the fixation point was the ‘go cue’, signalling the monkey to indicate its choice
via the operant saccade. b, Stimulus set. The motion and colour coherence
of the dots was chosen randomly on each trial.We slightly varied the coherence
values on each day, to equate performance across contexts and sessions
(numbers in parentheses: average coherences (%) across sessions for monkey
A). c–f, Psychophysical performance for monkey A in the motion (top) and
colour contexts (bottom), averaged over 80 recording sessions (163,187 trials).
Performance is shown as a function ofmotion (left) or colour (right) coherence
in each behavioural context. The curves are fits of a behavioural model.
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from each other (Fig. 3b–d), and can thus be validated or rejected by
our PFC recordings (Fig. 3a).
The first model (Fig. 3b) is based on two widely accepted hypo-

theses about the mechanisms underlying selection and integration
of evidence. First, it assumes that inputs are selected early3–8, such
that a given input drives PFC responses when relevant (grey arrow in
Fig. 3b, top), but is filtered out before reaching PFC when irrelevant
(no grey arrow in Fig. 3b, bottom). Second, it assumes that the relevant
input directly elicits a pattern of activation in PFC resembling the
pattern corresponding to a choice (the grey arrow in Fig. 3b, top,
points along the axis of choice), as would be expected by current
models of integration28,29.
Both hypotheses are difficult to reconcile with the recorded PFC

responses. Whereas the strength of each input is reduced when it is
irrelevant compared to when it is relevant, the magnitude of the
observed reduction seems too small to account for the behavioural
effects. For instance, irrelevant motion of high coherence (Fig. 2d,
black) elicits a larger deflection along the motion axis (relative to
baseline, purple dot, Fig. 2d) than relevant motion of intermediate
coherence (Fig. 2a, dark grey). Yet the former has almost no beha-
vioural effect (Fig. 1e), whereas the latter has a large behavioural effect
(Fig. 1c). The analogous observation holds for the colour input
(Figs 2c, f and 1d, f), strongly suggesting that the magnitude of the
momentary evidence alone does not determine whether the corres-
ponding input is integrated. Furthermore, the actual momentary
motion input is represented along a direction that has little overlap

with the choice axis, resulting in curved trajectories (Fig. 3a) that
differ markedly from the straight trajectories predicted by the early
selection model (Fig. 3b).
The observed PFC responses also rule out two additional models of

selection presented in Fig. 3. In the absence of early selection, amotion
input might be selected within PFC by modifying the angle between
the choice and motion axes (that is, the similarity between patterns of
neural activity representing choice and momentary motion evidence)
across contexts. This angle could be modified either by changing the
direction of themotion axis between contexts while keeping the choice
axis fixed (Fig. 3c), or vice versa (Fig. 3d). In both cases, the motion
input would elicit movement of the population along the axis of choice
in themotion context (top row), but not in the colour context (bottom
row), as the motion and choice axes have little or no overlap in the
colour context. At the single neuron level, variable axes that change
direction across contexts would be reflected as complex, nonlinear
interactions between context and the other task variables, which have
been proposed in some task-switching models30,31. However, our data
(Figs 2 and 3a) lend little support for variable choice (Fig. 3d) or input
(Fig. 3c) axes. More generally, the PFC data from monkey A rule out
any model of integration for which the degree of overlap between the
direction of themomentary evidence and the axis of choice determines
how much the corresponding input affects behaviour.
The representation of task variables in PFC of monkey F replicates

all but one key feature observed in monkey A. Most importantly,
population responses along the choice and motion axes (Extended
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Figure 2 | Dynamics of population responses in PFC. The average
population response for a given condition and time is represented as a point in
state space. Responses from correct trials only are shown from 100ms after
dots onset (dots on, purple circle) to 100ms after dots offset (dots off) in 50-ms
steps, and are projected into the three-dimensional subspace capturing the
variance due to the monkey’s choice (along the choice axis), and to the
direction and strength of the motion (motion axis) and colour (colour axis)
inputs. Units are arbitrary; components along the motion and colour axes are
enhanced relative to the choice axis (see scale bars in a, f). Conditions (see
colour bars) are defined based on context (motion context, top; colour context,
bottom), on the location of the chosen target (choice 1 versus choice 2) and
either on the direction and strength of the motion (grey colours) or the colour
input (blue colours). Here, choice 1 corresponds to the target in the response
field of the recorded neurons. The direction of the colour input does not refer to

the colour of the dots per se (red or green), but to whether the colour points
towards choice 1 or choice 2 (see Supplementary Information, section 6.4, for a
detailed description of the conditions). a, Effect of choice and the relevant
motion input in the motion context, projected onto the axes of choice and
motion. b, Same data as in a, but rotated by 90u around the axis of choice to
reveal the projection onto the axis of colour. c, Same trials as in b, but re-sorted
according to the direction and strength of the irrelevant colour input.
d–f, Responses in the colour context, analogous to a–c. Responses are averaged
to show the effects of the relevant colour (e, f) or the irrelevant motion input
(d). For relevant inputs (a, b and e, f), correct choices occur only when the
sensory stimulus points towards the chosen target (3 conditions per chosen
target); for irrelevant inputs (c, d), however, the stimulus can point either
towards or away from the chosen target on correct trials (6 conditions per
chosen target).
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Data Fig. 7a, d) closely match those observed inmonkey A (Fig. 2a, d);
thus, physiological data from bothmonkeys are consistent in rejecting
currentmodels of selectionand integrationofmotion inputs (Fig. 3b–d).
The colour signal inmonkeyF, however, is equivocal.On the onehand,
the representation of the colour input closely resembles that of a choice
(Extended Data Fig. 1g, i), as expected from the early selection model
described above (Fig. 3b). On the other hand, the colour input is also
weakly represented along the colour axis in both contexts (vertical
displacement of trajectories, Extended Data Fig. 7c, f). For the colour
input in monkey F, therefore, we cannot with confidence accept or
reject the early selection model. Finally, as in monkey A, context is
represented in monkey F along a separate axis of context (Extended
Data Fig. 6c, d).
In summary, the population responses in both monkeys are dif-

ficult to reconcile with current models of selection and integration
(see also Extended Data Fig. 8). Rather, the selective integration of the
motion input in monkeys A and F, and of the colour input in monkey
A, must rely on a mechanism for which the very same input into PFC
leads to movement along a fixed axis of choice in one context but not
another.

Recurrent network model of selection and integration
To identify such a mechanism, we trained a network of recurrently
connected, nonlinear neurons32 to solve a task analogous to the one
solved by the monkeys (Fig. 4). Notably, we only defined ‘what’ the
network should do, with minimal constraints on ‘how’ it should do
it32–34. Thus, the solution achieved by the network is not hand-built
into the network architecture. On each trial, neurons in the network
receive two independent sensory inputs that mimic the momentary
evidence for motion and colour in a single random dot stimulus. The
network also receives a contextual input that mimics the contextual
signal provided to the monkeys, instructing the network to discrim-
inate either the motion or the colour input. The network activity is
read out by a single linear read-out, corresponding to a weighted sum

over the responses of all neurons in the network (see Supplementary
Information). As in PFC, the contextual input does not affect the
strength of the sensory inputs—selection occurs within the same net-
work that integrates evidence towards a decision.
We trained the network35 tomake a binary choice on each trial—an

output of 11 at the end of the stimulus presentation if the relevant
evidence pointed leftward, or a 21 if it pointed rightward. After
training, the model qualitatively reproduces the monkeys’ behaviour,
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context, top) and Fig. 2d (colour context, bottom). As in Fig. 2a and d, a single
two-dimensional subspace (which contains the choice axis and motion input)
is used to represent responses from both contexts. a, Idealized schematic of the
actual PFC trajectories shown in Fig. 2a, d. Both the choice axis and motion
input are stable between contexts. The motion input pushes the population
response away from the choice axis. b, Early selection model. When relevant

(top), the motion input pushes the population response along the choice axis.
When irrelevant (bottom), themotion input is filtered out before reaching PFC
(no thick grey arrow) and thus exerts no effect on choice. All trajectories fall on
top of each other in both contexts, but the rate of movement along the choice
axis increases with motion strength only in the motion context (insets show
enlarged trajectories distributed vertically for clarity). c, Context-dependent
input direction. Motion input direction varies between contexts, whereas the
choice axis is stable. Inputs are not filtered out before PFC; rather, they are
selected on the basis of their projection onto the choice axis. d, Context-
dependent output direction. Similar selection mechanism to c, except that the
choice axis varies between contexts, whereas the motion input is stable. The
effects of themotion input on PFC responses in bothmonkeys (schematized in
a) and the effects of the colour input in monkey A are inconsistent with
predictions of the three models in b–d (respectively, Fig. 2a, d; Extended Data
Fig. 7a,d; Fig. 2f, c).
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11 at the end of the stimulus presentation if the relevant evidence pointed
towards choice 1, or a 21 if it pointed towards choice 2. Before training, all
synaptic strengths were randomly initialized.
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confirming that the model solves the selection problem at the ‘beha-
vioural’ level (Extended Data Fig. 2e–h).
We first analysed model population trajectories in the subspace

spanned by the axes of choice, motion and colour, and found that
they reproduce the fourmain features of the PFCpopulation responses
discussed above (Fig. 5 and ExtendedData Fig. 9a–g). First, integration
of evidence corresponds to gradual movement of the population res-
ponse along the choice axis. Second, momentary motion and colour
evidence ‘push’ the population away from the choice axis, resulting in
trajectories that are parametrically ordered along the motion and col-
our axes. Third, the direction of the axes of choice, motion and colour
are largely invariant with context, as are the strength of themotion and
colour inputs, as these are not gated before entering the network.
Fourth, the trajectories during motion and colour contexts are sepa-
rated along the axis of context (Extended Data Fig. 9f, g). Model and
physiological dynamics differ markedly in one respect—signals along
the input axes are transient in the physiology, but not in the model,
yielding PFC trajectories that curve back to the choice axis before the
end of the viewing interval (compare Figs 5a, f to 2a, f). This difference
suggests that the sensory inputs toPFCare attenuated after a decision is
reached. Additional differences between the model and the physio-
logical dynamics can be readily explained by previously proposed
imperfections in the evidence integration process, such as ‘urgency’
signals36,37 or instability in the integrator38 (Extended Data Fig. 10).

A novel mechanism of selective integration
We then ‘reverse engineered’ themodel33 to discover itsmechanism of
selective integration. The global features of the model activity are
easily explained by the overall arrangement of fixed points of the
dynamics33 (Fig. 5), which result from the synaptic connectivity
learned during training. Fixed points (small red crosses) correspond
to patterns of neuronal activations (that is, locations in state space)
that are stable when the sensory inputs are turned off. First, we found
that the model generates a multitude of fixed points, which are
approximately arranged to form two lines along the choice axis.
The two sets of fixed points are separated along the axis of context
(Extended Data Fig. 9f, g) and never exist together—one exists in the
motion context (Fig. 5a–c), the other in the colour context (Fig. 5d–f).

Second, the responses around each fixed point were approximately
stable only along a single dimension pointing towards the neighbour-
ing fixed points (red lines), whereas responses along any other dimen-
sion rapidly collapsed back to the fixed points. Therefore, each set of
fixed points approximates a line attractor39. Finally, two stable attrac-
tors (large red crosses), corresponding to the two possible choices,
delimit each line attractor.
The integration of the relevant evidence is thus implemented in the

model as movement along an approximate line attractor39. Themodel
population response, however, does not move strictly along the line
attractor. Like the physiological data, model trajectories move parallel
to the line attractors (the choice axis) at a distance proportional to the
average strength of the sensory inputs, reflecting the momentary
sensory evidence (Fig. 5a, c, d, f). After the inputs are turned off
(Fig. 5, purple data points), the responses rapidly relax back to the
line attractor.
To understand how the relevant input is selected for integration

along a line attractor, we analysed the local dynamics of model res-
ponses around the identified fixed points33 (Fig. 6). To simplify the
analysis, we studied how themodel responds to brief pulses of motion
or colour inputs (Fig. 6a), rather than the noisy, temporally extended
inputs used above. Before a pulse, we initialized the state of the network
to one of the identified fixed points (Fig. 6a, red crosses). Locally around
a fixed point, the responses of the full, nonlinear model can then be
approximated by a linear dynamical system (see Supplementary Infor-
mation), the dynamics of which can be more easily understood33.
Both themotion and colour inputs (that is, the correspondingpulses)

have substantial projections onto the line attractor (Fig. 6a) but, cru-
cially, the size of these projections does not predict the extent to which
each input will be integrated. For instance, in both contexts themotion
pulses have similar projections onto the line attractor (Fig. 6a, left
panels), and yet they result in large movement along the attractor in
the motion context (top) but not in the colour context (bottom).
The selection of the inputs instead relies on context-dependent

relaxation of the network dynamics after the end of the pulse, which
reverses movement along the line attractor caused by the irrelevant
pulse (Fig. 6a, top right and bottom left) and enhances the effects of
the relevant pulse (Fig. 6a, top left and bottom right). These relaxation
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dynamics, although counterintuitive, nevertheless follow a very simple
rule. For a given context, the relaxation always occurs on a path that is
orthogonal to a specific direction in state space, which we call the
‘selection vector’ (Fig. 6b). The direction of the selection vector, like
the direction of the line attractor, is a property of the recurrent synaptic
weights learned by the model during training (see Supplementary
Information). Unlike the line attractor, however, the orientation of
the selection vector changes with context—it projects strongly onto
the relevant input, but is orthogonal to the irrelevant one (Fig. 6b). As a
consequence, the relaxation dynamics around the line attractor are
context dependent. This mechanism explains how the same sensory
input can result inmovement along the line attractor in one context but
not the other (Fig. 6b).
The line attractor and the selection vector are sufficient to explain

the linearized dynamics around each fixed point (see Supplementary
Information), and approximate well the responses of the full model
(magenta curves, Fig. 6a). Mathematically, the line attractor and the
selection vector correspond to the right and left zero-eigenvector of
the underlying linear system. Within a context, these locally defined
eigenvectors point in a remarkably consistent direction across differ-
ent fixed points—the selection vector, in particular, is always aligned
with the relevant input and orthogonal to the irrelevant input (Fig. 6c
and Extended Data Fig. 10q–s). As a result, the two line attractors
(Fig. 6c) show relaxation dynamics appropriate for selecting the rel-
evant input along their entire length.

Discussion
Wedescribe anovelmechanismunderlying flexible, context-dependent
selection of sensory inputs and their integration towards a choice (see
refs 39–41 for related concepts). Thismechanism is sufficient to explain
the selection and integration ofmotion inputs in bothmonkeys, and of
colour inputs inmonkeyA,which are not filtered out by context before
they reach PFC.
A randomly initialized, recurrent neural network trained to solve a

task analogous to the monkeys’ task reproduces the main features of
the data, and analysis of the trained network elucidates the novel
selectionmechanism. Integration along line attractors, and its relation
to the selection vector, has beendescribed before39.However, ourmodel
demonstrates how a single nonlinear model can implement flexible
computations by reconfiguring the selectionvector and the correspond-
ing recurrent dynamics based ona contextual input.Counterintuitively,
in the model the projection of an input onto the line attractor does

not determine the extent to which it is integrated, a manifestation of
‘non-normal’ dynamics40,42,43 (see Supplementary Information).
Our results show that the modulation of sensory responses is not

necessary to select among sensory inputs (see also refs 44–46). Consistent
with this conclusion, two studies using tasks similar to ours47,48, as well
as our own recordings in the middle temporal visual area (MT) of
monkey A (data not shown), have found no evidence for consistent
firing rate modulations in the relevant sensory areas. The dynamical
process outlined in this paper is fully sufficient for context-dependent
selection in a variety of behavioural models3–8, but it need not be
exclusive. Multiple selection mechanisms may exist within the brain.
Our results indicate that computations in prefrontal cortex emerge

from the concerted dynamics of large populations of neurons, and are
well studied in the framework of dynamical systems17,19–23,24,39,49.
Notably, the rich dynamics of PFC responses during selection and
integration of inputs can be characterized and understood with just
two features of a dynamical system—the line attractor and the selection
vector, which are defined only at the level of the neural population.
This parsimonious account of cortical dynamics contrasts markedly
with the complexity of single neuron responses typically observed in
PFC and other integrative structures, which reveal multiplexed repres-
entation of many task-relevant and choice-related signals1,2,15,16,25,26,50.
In light of our results, these mixtures of signals can be interpreted as
separable representations at the level of the neural population15,17,25,26.
A fundamental function of PFC may be to generate such separable
representations, and to flexibly link them through appropriate recur-
rent dynamics to generate the desired behavioural outputs.

METHODS SUMMARY
Two adult male rhesusmonkeys (14 and 12 kg) were trained on a two-alternative,
forced-choice, visual discrimination task.While themonkeys were engaged in the
behavioural task, we recorded single- and multiunit responses in the arcuate
sulcus and the prearcuate gyrus, and in cortex near and lateral to the principal
sulcus. The great majority of neurons were not recorded simultaneously, but
rather in separate behavioural sessions. All surgical and behavioural procedures
conformed to the guidelines established by the National Institutes of Health and
were approved by the Institutional Animal Care and Use Committee of Stanford
University. We pooled data from single- and multiunit recordings to construct
population responses, and used state space analysis to study the effect of task
conditions and time on the population responses.We developed a dimensionality
reduction technique (‘targeted dimensionality reduction’) to identify a low-
dimensional subspace capturing variance due to the task variables of interest.
We compared the recorded responses to the responses of units in a nonlinear,
recurrent neural network model. We trained the model (that is, optimized its

Line attractor Line attractor

Line attractor Line attractor

Motion
pulse

Colour
pulse

Motion
pulse

Colour
pulse

Linear

a b c

Colour

context

Motion

context Motion
context

Colour
context

Selection
vector

Line
attractor

Attractor

M
ot

io
n

in
put

C
olour

input

Line
attractorM

ot
io

n

C
olour

Selection
vector

Line
attractorM

ot
io

n

C
olour

Pulse Relaxation

Selection
vector

Figure 6 | Selection and integration by recurrent dynamics. a, Average
model population response to short (1-ms) pulses of motion (left) and colour
inputs (right) during motion (top) and colour contexts (bottom). Motion or
colour inputs (solid lines) are initiated when the system is steady at one of the
identified fixed points (red crosses), and subsequent relaxation back to the line
attractor is simulated (dots: 3-ms intervals) and averaged across fixed points.
The size of the pulses approximately corresponds to the length of the scale bars
in Fig. 5. Selection of the relevant input results from the context-dependent
relaxation of the recurrent dynamics after the pulse, and is well approximated
by the linearized dynamics around the fixed points (magenta lines). Responses
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leads to evidence integration in one context, but is ignored in the other (right).
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synaptic weights with a ‘back-propagation’ algorithm) to perform a task analog-
ous to the one performed by themonkeys.We then reverse-engineered themodel
to discover its mechanism of selective integration. We identified fixed points of
the model dynamics, linearized the dynamics around the fixed points, and used
linear systems analysis to understand the linearized dynamics. Full methods are
provided in the Supplementary Information.

Online Content Any additional Methods, Extended Data display items and
Source Data are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Extended Data Figure 1 | Recording locations and task-related patterns of
population activity in PFC. a, Recording locations (red dots) inmonkey A are
shown on anatomical magnetic resonance images in imaging planes that were
oriented perpendicularly to the direction of electrode penetrations. Electrodes
were lowered through a grid (1-mm spacing) positioned over the arcuate sulcus
(AS). Recordings covered the entire depth of theAS and extended rostrally onto
the prearcuate gyrus and cortex near and lateral to the principal sulcus (PS).
b–e, Representation of four task variables in the population response. Each
multi-coloured square corresponds to a recording location (red dots) in
a. Within each square, each pixel corresponds to a unit recorded from that grid
position, such that each square represents all the units recorded at the
corresponding location. The colour of a pixel indicates the de-noised regression
coefficient of choice (b), motion coherence (c), colour coherence (d) and
context (e) for a given unit (colour bars; grey: no units). These coefficients
describe how much the trial-by-trial firing rate of a given unit depends on the
task variables in b–e. The position of each unit within a square is arbitrary; we
therefore sorted them according to the amplitude of the coefficient of choice,
which accounts for the diagonal bands of colour in b (top-left to bottom-right,

high to low choice coefficient). The positions of the pixels established in b are
maintained in c–e, so that one can compare the amplitude of the coefficient for
each task variable for every unit recorded from monkey A. Each of the four
panels can be interpreted as the pattern of population activity elicited by the
corresponding task variable. The four task variables elicit very distinct patterns
of activity and are separable at the level of the population. Importantly, the
coefficients were de-noised with principal component analysis (see
Supplementary Information, section 6.7) and can be estimated reliably from
noisy neural responses (Extended Data Fig. 4i–l). Differences between
activation patterns therefore reflect differences in the properties of the
underlying units, not noise. f–j, Recording locations and task-related patterns
of population activity for monkey F. Same conventions as in a–e. Recordings
(f) covered the entire depth of the AS. The patterns of population activity
elicited by a choice (g), by the motion evidence (h) and by context (j) are
distinct,meaning that the representations of these task variables are separable at
the level of the population. The representations of choice (g) and colour
(i), however, are not separable in monkey F, indicating that colour inputs are
processed differently in the two monkeys (see main text).
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Extended Data Figure 2 | Psychophysical performance for monkey F and
for the model. a–d, Psychophysical performance for monkey F, for motion
(top) and colour contexts (bottom), averaged over 60 recording sessions
(123,550 trials). Performance is shown as a function of motion (left) or colour
(right) coherence in each behavioural context. As in Fig. 1c–f, coherence values
along the horizontal axis correspond to the average low, intermediate and high
motion coherence (a, c) and colour coherence (b, d) computed over all
behavioural trials. The curves are fits of a behavioural model (see
Supplementary Information, section 4). e–h, ‘Psychophysical’ performance for
the trained neural-network model (Figs 4–6) averaged over a total of 14,400
trials (200 repetitions per condition). Choices were generated based on the
output of the model at the end of the stimulus presentation—an output larger
than zero corresponds to a choice to the left target (choice 1), and an output

smaller than zero corresponds to a choice to the left target (choice 2). We
simulated model responses to inputs with motion and colour coherences of
0.03, 0.12 and 0.50. The variability in the input (that is, the variance of the
underlying Gaussian distribution) was chosen such that the performance of the
model for the relevant sensory signal qualitatively matches the performance of
the monkeys. As in Fig. 1c–f, performance is shown as a function of motion
(left) or colour (right) coherence in the motion (top) and colour contexts
(bottom). Curves are fits of a behavioural model (as in a–d and in Fig. 1c–f). In
each behavioural context, the relevant sensory input affects themodel’s choices
(e, h), but the irrelevant input does not (f, g), reflecting successful context-
dependent integration. The model output essentially corresponds to the
bounded temporal integral of the relevant input (not shown) and is completely
unaffected by the irrelevant input.
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Extended Data Figure 3 | Mixed representation of task variables in PFC.
a–d, Example responses from six well-isolated single units in monkey A. Each
column shows average normalized responses on correct trials for one of the
single units. Responses are aligned to the onset of the random-dot stimulus,
averaged with a 50-ms sliding window, and sorted by one or more task-related
variables (choice, motion coherence, colour coherence, context). The green
lines mark time intervals with significant effects of choice (a), motion
coherence (b), colour coherence (c), or context (d) as assessed by multi-
variable, linear regression (regression coefficient different from zero, P, 0.05).
Linear regression and coefficient significance are computed over all trials
(correct and incorrect, motion and colour context; Supplementary
Information, section 6.3). The horizontal grey line corresponds to a normalized
response equal to zero. a, Responses sorted by choice (solid, choice 1; dashed,
choice 2) averaged over both contexts. b, Responses during motion context,
sorted by choice andmotion coherence (black to light-grey, high to lowmotion
coherence). c, Responses during colour context, sorted by choice and colour
coherence (blue to cyan, high to low colour coherence). d, Responses sorted by

choice and context (black, motion context; blue, colour context). As is typical
for PFC, the activity of the example units depends on many task variables,
indicating that they representmixtures of the underlying task variables. e, f, De-
noised regression coefficients for all units in monkey A (e) and monkey F (f).
The data in Extended Data Fig. 1 are re-plotted here to directly compare the
effects of different task variables (choice,motion, colour, context) to each other.
Each data point corresponds to a unit, and the position along the horizontal and
vertical axes is the de-noised regression coefficient for the corresponding
task variable. The horizontal and vertical lines in each panel intersect at the
origin (0,0). Scale bars span the same range (0.1) in each panel. The different
task variables are mixed at the level of individual units. Although units
modulated by only one of the task variables do occur in the population, they do
not form distinct clusters but rather are part of a continuum that typically
includes all possible combinations of selectivities. Significant correlations
between coefficients are shown in red (P, 0.05, Pearson’s correlation
coefficient r).
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Extended Data Figure 4 | Targeted dimensionality reduction of population
responses, and reliability of task-related axes and population trajectories.
a, Fraction of variance explained by the first 20 principal components of the
responses in monkey A. Principal components are computed on correct trials
only, on condition-averaged responses. Conditions are defined on the basis
of choice, motion coherence, colour coherence and context. Each time point of
the average response for a given condition contributes an ‘independent’ sample
for the principal components analysis, and variance is computed over
conditions and times. b, Fraction of variance explained by the first 12 principal
components. The total explainable variance (100%) is computed separately at
each time, and reflects response differences across conditions. c, The four ‘task-
related axes’ of choice, motion, colour and context expressed as linear
combinations of the first 12 principal components. The four axes span a
subspace containing the task-related variance in the population response (for
example, Fig. 2 and Extended Data Fig. 6) and are obtained by orthogonalizing
the de-noised regression vectors for the corresponding task variables (see
Supplementary Information, section 6.7; de-noised regression coefficients are
shown in Extended Data Figs 1 and 3e, f). The vertical axis in c corresponds to
the projection of each axis onto a given principal component (that is, the
contribution of that principal component to each axis). All four axes project
onto multiple principal components and thus the corresponding task variables
are mixed at the level of single principal components. d, Fraction of variance
explained by the task-related axes of choice, motion, colour and context (solid
lines), as in b. The four axes explain a larger fraction of the variance than the
principal components at many times but, unlike the principal components,
they do not explain the variance common to all conditions that is due to the
passage of time (not shown). A possible concern with our analysis is that the
time courses of variance explained in d could be misleading if the task-related
axes, which we estimated only at a single time for each variable, are changing
over time during the presentation of the random dots. Under this scenario, for
example, the ‘humped’ shape of the motion input (solid black trace) might
reflect a changing ensemble code for motion rather than actual changes in the
strength of the motion signal in the neural population. To control for this
possibility, we also computed time-varying ‘task-related axes’ by estimating
the axes of motion, colour and context separately at each time throughout the
750-ms dots presentation. The fractions of variance explained by the time-
varying axes (dashed lines) and by the fixed axes (solid lines) have similar
amplitudes and time courses. Thus, the effects of the corresponding task
variables (during the presentation of the random dots) are adequately captured
by the subspace spanned by the fixed axes (see Supplementary Information,

section 6.8). e–h, Same as a–d, for monkey F. As shown in Extended Data
Figs 1g, i and 3f (top-right panel) the de-noised regression coefficients of colour
and choice are strongly correlated. As a consequence, the axis of colour explains
only a small fraction of the variance in the population responses (h, blue; see
main text). i–l, Reliability of task-related axes in monkey A. To determine to
what extent variability (that is, noise) in single unit responses affects the task-
related axes of choice, motion, colour and context (for example, Fig. 2 and
Extended Data Fig. 6), we estimated each axis twice from two separate sets of
trials (trial sets 1 and 2 in i–l). For each unit, we first assigned each trial to one of
two subsets, and estimated de-noised regression coefficients for the task
variables separately for the two subsets. We then obtained task-related axes by
orthogonalizing the corresponding de-noised coefficients (see Supplementary
Information, section 6.9). Here, the orthogonalized coefficients are computed
both with (black) and without (grey) PCA-based de-noising. The horizontal
and vertical lines in each panel intersect at the origin (0,0). Scale bars span the
same range (0.1) in each panel. Data points lying outside the specified
horizontal or vertical plotting ranges are shown on the corresponding edges in
each panel. i, Coefficients of choice. Each data point corresponds to the
orthogonalized coefficient of choice for a given unit, computed from trials in set
1 (horizontal axis) or in set 2 (vertical axis). j–l, Same as i for the orthogonalized
coefficients of motion (j), colour (k) and context (l). m–p, Orthogonalized
regression coefficients for monkey F, as in i–l. Overall, after de-noising the
orthogonalized coefficients are highly consistent across the two sets of trials.
Therefore, the observed differences in the activation pattern elicited by different
task variables (Extended Data Fig. 1) are not due to the noisiness of neural
responses, but rather reflect differences in the properties of the underlying
units. q, r, Reliability of population trajectories. To assess the reliability of the
trajectories in Fig. 2, we estimated the task-related axes and the resulting
population trajectories (same conventions as Fig. 2) twice from two separate
sets of trials (as i–l, see Supplementary Information, section 6.9). As in the
example trajectories shown in q (trial set 1) and r (trial set 2), we consistently
obtained very similar trajectories across the two sets of trials. To quantify the
similarity between the trajectories from the two sets, we used trajectories
obtained fromone set to predict the trajectories obtained from the other set (see
Supplementary Information, section 6.9). On average across 20 randomly
defined pairs of trial sets, in both monkeys the population responses from one
set explain 94% of the total variance in the responses of the other set (95% for
the example in q and r). These numbers provide a lower bound on the true
reliability of trajectories in Fig. 2, which are based on twice as many trials as
those in q and r.
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Extended Data Figure 5 | Population responses along individual task-
related axes. a–e, Responses for monkey A. The average population responses
on correct trials are re-plotted from Fig. 2, together with responses on a subset
of incorrect trials (red curves). Here the responses are represented explicitly
as a function of time (horizontal axis) and projected separately (vertical axes)
onto the axes of choice (b), motion (c), colour (d) and context (e). As in Fig. 2,
correct trials are sorted on the basis of context (motion: top sub-panels; colour:
bottom sub-panels; see key in a), on the direction of the sensory evidence
(filled, towards choice 1; dashed, towards choice 2) and strength of the sensory
evidence (black to light-grey, strongest to weakest motion; blue to cyan,
strongest to weakest colour), and based on choice (thick, choice 1; thin,
choice 2). Incorrect trials (red curves) are shown for the lowest motion
coherence (during motion context, top left in b–e) and the lowest colour
coherence (during colour context, bottom right in b–e). Vertical scale bars
correspond to 1 unit of normalized response, and the horizontal lines are drawn
at the same level in all four sub-panels within b–e. a, Key to the condition
averages shown in each panel of b–e, as well as to the corresponding state-space

panels in Fig. 2. b, Projections of the population response onto the choice axis.
Responses along the choice axis represent integration of evidence in both
contexts. c, Projection onto the motion axis. Responses along the motion axis
represent the momentary motion evidence during both motion (top left) and
colour contexts (bottom left) (curves are parametrically ordered based on
motion strength in both contexts), but not the colour evidence (right, curves are
not ordered based on colour strength). d, Projection onto the colour axis.
Responses along the colour axis represent the momentary colour evidence in
themotion (top right) and colour contexts (bottom right) (ordered), but not the
motion evidence (left, not ordered). e, Projection onto the context axis.
Responses in the motion context (top, all curves above the horizontal line) and
colour context (bottom, all curves below thehorizontal line) are separated along
the context axis, which maintains a representation of context. f–i, Responses
for monkey F, same conventions as in b–e. The responses in f–i are also shown
as trajectories in Extended Data Fig. 7g–l. The drift along the choice axis in
Extended Data Fig. 7g–l is reflected in the overall positive slopes in f.
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ExtendedData Figure 6 | Effect of context onPFCdynamics. a,b, Responses
from monkey A. Same conditions and conventions as in Fig. 2, but for activity
projected into the two-dimensional subspace capturing the variance due to
choice (along the choice axis) and context (context axis). Components along
the choice axis are enhanced relative to the context axis (see scale bars). The
population response contains a representation of context, which is reflected in
the separation between trajectories in the motion and colour contexts along the
axis of context. The contextual signal is strongest early during the dots
presentation. a, Effects of context (motion context versus colour context),

choice (choice 1 versus choice 2), and motion input (direction and coherence,
grey colours). b, Same trials as in a, but averaged to show the effect of the colour
input (blue colours). c, d, Responses from monkey F, same conventions as in
a, b. As in Extended Data Fig. 7a–f, we subtracted the across-condition
average trajectory from each individual, raw trajectory (see Supplementary
Information, section 6.10). The underlying raw population responses are
shown in Extended Data Fig. 5f–i, and confirm that the representation of
context is stable throughout the dots presentation time (Extended Data Fig. 5i).
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Extended Data Figure 7 | Dynamics of population responses in monkey F.
a–f, Response trajectories in the subspace spanned by the task-related axes of
choice, motion and colour. Same conventions as in Fig. 2. Unlike in Fig. 2, here
we subtracted the across-condition average trajectory fromeach individual, raw
trajectory (see Supplementary Information, section 6.10). The raw trajectories
are shown in g–l and the corresponding projections onto individual axes in
Extended Data Fig. 5f–i. Three key features of the population responses are
shared in monkey A (Fig. 2) and monkey F. First, movement along a single
choice axis (a and f, red arrows) corresponds to integration of the relevant
evidence in both contexts. Second, in both contexts the momentary motion
evidence elicits responses along the axis of motion, which is substantially
different from the axis of choice (a and d). Third, the motion evidence is
strongly represented whether it is relevant (a) or irrelevant (d). Thus, the
processing of motion inputs in both monkeys is inconsistent with current
models of selection and integration (Fig. 3b–d). Unlike inmonkey A, responses
along the colour axis in monkey F (f and c) reflect the momentary colour
evidence only weakly. The effects of colour on the trajectories in monkey F

resemble the responses expected by the early selectionmodel (Fig. 3b). g–l, Raw
population responses. Population trajectories were computed and are
represented as in Fig. 2. The trajectories in a–fwere obtained by subtracting the
across-condition average from each individual trajectory shown above. Overall,
the responses have a tendency tomove towards the left along the choice axis. An
analogous, although weaker, overall drift can also be observed in monkey A,
and contributes to the asymmetry between trajectories on choice 1 and choice 2
trials (Fig. 2). Because choice 1 corresponds to the target in the response field of
the recorded neurons (see Supplementary Information, section 6.2), the drift
reflects a tendency of individual firing rates to increase throughout the stimulus
presentation time. By the definition of choice 1 and choice 2, a similar but
opposite drift has to occur in neuronswhose response field overlapswith choice
2 (the responses of which we did not record). In the framework of diffusion-to-
bound models, such a drift can be interpreted as an urgency signal, which
guarantees that the decision boundary is reached before the offset of the dots
(refs 36, 37).
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Extended Data Figure 8 | Simulations of models of selective integration
inconsistent with PFC responses. We simulated population responses
mimicking the observed PFC responses (a–c) and alternative responses
expected based on the threemodels of context-dependent selectiondescribed in
Fig. 3b–d (d–l) (see Supplementary Information, section 8). These simulations
are based on a diffusion-to-bound model, unlike the simulations of the
recurrent neural network models in Figs 5 and 6 and in Extended Data Figs 9
and 10e–s. Here, single neurons represent mixtures of three time-dependent
task variables of a diffusion-to-bound model, namely the momentary motion
and colour evidence and the integrated relevant evidence. At the level of the
population, these three task variables are represented along specific directions
in state space (arrows in a, d, g, j; red, integrated evidence; black, momentary
motion evidence; blue, momentary colour evidence). The four simulations
differ only with respect to the direction and context dependence of the three
task variables. We computed state space trajectories from the population
responses using the targeted dimensionality reduction techniques discussed in
the main text and in Supplementary Information. The resulting simulated
population responses reproduce the schematic population responses in Fig. 3.
a–c, Simulated population responses mimicking the observed PFC responses
(Fig. 2). a, Response trajectories in the two-dimensional subspace capturing the
effects of choice and motion (left) or choice and colour (right) in the motion
(top) and colour (bottom) contexts. Same conditions and conventions as in
Fig. 2a, c and Fig. 2d, f. The three task variables are represented along three
orthogonal directions in state space (arrows). b, Regression coefficients of
choice, motion and colour for all simulated units in the population. For each

unit, coefficients were computed with linear regression on all simulated trials
(top) or separately on trials from themotion or colour context (bottom, context
in parentheses). Scale bars represent arbitrary units. Numbers in the inset along
each axis represent averages of the absolute value of the corresponding
coefficients (6s.e.m., in parentheses). Significant correlations between
coefficients are shown in red (P, 0.05, Pearson’s correlation coefficient r.
c, Estimated strengths of the motion (top) and colour (bottom) inputs during
motion (black) and colour (blue) contexts. Input strength is defined as the
average of the absolute value of the corresponding regression coefficients.
d–f, same as a–c, for simulated population responses expected from context-
dependent early selection (Fig. 3b). When relevant, momentary motion (top)
and colour (bottom) evidence are represented along the same direction as
integrated evidence (arrows in d). g–i, same as a–c, for simulated population
responses expected from context-dependent input directions (Fig. 3c).
Integrated evidence is represented along the same direction in both contexts
(red arrows in g). The relevant momentary evidence (motion in the motion
context, top; colour in the colour context, bottom) is aligned with the direction
of integration, whereas the irrelevant momentary evidence is orthogonal to it
(black and blue arrows in g). j–l, same as a–c, for simulated population
responses expected from context-dependent output directions (Fig. 3d). The
momentary motion and colour evidence are represented along the same
directions in both contexts (black and blue arrows in j). The direction of
integration (red arrows in j) is aligned with the motion evidence in the motion
context (top), and with the colour evidence in the colour context (bottom).
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Extended Data Figure 9 | Model population responses and validation of
targeted dimensionality reduction. a–e, Model population responses along
individual task-related axes, same conventions as in ExtendedData Fig. 5. Here
we defined the task-related axes directly based on the synaptic connectivity in
themodel (see Supplementary Information, section 7.6; and panels h–j), rather
than using the approximate estimates based on the population response (as for
the PFC data, for example, Fig. 2). The same axes and the resulting projections
underlie the trajectories in Fig. 5. Themodel integrates the contextually relevant
evidence almost perfectly, and the responses along the choice axis (b) closely
match the output of an appropriately tuned diffusion-to-bound model (not
shown). Notably, near-perfect integration is not a core feature of the proposed
mechanism of context-dependent selection (see main text, and Extended Data
Fig. 10). f, g, Effect of context on model dynamics, same conditions and
conventions as in Extended Data Fig. 6. Network activity is projected onto the
two-dimensional subspace capturing the variance due to choice (along the
choice axis) and context (context axis). Same units on both axes (see scale bars).
As in Fig. 5, fixed points of the dynamics (red crosses) and the associated right
zero-eigenvectors (that is, the local direction of the line attractor, red lines)were
computed separately for motion (top) and colour contexts (bottom) in the
absence of sensory inputs. The line attractors computed in the two contexts,
and the corresponding population trajectories, are separated along the context
axis. f, Effects of context (motion context, colour context), choice (choice 1,
choice 2) and motion input (direction and coherence, grey colours) on the
population trajectories. g, Same trials as in f, but re-sorted and averaged to show
the effect of the colour input (blue colours). The context axis is approximately
orthogonal to themotion and colour inputs, and thus the effects of motion and
colour on the population response (Fig. 5) are not revealed in the subspace
spanned by the choice and context axes (f and g). h–j, Validation of targeted
dimensionality reduction. To validate the dimensionality reduction approach
used to analyse population responses in PFC (see Supplementary Information,
sections 6.5–6.7), we estimated the regression vectors of choice, motion, colour
and context from the simulated population responses (Fig. 5 and panels
b–g) and compared them to the exactly knownmodel dimensions that underlie
the model dynamics (see definitions below). We estimated the regression
vectors in threeways: by pooling responses from allmodel units and all trials (as
in the PFC data, for example, Fig. 2 and Extended Data Fig. 6), or separately

from the motion- and colour-relevant trials (contexts). Orthogonalization of
the regression vectors yields the task-related axes of the subspace of interest (for
example, axes in Fig. 2). Most model dimensions (motion, colour and context
inputs, and output) were defined by the corresponding synaptic weights after
training. The line attractor, on the other hand, is the average direction of the
right zero-eigenvector of the linearized dynamics around a fixed point, and
was computed separately for the motion and colour contexts. h, The three
regression vectors ofmotion (black arrows), plotted in the subspace spanned by
the choice axis (that is, the regression vector of choice) and themotion axis (that
is, the component of the regression vector of motion orthogonal to the choice
axis). In the colour context, the motion regression vector closely approximates
the actual motion input (black circle—the model dimension defined by
synaptic weights). During the motion context, however, the motion regression
vector has a strong component along the choice axis, reflecting the integration
of motion evidence along that axis. The motion regression vector estimated
from all trials corresponds to the average of the vectors from the two contexts;
thus all three motion regression vectors lie in the same plane. i, The three
regression vectors of colour (blue arrows) plotted in the subspace spanned by
the choice and colour axes, analogous to h. The colour regression vector closely
approximates the actual colour input (blue circle) in the motion context,
but has a strong component along the choice axis in the colour context.
Components along themotion (h) and colour (i) axes are scaled by a factor of 2
relative to those along the choice axis. j, Dot products (colour bar) between the
regression vectors (horizontal axis) and the actual model dimensions (vertical
axis), computed after setting all norms to 1. The choice regression vector
closely approximates the direction of the line attractor in both contexts (squares
labelled ‘1’). As shown also in h and i, the input regression vectors approximate
the model inputs (defined by their synaptic weights) when the corresponding
inputs are irrelevant (squares 2 and 4, motion and colour), whereas they
approximate the line attractor when relevant (squares 3 and 5). Thus, the
motion input is mostly contained in the plane spanned by the choice and
motion axes (h), and the colour input is mostly contained in the plane spanned
by the choice and colour axes (i). Finally, the single context regression vector is
aligned with both context inputs (squares labelled 6), and closely approximates
the difference between the two (not shown).
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Extended Data Figure 10 | Urgency and instability in the integration
process. a–d, Choice predictive neural activity (top) and psychometric curves
(bottom) predicted by several variants of the standard diffusion-to-bound
model (see Supplementary Information, section 7.7). a, Standard diffusion-to-
bound model. Noisy momentary evidence is integrated over time until one of
two bounds (11 or 21; choice 1 or choice 2) is reached. The momentary
evidence at each time point is drawn from a Gaussian distribution whose mean
corresponds to the coherence of the input, and whose fixed variance is adjusted
in each model to achieve the same overall performance (that is, similar
psychometric curves, bottom panels). Coherences are 6%, 18% and 50% (the
average colour coherences in monkey A, Fig. 1b). Average integrated evidence
(neural firing rates, arbitrary units) is shown on choice 1 and choice 2 trials
(thick versus thin) for evidence pointing towards choice 1 or choice 2 (solid
versus dashed), on correct trials for all coherences (light grey to black, low to
high coherence), and incorrect trials for the lowest coherence (red). The
integrated evidence is analogous to the projection of the population response
onto the choice axis (for example, Extended Data Fig. 5b, top left and bottom
right). b, Urgency model. Here the choice is determined by a race between two
diffusion processes (typically corresponding to two hemispheres), one with
bound at11, the other with bound at 21. The diffusion in each process is
subject to a constant drift towards the corresponding bound, in addition to the
drift provided by the momentary evidence. The input-independent drift
implements an ‘urgency’ signal, which guarantees that one of the bounds is
reached within a short time. Only the integrated evidence from one of the
diffusion processes is shown. The three ‘choice 1’ curves are compressed (in
contrast to a) because the urgency signal causes the bound to be reached, and
integration towards choice 1 to cease, more quickly than in a. In contrast,
the ‘choice 2’ curves are not compressed as the diffusion process that
accumulates evidence towards choice 1 never approaches a bound on these
trials. c, Same as a, but here the diffusion process is subject to a drift away from
the starting point (0) towards the closest bound (11 or21). The strength of the
drift is proportional to the distance from the starting point, and creates an
‘instability’ at the starting point. d, Same as b, with an instability in the
integration as in c for both diffusion processes. The asymmetry between choice
1 and choice 2 curves in b and d resembles the asymmetry in the corresponding
PFC curves (Extended Data Figs 5b, f, upper left). e–j, Neural network model
with urgency. This model is based on a similar architecture as the model in
Fig. 4. Unlike the neural network in Fig. 4, which was trained solely based on
the model output on the last time bin of the trial, here the network is trained
based on the output it produces throughout the entire input presentation.
The network was trained to reproduce the integrated evidence (that is, the
decision variable) for one of the two diffusion processes (that is, one of the
two ‘hemispheres’) in a diffusion-to-bound model with urgency (b, see
Supplementary Information, section 7.7). Similar conventions as in Fig. 5. The
urgency signal is controlled by an additional binary input into the network.

Here, the urgency and sensory inputs are turned off as soon as a bound is
reached. The network generates only a single, stable fixed point in each context,
corresponding to the decision boundary (large red cross). The model also
implements a series of points of relatively slow dynamics (small red crosses)
approximately lying on a single curve. The axes of slow dynamics at these slow
points (red lines) are locally aligned. Notably, responses at these slow points
have a strong tendency to drift towards the single, stable fixed point (the
decision boundary), and thus the curve of slow points does not correspond to
an approximate line attractor. This drift implements the urgency signal and
causes an asymmetry in the trajectories, which converge on a single point for
choice 1, but have endpoints that are parametrically ordered by coherence
along the choice axis for choice 2. As discussed below (panel r), thismodel relies
on the samemechanismof selection as the originalmodel (Fig. 5, seemain text).
k–p, Neural network model with instability. Trajectories show simulated
population responses for a model (same architecture as in Fig. 4) that was
trained to solve the context-dependent task (Fig. 1) only on high-coherence
stimuli and in the absence of internal noise (see Supplementary Information,
section 7.7). Same conventions as in Fig. 5. In the absence of noise, prolonged
integration of evidence is not necessary for accurate performance on the task.
As a consequence, the model implements a saddle point (blue cross) instead of
an approximate line attractor. Points of slow dynamics (small red crosses,
obscured by the red lines) occur only close to the saddle point. The right zero-
eigenvectors of the linearized dynamics around these slow points (red lines)
correspond to the directions of slowest dynamics, and determine the direction
of the axis of choice. When displaced from the saddle point, the responses
quickly drift towards one of the two stable attractors (large red crosses)
corresponding to the choices. For a given choice, trajectories for all coherences
therefore end in the same location along the choice axis, in contrast to the
responses in the original model (Fig. 5). Despite these differences, the original
model (Fig. 5) and the network model with instability (k–p) rely on a common
mechanism of context-dependent selection (see panel s). q–s, Dynamical
features (key, bottom) underlying input selection and choice in three related
neural networkmodels. Allmodels are based on a common architecture (Fig. 4)
but are the result of different training procedures. q, Dynamical features of the
model described in themain paper (Figs 5 and 6), re-plotted fromFig. 6c. r, The
urgency model (e–j). s, The instability model (k–p). In all models, the
developing choice is implemented as more or less gradual movement along an
axis of slow dynamics (specified by the locally computed right eigenvectors
associated with the near-zero eigenvalue of the linearized dynamics, red lines).
The inputs are selected, that is, result in movement along the axis of slow
dynamics, depending on their projection onto the selection vector (the locally
computed left eigenvectors associated with the near-zero eigenvalue). In this
sense, the threemodels implement the samemechanisms of context-dependent
selection and choice.
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