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Decision-related activity in sensory neurons reflects
more than a neuron’s causal effect
Hendrikje Nienborg1 & Bruce G. Cumming1

During perceptual decisions, the activity of sensory neurons cor-
relates with a subject’s percept, even when the physical stimulus is
identical1–9. The origin of this correlation is unknown. Current
theory proposes a causal effect of noise in sensory neurons on
perceptual decisions10–12, but the correlation could result from
different brain states associated with the perceptual choice13 (a
top-down explanation). These two schemes have very different
implications for the role of sensory neurons in forming decisions14.
Here we use white-noise analysis15 to measure tuning functions of
V2 neurons associated with choice and simultaneously measure
how the variation in the stimulus affects the subjects’ (two maca-
ques) perceptual decisions16–18. In causalmodels, stronger effects of
the stimulus upon decisions, mediated by sensory neurons, are
associated with stronger choice-related activity. However, we find
that over the time course of the trial these measures change in
different directions—at odds with causal models. An analysis of
the effect of reward size also supports this conclusion. Finally, we
find that choice is associated with changes in neuronal gain that are
incompatible with causal models. All three results are readily
explained if choice is associated with changes in neuronal gain
caused by top-down phenomena that closely resemble attention19.
We conclude that top-down processes contribute to choice-related
activity. Thus, even forming simple sensory decisions involves com-
plex interactions between cognitive processes and sensory neurons.

Considerable progress has been made in explaining the neuronal
mechanisms underlying decision making12, which is a major goal in
systems neuroscience. For simple perceptual decisions, recent theory
proposes that sensorimotor areas accumulate sensory evidence about
the physical world, delivered by sensory neurons10,11,20–22. Noise in the
sensory neurons causes variability in the behavioural response10–12,
resulting in a covariation between the neuronal activity and the
behaviour1–9. (We note that this causal effect of noise in the sensory
representation has only been invoked for sensory areas, not for
sensorimotor areas.) However, this covariation could also result from
top-down effects13 in which brain states23 that are associated with one
behavioural response also alter the response of the sensory neurons. A
third (bottom-up) possibility is that sensory neurons that themselves
have no causal effect on the decision are correlated with sensory neu-
rons that do have a causal effect. These schemes have markedly
different implications for the role of sensory neurons in forming
decisions. Sensory neurons either only encode the physical stimulus
or simultaneously form an integral part of themechanism used by the
brain to decode the sensory information. Todistinguish between these
views, we combined the measurement of choice-related activity in
disparity selective V2 neurons in a disparity-discrimination task, with
a stimulus that permitted the use of white-noise analysis. This allowed
the simultaneous application of ‘subspace mapping’15, to describe
how disparity affects the neuronal response (‘disparity subspace
map’), and ‘psychophysical reverse correlation’16–18, to extract a kernel

describing how disparity affects the subjects’ perceptual choices. This
comprehensive data set enables us to differentiate among these
schemes.

Twomacaquemonkeys performed a coarse disparity-discrimination
task (Fig. 1) while we recorded extracellularly from disparity-selective
neurons in their visual areas V2. The stimulus, a circular random dot
stereogram, contained a spatially uniform binocular disparity that
varied randomly on each video frame. At the end of each trial the
monkeys reported in a forced choice task whether the stimulus
appeared near (‘near’ choice) or far (‘far’ choice). We exploited this
random variation to perform psychophysical reverse correlation16–18,
and simultaneously tomeasure neuronal subspacemaps15 for disparity.

First we examined how the monkeys weight the disparity signal in
the stimulus to form their decision16. We calculated the difference
between the average stimulus preceding the monkeys’ ‘near’ choices

1Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, 49 Convent Drive, Bethesda, Maryland 20892, USA.

–50 –25 0 25 50
0

0.5

1

–0.5 0 0.5 –0.5 0 0.5 –0.5 0 0.5 –0.5 0 0.5 –0.5 0 0.5
0

0.5

P
ro

b
ab

ili
ty

P
er

ce
nt

ag
e 

of
ne

ar
 c

ho
ic

es

Added signal: –50% –25%

Disparity (º)

Added signal (%)

0% 25% 50%

0 10 20 30 40 2,000

–0.3

0.3

a

d

0 2 Time (s)

Time (ms)

c

b

Fixation marker

Stimulus

Choice targets

Trial start Trial end

D
is

p
ar

ity
 (º

)

Figure 1 | Methods. a, Sketch of the sequence of events during one trial.
b, Example time series of the stimulus. c, Probability mass distributions of
the stimuli for one experiment (probability as a function of disparity), with
signal disparities of20.3u and 0.15u. Each plot depicts one signal condition
(negative percentages indicate near signal disparities). d, The monkey’s
performance for this experiment (in percentage ‘near’ choices as a function
of percentage added signal).
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and the average stimulus preceding the monkeys’ ‘far’ choices. This
‘psychophysical kernel’ measures the relative probability with which
the disparity on any given frame occurred before the monkeys’ ‘near’
choice. The amplitude of the kernel decreased substantially over the
course of the trial (Fig. 2a, b). (The Supplementary Information
discusses the shape of the psychophysical kernel and shows that this
linear analysis adequately captures the monkeys’ behaviour.) This
means that the monkeys relied predominantly on the stimulus
disparities at the start of the trial and progressively less so towards
its end. If one considers neurons representing this sensory evidence,
their activity early in the trial should have a stronger effect on the
decision than activity late in the trial. Thus, if the choice-related
activity reflected only the causal effect of the neuronal firing on the
choice, the size of the choice-related activity should also decrease over
time. This prediction follows directly from the fact that, in the causal
explanation, choice-related activity is the effect of noise in the sensory
evidence that is used to make a decision.

To test this prediction, we quantified the choice-related signal as
‘choice probability’3. (Choice probabilities were corrected for the
stimulus-induced component; see Supplementary Information.) The
time course of the choice-related signal in our data (Fig. 2c) is different
from that predicted from the time course of the psychophysical data in
the causal-only scheme. Choice probabilities were measured for 76
neurons that had been recorded while the data for the psychophysical

kernel were gathered. For 57 of the 76 neurons, for which the choice
probability was .0.5, we examined the mean choice probability as a
function of time (Fig. 2c). Consistent with previous findings4, the
choice probability plateaus after about 500ms, which is quite unlike
the statistically significant decrease in amplitude of the psychophysical
kernel over time (correlation coefficient, r520.81; P, 10223

between amplitude and time, over the second half of the trials).
Although choice-probability time courses for individual neurons are
noisy, we addressed the possibility that some neurons behave as if they
play a causal role by computing the correlation coefficient, R, between
the time course of the choice probability for each individual neuron
and the time course of the average psychophysical kernel amplitude
(Fig. 2d). We found a significant negative correlation between these
coefficients and a neuron’s choice probability (r520.28, P, 0.05),
indicating that neuronswith high choice probabilities tended to show a
negative correlation with the time course of the psychophysical kernel
amplitude, as expected from the average data (Fig. 2b). This and other
features of individual time courses (Supplementary Discussion) are at
odds with the causal model.

The fact that the results in Fig. 2 are incompatible with the causal-
only account, suggests that choice probabilities are at least partly of
non-causal, possibly top-down, origin. We therefore sought a
signature of possible top-down mechanisms at the level of individual
neurons. This could employ a mechanism, similar to attention, that
characteristically alters the gain of sensory neurons19. To test this
possibility, we designed our disparity-varying stimulus such that it
permitted themeasurement of subspacemaps for disparity (Methods).

These subspace maps quantify the effect of each disparity (in the
stimulus with no added signal) on the neuron. Calculating subspace
maps separately for stimuli associated with ‘near’ and ‘far’ choices
quantifies any effects of choice on the neuronal response. Choice-
related activity itself implies some difference between these subspace
maps. If the difference is caused by a change in neuronal gain, the two
subspace maps should be scaled versions of each other. Example
subspace maps for one neuron (Fig. 3a, b) show that the gain of this
neuron increased by 84%, whereas the additive change was close to 0
(20.032 spikes per frame). A second example shows a more typical
gain increase (18%; y offset, 0.005 spikes per frame; Fig. 3c, d).

The distribution of relative gain change as a function of choice
probability demonstrates that choice probabilities are associatedwith
choice-related changes in neuronal gain (n5 76, r5 0.44, P, 1024

(monkey 1: n5 42, r5 0.54, P, 0.001; monkey 2: n5 34, r5 0.32,
P, 0.07); Fig. 3e). The geometric mean of the relative gains was 1.16
(1.17 and 1.15 for monkeys 1 and 2, respectively), which is signifi-
cantly different from 1 (P, 0.001, by resampling). Conversely, there
was no systematic relationship between the y offset and the choice
probability (r5 0.03, P5 0.77 (monkey 1: r520.18, P5 0.25;
monkey 2: r5 0.18, P5 0.31); mean offset, 20.03 spikes per frame;
Fig. 3f). Thus, it is the choice-dependent change in response gain that
explains the difference in mean response rate between preferred and
null choices. A modest gain change could arise, even in the causal
account of choice probability, from the firing properties of cortical
neurons (for example Poisson spiking24). A shuffling technique
showed that this effect was too small to account for the observed gain
changes (Supplementary Information).

The gain change suggests the operation of a mechanism similar to
feature-selective attention19, but which varies from trial to trial. This
could arise in several ways. First, as the decision is formed, a signal
altering the neuronal gainmay be sent back to those neurons support-
ing this decision. Alternatively, this gain change may implement a
perceptual working memory25, or a perceptual bias/expectation:
attending to near features increases the response gain of near-prefer-
ring neurons and thus makes a ‘near’ response more likely.

An additional feature of our data provides evidence that at least the
latter mechanism operates. The reward size depended systematically
on the animals’ performance (Methods). This performance was better
in trials for which a large reward was available (Fig. 4a and
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Figure 2 | Psychophysical kernel and choice-related signal have different
time courses. a, Psychophysical kernel (averaged over 76 experiments;
n5 17,200 trials; two monkeys) as a function of disparity and time. Colour
represents amplitude (in occurrences per frame). b, Normalized amplitude
of the psychophysical kernels decreases over time. c, Averaged choice-related
signal over time. Shaded grey areas in b and c, 61 standard error. d, The
correlation coefficient, R, over time between choice probability (for
individual neurons) and the amplitude of the mean psychophysical kernel,
plotted against a neuron’s mean choice probability. Colour represents
temporal integration time (Supplementary Methods); bold symbols,
significantR (P, 0.05, by resampling); circles, data frommonkey 1; squares,
data from monkey 2.
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Supplementary Information), indicating that animals used more
information about the stimulus when reward size was large. It allows
us to further test causal explanations for choice probability: when the
animal uses more stimulus-derived information, choice probability
should be larger. Contrary to this prediction, we found that choice
probabilities were significantly smaller for trials in which a large
reward was available (P, 0.006, paired t-test; Fig. 4b). This result
can be explained by assuming that the animal has some bias (or
expectation) at the start of each trial (regardless of reward size), and
that this bias engages our proposed top-down mechanism. When the
available reward is small and themonkeysmake less use of the sensory
input (as demonstrated by the psychophysical kernel; Fig. 4a), the bias
will have a stronger impact on the behavioural response. Conversely,
when a large reward is available, the improved performance implies
that any initial bias is more likely to be overridden by the evidence
provided by the visual stimulus. Hence, any component of choice
probability reflecting a top-down effect of bias will be smaller in
large-reward trials when the decision is more strongly driven by the
actual stimulus and less by the monkey’s initial bias.

Our results provide three lines of evidence against the view that
decision-related activity in sensory neurons reflects only the causal
effect of neuronal noise on sensory decisions. First, the time course of
the decision-related signal was incompatible with that predicted
from the behavioural data in the causal-only scheme. Second, larger
rewards systematically improved the animals’ behaviour, but
reduced choice probability, a result opposite to the expectation from
causal explanations. Finally, choice probabilities were associated with
choice-dependent gain changes larger than could be explained in the
causal scheme. All three phenomena follow naturally from a top-
down scheme in which the animals’ perceptual state alters the res-
ponse of sensory neurons. An alternative explanation is that neurons
which do not contribute to the decision show choice probability
because they are correlated with neurons that do contribute. Such
a scheme, if sufficiently rich, may explain the data without invoking a
top-down mechanism (Supplementary Discussion), but nonetheless
abandons the principle that choice probabilities reflect only the
causal effect of sensory noise upon decisions. Given that the
choice-dependent gain changes we observe are characteristic of
top-down mechanisms such as attention, our top-down scheme is
the most parsimonious.

Changes in neuronal gain may facilitate the decoding of neuronal
populations by appropriately weighting relevant neurons26–28.
Implementing such a decoding mechanism at the level of sensory
neurons allows the brain extraordinary flexibility to perform sensory
decisions in different circumstances. Here we have shown that these
gains vary with a subject’s choice, within a fixed task. This gain change
could implement a perceptual bias or expectation (attending to near or
far features), and could also follow the formation of a decision. It may
serve to promote perceptual stability in the presence of ambiguous29 or
noisy sensory signals. Whether it reflects an expectation or a post-
decision signal, our data suggest that even simple sensory decisions
involve top-down mechanisms that combine cognitive processes and
the sensory representation in previously unreported ways.

METHODS SUMMARY

All procedures were performed in accord with the US Public Health Service

policy on the humane care and use of laboratory animals and all protocols were

approved by the National Eye Institute Animal Care and Use Committee. We

recorded extracellular activity from disparity-selective single V2 units while two
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monkeys (Macaca mulatta) performed disparity discrimination. Upon fixation,
a stimulus was presented for 2 s and followed by two choice targets. After a

saccade to the correct target, the monkeys received a liquid reward. Stimuli were

dynamic random dot patterns: a disparity-varying centre (disparity changed

randomly on each frame; 96-Hz frame rate) and a surrounding annulus at 0u.
The centre disparity was chosen from a set of evenly spaced disparity values

centred around 0u (encompassing the preferred and null disparity of each neu-

ron). We introduced a detectable signal by increasing the probability of occur-

rence of one disparity within some trials. These signal disparities approximately

matched each neuron’s preferred and null disparity. Signal trials served only to

control behaviour: all analyses were restricted to trials with no signal added.

Psychophysical kernels were computed as the difference in the respective

mean stimulus matrices before ‘near’ and ‘far’ choices. The average kernel was

a weighted average of the kernel for each experiment for which neuronal data

were included. Choice probabilities were obtained as described previously3,6, but

corrected for the stimulus-induced component (Supplementary Information).

For the subspace analysis, the average response of each neuron following one

frame of a given disparity, di, was computed as a spike density function, Si(t).We

calculated the total number of spikes elicited by one frame of disparity di as the

sum of the overall mean number of spikes per frame and the integral of

the deviation of Si(t) about this mean. Analysing the trials separately according

to the monkeys’ choice yield subspace maps for each choice.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Task-and-reward regimen. Two monkeys were trained in a binary, forced-

choice disparity-discrimination task (Fig. 1a). They judged whether the central

stimulus region appeared in front or behind the surrounding annulus. Trials

started upon fixation (within 0.5u of a fixation marker), initiating a 2-s stimulus

presentation followed by the appearance of two choice targets (respectively 3u
above and below the fixationmarker). If themonkeys indicated their decision by

a saccade to the correct choice target within 500ms of the stimulus disappear-

ance, they received liquid rewards. If the monkeys made correct choices on three

consecutive trials, the reward on the fourth and on all subsequent correct trials

was approximately three times its normal size, until the monkey made an error.

After an error, the reward size was reset to its normal size.

Recordings. We recorded extracellular activity from disparity-selective single

units in these monkeys’ visual areas V2, as described previously6,30. Both animals

were implanted with scleral search coils in both eyes31, head-fixation posts and a

recording chamber under general anaesthesia. Positions of both eyes (for 17 of 58

neurons formonkey 2, signalswere available only for one eye)weremeasuredwith

a magnetic scleral search system (CNC Engineering) and digitized at 800Hz. The

monkeys viewed the stimuli on EIZO Flexscan F980 monitors in a Wheatstone

stereoscope configuration (89-cm viewing distance). All procedures were

performed in accord with the US Public Health Service policy on the humane

care and use of laboratory animals and all protocols were approved by the

National Eye Institute Animal Care and Use Committee.

Stimulus. All stimuli were circular, dynamic, random dot stereograms (50%

black and 50% white dots of 99% contrast; dot density, generally 40%; dot size,

0.09u3 0.09u). Each random dot stereogram had a disparity-varying centre (3–5u
in diameter) and a 1–2u-wide surrounding annulus at 0u disparity (Fig. 1b). On

each frame, all centre dots had the same disparity, but this disparity value changed

randomly from frame to frame (96-Hz frame rate). For the condition with no

added signal, the disparity on each frame was drawn at random from a uniform

distributionof discrete, equally spaced disparities (symmetrical about 0udisparity
(central plot in Fig. 1c), encompassing the preferred and the null disparity of each

neuron). Signal disparities (always one near and one far disparity) approximately

matched the preferred and null disparities of the neuron. Disparity signal was

introduced by increasing the probability of the signal disparity on each frame

(Fig. 1c).

Psychophysical reverse correlation. Only trials with no added signal were

included in the analysis. Each stimulus trial was summarized in a two-dimensional

matrix in which each row corresponds to one disparity and each column to one

stimulus frame. For each column in this matrix, there is one entry that is 1,

corresponding to the disparity on this frame, and all other entries are 0. We then

computed the averagematricespreceding themonkey’s ‘near’ and ‘far’ choices. For

eachof the 200 stimulus frames, the resulting values correspond to theprobabilities

with which each disparity preceded a ‘near’ choice or a ‘far’ choice, respectively.

This yields a two-dimensional (time versus disparity) probability distribution. The

difference between the probability distributions preceding ‘near’ choices and

‘far’ choices defined the psychophysical kernel for each experiment. (Negative

disparities were defined as near.)

The kernel shapes change little between monkeys or as a function of the signal
disparities (Supplementary Fig. 2).We therefore collapsed all thedata into a single

psychophysical kernel to maximize the temporal resolution. The average psycho-

physical kernel (Fig. 2a) was obtained for all experiments for which the simulta-

neously recorded neurons passed the inclusion criteria. Because the disparity

range was adjusted for each neuron, the psychophysical kernel for each experi-

ment was weighted by the number of disparity values included in this experiment

(this ranged between 5 and 13 disparity values) andby the number of trials for this

experiment. Only data for disparity values (20.4u,20.3u,…, 0.4) were included

in this average.

As an estimate of the amplitude of the psychophysical kernel, we computed

the inner product of the time-averaged psychophysical kernel and the psycho-

physical kernel (temporally smoothed, 93-ms boxcar window) for each 10-ms

bin, and normalized this inner product by its overall mean. Confidence intervals

for all measures were derived by resampling.

All analyses were based on the linear kernel of the psychophysical data.

Consistency analyses (Supplementary Information) showed that this linear kernel

provides an excellent description of the monkeys’ behaviour. Further analyses

indicated that second-order interactions were negligible (Supplementary
Information).

Subspace analysis. The analysis was based on all trials with no added signal. First,
the average response of each neuron following one frame of a given disparity, di,

was computed as a spike density function, Si(t), smoothed using a 10-ms boxcar

window (coloured solid lines in Supplementary Fig. 3a). As an estimate of the

impact of one frame of disparity di on the firing rate of the neuron, we calculated

the total number of spikes, si, elicited by one frame of di. This metric corresponds

to the sum of the mean number of spikes per frame, m (black line in

Supplementary Fig. 3a) and the integral of the deviation of Si(t) around thismean:

si~mz

ð
(Si(t){m)dt

We plot the disparity subspace map, si, as a function of di in Supplementary Fig.

3b. Performing this analysis on the trials separated according to the monkeys’

choice yields the subspace maps separated by choice (Fig. 3a, c). To quantify the

choice-dependent modulation in tuning, we plotted the responses in the null-
choice trials against those in the preferred-choice trials (Fig. 3b, d), and estimated

(using type II regression) the slope (gain change) and the y offset (additive

change).We note that because the spike density function is amean rate calculated

separately for each choice, variations in the disparity content of the stimulus that

are associated with choice will not produce differences in the subspace maps.

Analysis of choice probabilities. Choice probabilities were obtained for all trials
with no added signal as described previously3,6. As the psychophysical kernel

demonstrates, there are systematic differences in the stimuli preceding themonkeys’

choices. Choice probabilities were corrected for this stimulus-induced component

(Supplementary Methods).
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