
How does a neuron in the sensory or association cortex 
optimize the strength of its synapses to improve the per-
formance of the entire brain network? In computational 
neuroscience, the task of determining the connections 
that matter for behaviour is known as the ‘credit- 
assignment problem’ (REFS 1,2). For artificial neural net-
works, powerful methods exist to solve this problem3,4. 
However, how it is solved in the brain is an important 
but still open question.

Suppose that an animal recognizes a particular 
stimulus, selects a response and then is unexpectedly 
rewarded. Synapses in association and motor cortices 
should change to promote the selection of the same 
action if the same stimulus reappears in the future. 
Furthermore, learning should sharpen representations 
of the stimulus in sensory cortices if slightly different 
stimuli require distinct responses.

In this Review, we discuss biologically plausible 
learning rules that may enable synapses to change in a 
manner that optimizes behavioural outcome. We focus 
on synaptic plasticity in sensory cortices and review 
frameworks in which learning relies on modifiers of syn-
aptic plasticity. The first modifying factor is a feedback 
signal from the response-selection processing stage back 
to association and sensory cortices that informs neu-
rons about the action that was selected. This feedback 
signal leads to the ‘tagging’ of synapses and gates their 
plasticity. The second modifying factor is the release 
of neuromodulators, which, among other functions, 
inform synapses about reward-prediction errors (RPEs; 
that is, whether the outcome of an action was better or 
worse than expected). We discuss how the combination 
of feedback connections and neuromodulators permits 
new learning rules that promote future actions that lead 
to more reward and enable ‘deep learning’ in the brain.

Changing the strength of synapses
In 1949, Donald O. Hebb5 proposed that the change in 
the strength of a synapse depends on presynaptic and 
postsynaptic activity. He phrased this hypothesis as fol-
lows: “When an axon of cell A is near enough to excite a 
cell B and repeatedly or persistently takes part in firing 
it, some growth process or metabolic change takes place 
in one or both cells such that A’s efficiency, as one of the 
cells firing B, is increased”. Hebb’s rule can be formalized 
as follows:

Δwi,j = β ∙ fi(ai) ∙ fj(aj)       (1),

where Δwi,j is the change in the strength of the con-
nection between neurons i and j, β is the learning 
rate parameter and determines the magnitude of the 
change, and fi(ai) and fj(aj) are functions that depend on 
presynaptic activity (ai) and postsynaptic activity (aj), 
respectively.

A wealth of evidence supports Hebb’s rule6, but 
researchers realize that the rule is incomplete if the aim 
is to select appropriate actions, because the rule is igno-
rant about the usefulness of the network’s output. In ani-
mals, rewards and punishments influence learning such 
that behaviours that lead to reward are reinforced and 
behaviours that result in aversive outcomes are inhibited.

The influence of theories of reinforcement learning1 
increased tremendously when it became clear that neuro-
modulatory systems, such as the dopaminergic system7, 
code for unexpected reward. In reinforcement learning 
theory, unexpected rewards and punishments give rise 
to RPEs1,8. The RPE is positive if the animal receives 
more reward than expected and negative if the outcome 
is disappointing. Reinforcement learning theories have 
proposed that the coincident activity of presynaptic and 

1Department of Vision and 
Cognition, Netherlands 
Institute for Neuroscience, 
Royal Netherlands Academy 
of Arts and Sciences, 
Amsterdam, Netherlands. 
2Department of Integrative 
Neurophysiology, Center for 
Neurogenomics and Cognitive 
Research, VU University, 
Amsterdam, Netherlands. 
3Psychiatry Department, 
Academic Medical Center, 
Amsterdam, Netherlands. 
4Department of Basic 
Neurosciences, Geneva 
Neuroscience Center, Faculty 
of Medicine, University of 
Geneva, Geneva, Switzerland.

*e-mail: p.roelfsema@nin.
knaw.nl

doi:10.1038/nrn.2018.6
Published online 16 Mar 2018

Reward-prediction errors
(RPEs). Differences between 
the amount of reward that was 
expected and the amount that 
was obtained.

Reinforcement learning
Trial-and-error learning when 
interacting with an 
environment and experiencing 
rewards and punishments as 
consequences of the chosen 
actions.
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Abstract | Humans and many other animals have an enormous capacity to learn about sensory 
stimuli and to master new skills. However, many of the mechanisms that enable us to learn remain 
to be understood. One of the greatest challenges of systems neuroscience is to explain how 
synaptic connections change to support maximally adaptive behaviour. Here, we provide an 
overview of factors that determine the change in the strength of synapses, with a focus on 
synaptic plasticity in sensory cortices. We review the influence of neuromodulators and feedback 
connections in synaptic plasticity and suggest a specific framework in which these factors can 
interact to improve the functioning of the entire network.
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Eligibility traces
Local parameters at the 
synapses of a network that 
determine whether they 
undergo plasticity upon 
reward-prediction errors during 
reinforcement learning.

Synaptic tags
Biochemical signals at 
synapses that determine 
whether they will undergo 
plasticity.

Error-backpropagation rule
A mathematical method used 
to calculate the contribution of 
connections to the error of a 
network with multiple layers 
between input and output.

postsynaptic neurons induces eligibility traces at synapses 
that determine whether the synapse will undergo plas-
ticity in the case of an RPE. Eligibility traces correspond to 
synaptic tags, which are biochemical markers at synapses 
that are induced by coincident presynaptic and postsyn-
aptic activity but that can be maintained for some time 
after the neurons stop firing1,9–13. Studies have started to 
elucidate the molecular identity of these synaptic tags14,15, 
but many discoveries remain to be made.

A positive RPE (for example, signalled by the dopa-
mine released from the substantia nigra and ventral teg-
mental area) is a well-suited signal to strengthen these 
tagged synapses because it increases the probability that 
rewarded actions will be taken again in the future. By 
contrast, a negative RPE should decrease the strength 
of tagged synapses. Neuromodulatory systems, includ-
ing the dopaminergic system, project rather diffusively  
to the cortex and subcortical structures, suggesting that 
their signals are conferred globally. The introduction of 
the RPE as a factor to the Hebbian rule results in the 
following plasticity rule11,16–19:

Δwi,j = β ∙ fi(ai) ∙ fj(aj) ∙ RPE        (2).

Here, we refer to the influence of neuromodulatory 
signals as ‘plasticity-steering’ effects.

Another factor that determines learning is selective 
attention, which is intuitive; that is, we learn more if 
we pay attention20–22. A formal way to test the role of 
attention in learning uses the redundant–relevant cue 
paradigm20,21,23, in which subjects learn through trial 
and error to map stimuli onto responses. In each trial, 
participants see multiple stimuli that are all inform-
ative about the desired response, such that much of 
the information is redundant, but the participants pay 
attention to only one of the stimuli and learn about 
only the attended stimuli and not the unattended ones. 
This point is important because unattended stimuli are  
paired with the same behavioural responses and are asso-
ciated with the same RPEs as the attended stimuli. Only 
under special conditions can perceptual learning occur 
without attention24 — for example, if stimuli are very 
weak. Weak stimuli seem to escape from the attentional 
control mechanisms that would otherwise suppress the 
plasticity of non-attended items25.

The attentional signals that gate learning could origi-
nate from brain areas in the motor and frontal cortex that 
select behavioural responses. Action selection is invar-
iably associated with an attention shift26 that, through 
feedback connections, reaches the neurons in sensory 
cortices that code for the features that caused the action27. 
Introducing attention signals into the learning rule gives:

Δwi,j = β ∙ fi(ai) ∙ fj(aj) ∙ RPE ∙ FBj       (3),

where FBj is the feedback from higher brain regions that 
gate the plasticity of synapses onto neuron j. We refer 
to the effect of FBj as ‘gating’ because its value varies 
between 0 (not attended) and 1 (fully attended) and is 
always positive (unlike the ‘steering’ RPE signal, which 
can change sign).

FIGURE 1 illustrates the main ideas underlying this 
learning rule25,28. Stimulus information first propagates 
from the sensory cortex to the motor cortex during a 
feedforward processing phase29 (FIG. 1). The motor cortex 
selects an action and uses feedback connections to high-
light representations in lower-level cortices that provided 
input for the action30. The feedback connections induce 
synaptic tags (also known as eligibility traces) that gate 
plasticity. The placement and strength of the tags depend 
on presynaptic and postsynaptic activity fi(ai) and fj(aj) 
and on the feedback FBj. In this framework, different 
actions would activate different feedback connections 
and cause distinct patterns of synaptic tags, ensuring that 
the credit (or blame) is assigned to those synapses that 
mattered for the stimulus–response mapping. The tags 
should persist until the RPE signal becomes available. 
Neuromodulators signalling the computed RPE interact 
selectively with tagged synapses to modify their strength.

The learning rule depicted in equation 3 permits the 
training of networks with many layers between the sen-
sory and motor cortices. If the strength of the feedback 
connections is proportional to that of the feedforward 
connections, a property that can emerge during learn-
ing28,31, the learning rule is equivalent to the so-called 
error- backpropagation rule32 that is used to train networks 
with many layers3. Such deep artificial neural networks 
have achieved excellent and sometimes even super human 
performance in image- recognition tasks4 and computer 
games33. Thus, although the error- backpropagation rule 
was previously thought to be biologically unrealistic34, 
new insights suggest that the learning rule of equation 3 
can be implemented by the brain to enable forms of deep 
learning (BOX 1).

Below, we review the corticocortical and cortico-
subcortical connections that may enable the learning 
rule in equation 3. We then discuss how learning changes 
the representation of stimuli in sensory and association 
cortices and review mechanisms for controlling plasticity.

Sensory and association cortex
The cortex contains a vast network of circuits for local 
and long-range interactions (FIG. 2a,b). Cortical areas are 
composed of columns, and the neuronal subtypes and 
local connectivity patterns in different areas are simi-
lar35,36. Cortical areas can be arranged in a hierarchical 
manner in which lower-order cortical regions (level I in 
FIG. 2b) feed information forward to higher-order regions 
(level II in FIG. 2b), and higher-order regions can feed 
information back to lower-order regions37. When going 
up in the hierarchy, the neuronal receptive-field proper-
ties become more complex37,38. The principles of corti-
cal organization and connectivity have been excellently 
reviewed elsewhere39–46. Here, we summarize key aspects 
of cortical organization that relate to the feedforward and 
feedback streams and that are relevant to understanding 
plasticity rules in hierarchical networks.

Feedforward and feedback connections
There are laminar differences as to where feed forward 
and feedback inputs originate and terminate37,43 (FIG. 2). 
Anatomical and neurophysiological studies have revealed 
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that sensory inputs relayed by the thalamus initially acti-
vate neurons in layer 4 (L4) and L6 of sensory cortices 
in primates47–50, with inputs in L3 and L5 in rodents as 
well51,52. This input then rapidly propagates to the other 
layers such that neurons in all layers are activated by the 
sensory input. There is a feedback system within the cor-
tical column whereby strong feedback originates from L6 
and predominantly suppresses activity53,54 by activating 
inhibitory neurons55.

Sensory areas also receive feedback connections from 
higher cortical areas, which mostly provide input to 
superficial layers (L1–L3) and parts of L5 (FIG. 2b). Hence, 
whereas interareal feedforward inputs target L4, interar-
eal feedback inputs target the apical tufts of L2/3 and L5 
pyramidal cells56,57, as well as inhibitory58 and disinhibitory 
microcircuits59,60. These features may have important con-
sequences for the role of feedback connections in synaptic 
plasticity (discussed below).

Cortical areas also interact with one another indi-
rectly via the thalamus (FIG. 2c). Cortical neurons in 
L5 that project to the brainstem send collaterals to 
higher- order thalamic matrix nuclei (as opposed to the 
first-order sensory-specific core nuclei), which, in turn, 
provide feedforward input to L4 in higher-order cortical 
areas39,61–63. Furthermore, projections from higher-order 
thalamic nuclei also feed information back to lower- 
order cortical areas57,64 (FIG. 2c), where they target L1 and 
L5 (REFS 61,65–67). These feedforward and feedback routes 
through the thalamus permit the integration of sensory 
information from the periphery68–71 with information 
from the association and motor cortices39,64,72,73.

Pharmacological studies have demonstrated that 
feedforward inputs drive postsynaptic activity by acti-
vating AMPA receptors (AMPARs). By contrast, the 
synapses of many feedback connections modulate firing 
rates mainly via NMDA receptors (NMDARs)74,75 and 

Fig. 1 | Putative control signals that influence synaptic plasticity. During sensory processing (left side of figure), 
feedforward connections (black connections) propagate activity (depicted by black arrowheads) from lower to higher 
areas. Neurons in the frontal cortex compete to determine the selected action. If an action has been selected, the 
‘winning’ neurons provide an attentional feedback signal to the lower-level synapses responsible for the selected action 
(red connections), enabling their plasticity in a process that may be related to calcium events in dendrites (middle part of 
the figure). This enabling is called ‘tagging’ (‘T’s in red circles represent tagged connections). The other connections are 
not plastic (dashed connections in the networks in the lower row). Note that different actions enable plasticity of different 
connections as illustrated (different rows of the network). Neuromodulators code for the reward-prediction error  
(RPE; that is, whether the outcome was better (blue) or worse (grey) than expected) and determine whether the tagged 
synapses increase (thick red connections) or decrease in strength (dashed red connections). V1, primary visual cortex. 
The lower panel is adapted with permission from REF. 25, Elsevier.
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Derivatives
The derivative of the error 
function to a synaptic weight is 
the rate of change of the error 
when changing the strength of 
a particular synapse.

Gradient descent
A mathematical optimization 
method that determines the 
direction of the vector of 
changes in all synaptic weights 
that causes the largest 
decrease in the error of  
the network.

Translation invariant
A property of an image 
processing system whereby the 
recognition of the object is 
independent of the object’s 
location relative to the viewer.

Feedback alignment
A process in which, if the 
feedforward and feedback 
weights of a neural network are 
not reciprocal, error 
backpropagation causes 
feedforward weights to align; 
that is, to become more 
symmetrical.

Box 1 | Deep learning in the brain

In recent years, great advances have been made with deep artificial neural networks that are composed of many layers 
and that are trained with the so‑called error‑backpropagation rule, a method that specifies how connections between 
the units of a network should change during training. The error‑backpropagation rule adjusts synaptic weights in 
networks that are composed of several layers to reduce the errors in the mapping of inputs into the lower layer to 
outputs in the top layer. It does so by first computing the error, which is the difference between the actual and desired 
activity levels of output units. Error backpropagation then determines how the strength of connections between 
successively lower layers should change to decrease this error, by computing derivatives using a method known as 
gradient descent3. Artificial neural networks trained by error backpropagation now attain human‑level performance in 
image recognition4 and in some computer games33.

Artificial image‑recognition systems usually take a convolutional network approach, in which the complexity of tuning 
of units increases in higher layers, and specialized layers are interspersed to pool activity across space and to build 
receptive fields that are translation invariant (see the figure). The tuning of units at lower and higher levels in these 
convolutional networks resembles the tuning of neurons in lower and higher areas of the brains of monkeys and 
humans38,181. In convolutional networks, many weights are shared (that is, copied from one location in the network to 
another), which is biologically implausible. Furthermore, in 1989, Francis Crick argued that the error‑backpropagation 
rule itself is neurobiologically unrealistic34. He found it difficult to imagine how synapses in the brain could determine 
the change in their strength that would decrease the overall network error — that is, how they could compute their own 
local error derivative.

However, researchers have proposed new ways in which learning rules that are equivalent to error backpropagation 
might be implemented in the brain28,32,95,182–184 (reviewed elsewhere185). Specifically, learning rules such as AGREL 
(attention‑gated reinforcement learning)28 and AuGMEnT (attention‑gated memory tagging)32 explain how synapses in 
deep networks can change to optimize reward outcome during reinforcement learning in a biologically realistic manner. 
As the equations that establish the relationship between these new learning rules and error backpropagation are 
somewhat complex, we refer mathematically inclined readers to the original publications28,32. Conceptually, the main 
insight is that the synaptic error derivative can be split into two factors: first, the steering reward‑prediction error that 
codes for the global network error and reaches all synapses through the release of neuromodulators; and second, a 
gating signal from the response‑selection stage that is carried by feedback connections and that indicates how much of 
the credit or blame should be attributed to the individual synapse. These steering and gating factors jointly determine 
synaptic plasticity (as in equation 3 in the main text). In AGREL and AuGMEnT, the strength of feedback connections 
becomes proportional to that of feedforward connections during learning; thus, the learning rules become 
computationally equivalent to error backpropagation. Interestingly, approximate reciprocity between feedforward and 
feedback connections and efficient learning can also emerge through a process called feedback alignment if feedback 
connections are fixed and only feedforward connections are plastic31.

In other words, the brain can solve the credit‑assignment problem in a manner that is equivalent to deep learning. 
Accordingly, these rules can be used to train simple artificial neural networks on several tasks that monkeys can be trained 
on by trial and error32, and their capability goes beyond that of biologically plausible learning rules that do not feature 
plasticity‑gating feedback connections. Interestingly, these networks make many of the mistakes that are also made by 
animals undergoing training, and the tuning of units at intermediate network levels becomes similar to that of neurons in 
the visual and association cortex13,28,32 (leading to tuning curves similar to those seen in trained animals, such as those in 
FIG. 3c,f). Hence, developments in many disciplines — from molecular biology to machine learning and cognition — may 
now pave the way for a genuine understanding of how deep learning is implemented in the brain. IT, inferotemporal cortex; 
V1, primary visual cortex.

Photograph of US President Bill Clinton, copyright Ian Dagnall / Alamy Stock Photo.
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metabotropic glutamate receptors39,76. Consistent with 
this, microstimulation of higher-order thalamic nuclei 
in mice induces robust NMDAR-mediated responses 
in cortical pyramidal neurons77. In line with a driving 
effect of feedforward connections, microstimulation in 
the primary visual cortex (area V1) of monkeys activates 
neurons in a higher area, V4. By contrast, V4 microstim-
ulation influences the V1 activity elicited by a visual stim-
ulus but has little influence in the absence of visual input, 
in accordance with a modulatory feedback effect78.

Neuromodulation
All cortical layers receive neuromodulatory input from 
several deep brain nuclei. These systems include the 
dopaminergic system of the ventral tegmental area,  
the serotonergic dorsal and medial raphe nuclei (DRN 
and MRN, respectively), noradrenergic projections 
from the locus coeruleus and cholinergic afferents from 
the basal forebrain (FIG. 2d). These modulatory systems 

provide information about the state of arousal, as well as 
rewards and punishments, and may influence synaptic 
transmission79 and cortical states80,81. Importantly, they 
play a part in learning by steering synaptic plasticity82–84 
(discussed below).

Cortical plasticity and learning
Learning changes the response properties of neurons 
in many areas of the cerebral cortex85 and subcortical 
structures86–88. Here, we provide examples of studies on 
the effects of learning on neuronal tuning to stimuli  
in the visual89–91 and association cortices92, demonstrat-
ing that neurons become tuned to feature variations that 
matter for a task.

In one study, Schoups et al.89 trained monkeys to per-
form an orientation discrimination task. The animals 
judged whether the orientation of a grating stimulus 
was rotated clockwise or anticlockwise relative to a ref-
erence orientation (FIG. 3a). At the beginning of training, 
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Fig. 2 | Cortical feedforward, feedback and neuromodulatory 
information streams. Diagram of intracortical (part a), long-range 
corticocortical (part b), subcortical (part c) and neuromodulatory (part d) 
connections within, to and from the sensory and association cortices. The 
main axodendritic synaptic input patterns are shown as arrows. Intracortical 
information streams include local interactions within and between cortical 
columns (part a). Input to layer 4 (L4) and L2/3 propagates to all other layers 
(except L1) through ascending and descending connections. Horizontal 
connections distribute signals within L2/3 and L5A, whereas feedback is 
provided from L6 and L2/3 to L4 and from L5A to L2/3. Information 
exchange between cortical areas occurs through long-range corticocortical 
connections and transthalamic pathways (parts b and c). The first-order (FO) 
thalamus provides input to lower cortical areas (level I in c). Cortical L5 
output reaches the higher-order (HO) thalamus, which in turn feeds forward 
to higher cortical areas (level II in c) or back to lower-order cortex (level I). 
Feedforward and feedback streams are segregated in different layers, to a 

great extent in primates and to a certain extent in rodents45,186. In primates, 
neurons in the deeper L3 and the superficial L5 project forward to L4 of the 
higher-order cortical areas. Neurons in superficial L2/3 and in L5/6 of higher 
areas send feedback projections to L1 and L5 of lower areas43,56. In rodents, 
separate feedforward and feedback projections may originate from 
molecularly distinct neuronal subtypes45, but their distribution across the 
lamina is ‘salt-and-pepper’-like186,187. L1 is a main feedback layer, where 
inputs impinge on the apical dendrites of pyramidal neurons. Patterns of 
neuromodulatory input to the cortex remain poorly characterized (part d). 
The current view holds that virtually all types of neuromodulation arrive in 
all layers of all cortical areas82, although some topographic organization and 
laminar specificity are observed for the cholinergic projections140,141. 
Neuromodulatory signalling occurs via both synaptic transmission and 
volume transmission and in most instances through metabotropic 
receptors82,188. 5-HT, 5-hydroxytryptamine (serotonin); ACh, acetylcholine; 
DA, dopamine; NA, noradrenaline. Data from REFS 37,39,40,43,45,46.
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Fig. 3 | Effects of learning on neuronal tuning curves. a | Monkeys in the study by Schoups et al.89 judged whether the 
orientation of the lower grating was tilted clockwise or anticlockwise from a right oblique orientation (red line, 45°). They 
could always ignore the upper grating, as it was a distractor. The small circle on the left denotes a fixation point. 
b | Orientation tuning curves of example primary visual cortex (V1) neurons (black arrow indicates the trained orientation 
(θ)). Thick line segments highlight the slope of the tuning curves at θ. c | The slope of V1 neuron tuning curves at θ as a 
function of the neurons’ preferred orientation (percent change in firing rate per degree of orientation). Training in the 
orientation judgement task increased the slope of the tuning curve of neurons with a preferred orientation that differed 
only slightly (by ~16°) from θ and that were maximally informative for the task. The blue dashed line shows the slope of the 
tuning curves before training, whereas the red line shows the slope after training. d | In a study by Freedman and Assad92, 
monkeys saw dots moving in 1 of 12 directions that were divided into 2 categories (red and blue arrows). The animals 
compared the category of a sample stimulus (cue 1) to that of a later probe stimulus (cue 2) and, on the ‘go’ signal, released 
a lever if the categories were the same. e | Activity elicited by the sample directions in an example lateral intraparietal area 
(LIP) neuron. The neuron gave similar responses for stimuli of the same category (responses to category 1 stimuli in red and 
responses to category 2 stimuli in blue), but there were larger differences in activity between stimulus categories. 
f | Distribution of adjacent motion directions giving rise to the largest difference in stimulus-driven activity of individual 
LIP neurons. Note that for most cells, the largest changes in activity occurred at the category boundaries. Parts a–c 
adapted from REF. 89, Macmillan Publishers Limited. Parts d–f adapted from REF. 92, Macmillan Publishers Limited.
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Optokinetic reflex
The innate reflexive smooth 
eye movements elicited by 
large moving visual stimuli.

the monkeys needed an orientation difference of 10° or 
more to be able to perform the task reliably. However, 
after months of training, they performed the task with 
orientation differences as small as 1°. As a result of 
training, V1 neurons became better at discriminating 
between small differences in orientation, an effect that 
was most pronounced for neurons with a preferred 
orientation that differed only slightly (for example, 
by about 15°) from the trained orientation (FIG. 3b). 
For these neurons, the trained orientation fell on the 
highest- gradient part of the tuning curve, and train-
ing increased the gradient of that part (FIG. 3c). Exposure 
to task-irrelevant stimuli, presented at another location 
during task performance, did not cause comparable 
changes in neuronal tuning. Thus, the mere presentation 
of stimuli did not induce plasticity.

Freedman and Assad92 reported related effects in the 
association cortex. They recorded the activity of neu-
rons in the lateral intraparietal (LIP) cortex of monkeys 
trained to categorize motion stimuli. The monkeys saw 
stimuli with dots moving in 1 of 12 directions that were 
divided into 2 arbitrary categories (FIG. 3d) on either side 
of a ‘category boundary’. On each trial, the monkeys first 
saw a sample stimulus and remembered its category so 
that they could report whether a later stimulus belonged 
to the same or the other category. FIGURE 3e illustrates the 
tuning of an LIP neuron that responded more strongly 
to motion in all motion directions of one category 
(blue in FIG. 3d) than any of the directions of the other 
category (red in FIG. 3d). A comparison of responses to 
stimuli with adjacent motion directions revealed that 
the largest differences in firing rates were observed for 
pairs of stimuli straddling the category boundary (FIG. 3f). 
Hence, learning to categorize stimuli causes increases in 
the sensitivity of neurons to category boundaries. These 
results raise a number of important questions.

The first question is about the connections that 
change during learning. In the orientation discrimina-
tion task, the sharpening of V1 tuning curves occurred in 
L2/3 and in L5/6 but not in L4, the input layer of the cor-
tex. These findings might suggest that connections from 
L4 to the other layers undergo plasticity. However, other 
studies have demonstrated plasticity in the connectivity 
between sensory cortices93 and between the sensory cor-
tex and subcortical structures86,88,94. In one study86, rats 
trained to distinguish between auditory tones with dif-
ferent pitches showed strengthened connections between 
the primary auditory cortex and the striatum. Another 
study in mice revealed that the connections between the 
visual cortex and the accessory optic system, which con-
trols the gain of the optokinetic reflex, undergo plasticity 
after a lesion of the vestibulum88. Hence, plasticity of the 
connections within the cortical columns as observed by 
Schoups et al.89 (FIG. 3a–c) is complemented by the plas-
ticity of other connection types. It seems likely that the 
precise contributions of the plasticity of these different 
connection types to learning depend on the task, and 
they remain to be fully understood.

A second question is: how do neurons in sensory and 
association areas become tuned to a category bound-
ary that can be inferred only by observing a reward 

structure (that is, contingent on the stimuli and choices 
across trials)? A possible solution is that feedback con-
nections from the response-selection stage assign credit 
(or blame) by tagging those synapses in sensory and 
association cortices that were responsible for action 
selection (that is, by placing eligibility traces; FIG. 1). If an 
action is rewarded, the tagged connections are strength-
ened by a change in neuromodulator concentration that 
promotes synaptic potentiation (FIG. 1) to increase the 
probability that the same response reoccurs in the future. 
If the animal makes a wrong choice, feedback connec-
tions from neurons coding for this erroneous action 
tag another set of synapses, which decrease in strength 
owing to a change in the neuromodulator concentrations 
coupled with the lack of reward (FIG. 1). Such an inter-
play between feedback connections and neuromodula-
tors (formalized in the learning rule in equation 3) can 
explain the emergence of category selectivity in sensory 
and association cortices28,32,95 (BOX 1).

A third question relates to the identity of the syn-
aptic tags and their interaction with neuromodulatory 
systems. There are usually delays between the activ-
ity in sensorimotor pathways and the moment when 
the organism can evaluate whether the outcome of a 
response was better or worse than expected11. Synaptic 
tags would have to persist long enough to bridge the 
delay. Below, we review initial insights into the molecu-
lar identity and persistence of tags and how they might 
interact with neuromodulatory systems.

Gating and steering plasticity
We now discuss the factors that influence plasticity, dis-
tinguishing between those that gate plasticity and those 
that steer plasticity. We propose that feedback signals 
from the response-selection stage gate plasticity by plac-
ing tags on the synapses that promoted selection of an 
action and that therefore should be held ‘responsible’ for 
the action outcome. By contrast, neuromodulators are 
proposed to steer plasticity by conveying the RPE, which 
is either positive, promoting synaptic potentiation, or 
negative, leading to synaptic depression19.

Gating of synaptic plasticity
Evidence for strong relations among action selection, 
selective attention and the influence of feedback con-
nections on sensory cortices comes from psychology 
as well as neurophysiology. Psychological studies have 
demonstrated that every visually guided movement of 
the eye or the arm is associated with a shift of visual 
attention to the target of the movement26. Furthermore, 
neurophysiological experiments in non-human primates 
have demonstrated that when an animal plans a saccade 
to a visual object, neuronal activity elicited by this object 
in the visual and motor cortices is enhanced compared 
with the activity elicited by nonselected stimuli27,96. 
These response enhancements in the visual cortex are 
the neural correlate of a shift of attention towards the 
target of the subsequent eye movement.

The curve-tracing task provides a good illustration 
of the coupling between action selection and attention 
(FIG. 4). In this task, monkeys (or humans97) direct their 
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Frontal eye fields
Area of the frontal cortex 
involved in the planning of eye 
movements.

gaze to a fixation point, and a stimulus appears with a 
number of curves. One of the curves is a target curve 
and connects the fixation point to a larger circle, which 
is the target of a saccade (FIG. 4a). The monkeys must 
mentally trace the target curve to locate the saccade 
target in order to obtain a reward, and must ignore 
other curves, which are distractors. The appearance 
of the curves activates neurons in many cortical areas, 
including V1 and the frontal eye fields (FIG. 4b). The initial 
part of the response in each of these regions is domi-
nated by feedforward processing and does not distin-
guish between the target and distractor curves (FIG. 4c). 
After this phase, the animal mentally traces the target 
curve while maintaining its gaze at the fixation point. 
Feedback connections and horizontal connections now 
help to enhance the representation of the target curve 
in the visual and frontal cortices96 (FIG. 4c). The relative 
increase in neuronal activity caused by this mental trac-
ing corresponds to the spreading of attention across the 

target curve98. If the monkey mistakenly selects the dis-
tractor curve and makes the saccade to the circle at the 
end of the distractor curve, the representation of the 
distractor curve is enhanced in the visual cortex96,99,100 
(as in FIG. 1). Hence, the attentional feedback signals 
from the frontal cortex enhance the activity of activated 
circuits in the association and sensory cortices that are 
accountable for the selected eye movement. Thus, they 
may enable (‘gate’) the plasticity of those connections 
that should change if the action outcome is better or 
worse than expected.

Feedback pathways could tag synapses for plasticity 
via two routes: through corticocortical feedback connec-
tions and/or through the thalamus. Both routes target 
distal dendrites in the superficial layers and L5 (FIG. 2). 
In monkeys, selective attention increases the activity of 
neurons not only in the visual cortex101,102 but also in 
the pulvinar, a higher-order visual thalamic nucleus103 
(equivalent to the lateral posterior thalamic nucleus in 
rodents). Inactivation of the pulvinar decreases visually 
driven cortical activity104 and impairs performance in 
tasks that demand attention shifts103–105. Furthermore, 
pulvinar lesions interfere with new learning106.

In support of the gating hypothesis, one study77 in 
mice demonstrated that activity in a higher-order tha-
lamic nucleus indeed feeds back to the sensory cortex 
to gate plasticity. The researchers recorded from the pri-
mary somatosensory cortex (S1) and investigated the 
plasticity of the connections that convey sensory infor-
mation from the whiskers through the ventral poster-
omedial nucleus (VPm), the primary sensory thalamic 
nucleus (FIG. 5a). Repetitive stimulation of the whiskers 
induced long-term potentiation (LTP) in L2/3 pyram-
idal cells. Interestingly, LTP induction depended on 
activity in the posterior medial nucleus (POm), a clus-
ter of higher- order nuclei in the somatosensory thala-
mus. Exogenously evoked POm neuron activity induced 
long-lasting (>150 ms), NMDAR-dependent plateau 
potentials, probably caused by calcium influx, in the 
distal dendrites of the L2/3 neurons in S1. Notably, LTP 
of the L2/3 pyramidal cell response to whisker stimula-
tion occurred only if the feedforward input coincided 
with the L2/3 plateau potentials in S1; blocking POm 
activity with muscimol decreased the S1 plateau poten-
tials and abolished S1 LTP. LTP could also be blocked 
by injection of NMDAR antagonists into S1, which also 
blocked calcium influx into the distal dendrites (FIG. 5b). 
Thus, feedback-mediated NMDAR-dependent plateau 
potentials are apparently necessary for making synapses 
that are activated by the excitatory feedforward pathway 
eligible for plasticity.

POm neurons in rodents become active when ascend-
ing driving inputs from the sensory brainstem coincide 
with descending driving inputs from L5 neurons in S1 
(REFS 68,69), but whether POm conveys information about 
the selected action to S1 remains to be clarified. More is 
known about the visual modality in monkeys, in which 
selective attention activates the pulvinar and may specif-
ically tag cortical synapses responsible for the selected 
action, given the relation between attention and action 
selection mentioned above.
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Fig. 4 | Attentional selection and eye movement selection during curve tracing. 
a | The animal first directs its gaze to a small fixation point (FP). After a short delay, two 
curves appear on the screen. The curve that is connected to the FP is the target (T) curve, 
and the other curve is a distractor (D). After an additional delay, the FP disappears, and 
the monkey makes an eye movement to the larger red circle that was previously 
connected to the FP (that is, the end of the T curve). b | In the left panel, the receptive 
fields of neurons in the primary visual cortex (V1) and the frontal eye field (FEF) fall on the 
T curve, whereas in the middle panel, they fall on the D curve. c | During an initial 
feedforward processing phase (black bars), neurons in areas V1 and FEF are activated by 
the appearance of a curve in their receptive field (dashed black vertical line at time 0). In 
a later, recurrent processing phase (red bars), feedback connections come into play, and 
the representation of the T curve that is selected for an eye movement response is now 
enhanced (red lines) in both brain regions compared with the representation of the 
nonselected distractor (blue dashed lines)96. Part c is adapted from Journal of 
Neurophysiology, Khayat, P. S., Pooresmaeili, A. & Roelfsema, P. R. 101, 1813–1822 (2009), 
with permission from American Physiological Society (REF. 100).
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Martinotti cells
Somatostatin-expressing 
inhibitory interneurons with 
a characteristic morphology 
that target the dendritic tufts 
of pyramidal cells in various 
cortical layers.

Other studies in mice have demonstrated direct 
effects of corticocortical feedback connections from 
the primary motor cortex (M1) on S1 by examining 
different phases in the activation of S1 neurons by a 
tactile stimulus (similar to the early and late phases of 
V1 responses in the curve-tracing task). The early phase 
of the S1 response is driven by the feedforward sensory 
input, whereas later activity also depends on feedback 
from higher cortical areas, including M1 (REF. 107), which 
causes plateau potentials and calcium influx into the api-
cal dendrites of L5 neurons107,108. Interestingly, late-phase 
S1 activity109 and calcium influx into S1 dendrites predict 
the reporting of the sensory stimulus by the animal (by 
licking)110, in support of the idea that action selection in 
the motor cortex causes upstream effects in the sensory 
cortex (FIG. 5c,d). Moreover, pharmacological or opto-
genetic suppression of the late activity109 or of plateau 
potentials in S1 (REF. 110) impairs the licking response, 

particularly for weak tactile stimuli. It remains to be 
determined, however, whether the M1 feedback also 
gates plasticity in S1, as does feedback from the POm77.

Gating of plasticity may also depend on disinhibitory 
circuits111 in the cortical column that involve vasoactive 
intestinal peptide (VIP)-positive interneurons60,112,113. 
These VIP+ neurons receive input from multiple 
sources, including feedback from higher-order thalamic 
nuclei114–116, and inhibit somatostatin (SST)-positive 
interneurons that, in turn, inhibit the activity of pyram-
idal neurons59,117–119. SST+ neurons largely overlap with 
Martinotti cells, which inhibit activity in the distal den-
drites of pyramidal neurons120, near the synapses formed 
by feedback connections from higher-order thalamic 
nuclei121–123. When VIP+ neurons suppress the activity 
of SST+ neurons, they may thereby enable the influx of 
calcium into these distal dendrites and thus ‘switch on’ 
synaptic plasticity124–127. Indeed, in mice, the opto genetic 

L1

L2/3

L4

L5

L6

Nature Reviews | Neuroscience

VPmW
hi

sk
er

 in
pu

t

POm

Muscimol

D-AP5NMDAR

FF FB

Zona 
incerta

O
th

er
 c

or
ti

ca
l a

re
as

Recording

Thalamus

Barrel
cortex

80

100

120

140

Post-RWS

PS
P sh

or
t (%

)

C
on

tr
ol

LTP

M
us

ci
m

ol

D-
A

P5

10
 m

V

Muscimol

Muscimol +
D-AP5

Whisker
deflection

Whisker
deflection

+ D-AP5

Control

PSP
short

NMDA
plateau

Excitation Inhibition

a

b

c

d

L1

L2/3

L4

L5

L6

FB

FF

#1 #2

Hit

20%
1 s

MissA
ve

ra
ge

ac
ti

vi
ty

Near-θ stimulation

#1

#2

D
et

ec
ti

on
 

pr
ob

ab
ili

ty

Stimulation intensity

θ

M
is

s
H

it

0 200%

10
 tr

ia
ls

C
a2+

re
sp

on
se

s

RWS

LTP

Whisker 
stimulation

Imaging 
of Ca2+

Reward

Fig. 5 | Gating of plasticity of feedforward 
connections to the primary somatosensory cortex. 
a | Schematic of the experiment, showing 
somatosensory thalamocortical and corticothalamic 
pathways. Whisker stimulation-driven sensory 
postsynaptic potentials (PSPs), and the potentiation 
thereof, in layer 2/3 (L2/3) neurons were assessed using 
whole-cell recordings in vivo. Rhythmic whisker 
stimulation (RWS) activates feedforward (FF) inputs 
(from the ventral posteromedial nucleus (VPm)) and 
feedback (FB) inputs (from the posterior medial nucleus 
(POm)) to the primary somatosensory cortex (S1), 
which causes NMDA receptor (NMDAR)-mediated 
potentials in pyramidal cells. The activity of the POm is 
also gated by input from other cortical areas and the 
zona incerta. b | Whisker deflections induce PSPs in 
L2/3 S1 neurons that consist of two components (dark 
blue voltage trace): a short-latency AMPA 
receptor-mediated depolarization (PSPshort) and a 
long-latency plateau depolarization (NMDAplateau). The 
plateau component can be blocked by NMDAR 
blockers (such as d-2-amino-5-phosphonovaleric acid 
(d-AP5); light blue voltage trace)) or by muscimol 
injections targeted to the POm (dark green voltage 
trace; light green shows voltage trace after d-AP5 and 
muscimol together). These two methods of blocking 
NMDAR-mediated plateau potentials prevent whisker 
deflection-induced synaptic potentiation, as shown in 
bar graph on the right. c | Schematic of a 
whisker-stimulus detection task and the imaging of 
calcium events in two pyramidal cell dendrites (#1 and 
#2) in S1. d | Upon weak whisker deflections near the 
detection threshold (θ), dendritic Ca2+ events are 
stronger in ‘hit’ trials (in which the animal detects the 
stimulus and is rewarded with water; as in neuron #2 in 
part c) than in ‘miss’ trials (in which the animal fails to 
detect the stimulus and is unrewarded; as in neuron #1 
in part c), suggesting that hit-related FB inputs (red) 
are involved in generating these Ca2+ events (as seen 
for neuron #2). LTP, long-term potentiation. Mouse 
drawings in parts a and c are adapted with permission 
from REF. 189, Elsevier. Part b is adapted from REF. 77, 
Macmillan Publishers Limited. Part d is adapted with 
permission from REF. 110, AAAS.
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Unsupervised learning
A type of learning in which the 
structure of unlabelled data is 
inferred as information about 
desired categorization is not 
provided.

inhibition of SST+ neurons enhances V1 plasticity 
induced by the closure of one eye126. Furthermore, the 
optogenetic or chemogenetic silencing of SST+ neurons, 
or their deletion, promotes learning- driven plasticity in 
M1 (REFS 124,125).

It seems likely that the effects of feedback on plateau 
potentials, sensory perception and plasticity observed 
in S1 of mice generalize to other sensory modalities and 
other species. Synaptic plasticity in the mouse hippo-
campus was recently shown to depend on plateau poten-
tials128 and to be sculpted by inhibition129. In mouse V1, 
NMDAR-dependent calcium events in dendrites enhance 
the stimulus selectivity of neurons130. Furthermore, in 
monkeys, feedback connections to V1 target the superfi-
cial layers and L5 and activate NMDARs to increase the 
representation of stimuli that matter for behaviour74.

The data reviewed above suggest that response selec-
tion elicits feedback signals that enable the plasticity of 
upstream synapses. This gating hypothesis provides 
possible mechanisms that may explain the psychological 
finding that animals learn what they attend. Although 
we focused on reinforcement learning, it is conceivable 
that attention and feedback connections have equivalent 
roles in forms of unsupervised learning, where learning 
is independent of behavioural outcomes77,131–133. For 
example, the learning of abstract visual concepts such 
as ‘birds’ or ‘cars’ relies on interactions between lower 
visual brain regions coding for primitive features and 
higher areas coding for semantic categories. That is, 
during unsupervised learning, neurons in higher areas 
could feed back to gate the synaptic plasticity of relevant 
low-level feature representations.

Steering of synaptic plasticity
The RPE should steer plasticity; that is, it should deter-
mine whether the tagged synapses undergo potentiation 
or depression. A widely held hypothesis is that the RPE 
is signalled by released neuromodulators. We briefly 
review the possible influence of dopaminergic, cholin-
ergic, serotonergic and noradrenergic projections on 
cortical plasticity, but we note that other neuromodula-
tory systems, such as histamine signalling134 and neuro-
peptide signalling84, may also have a role. In addition to 
their role in coding the RPE, neuromodulator levels may 
also signal other behavioural states, including novelty, 
surprise, arousal and emotional valence17,18. These fac-
tors may also influence plasticity through effects on the 
release of neuromodulators.

Dopamine. The ventral tegmental area is the main source 
of dopamine for the cortex. Many, but not all, dopamine 
neurons are active if an animal receives more reward than 
it expected135–137. Dopamine projections target subcortical 
structures, including the striatum, as well as the cortex, 
where the projections are densest in prefrontal and motor 
cortices and sparser in sensory areas. Dopaminergic 
signalling occurs through five metabotropic receptor 
subtypes, of which the D1 dopamine receptor (D1R) is 
the most abundant in the cortex. D1R ultimately acti-
vates protein kinase A (PKA), which is strongly impli-
cated in long-term plasticity. Furthermore, dopamine 

may modulate synaptic release and the incorporation 
of AMPARs and NMDARs into the cell membrane79. 
Dopamine regulates synaptic plasticity in the striatum14, 
in the hippo campus17 and also in the auditory cortex, 
where the pairing of a particular tone with electrical stim-
ulation of the ventral tegmental area causes an expansion 
of the cortical area representing the tone frequency138. 
Many dopamine neurons code for RPEs and are in a posi-
tion to steer plasticity in structures containing dopamine 
receptors. Other neurons in the ventral tegmental area 
code for motivational signals in addition to the RPE and 
may also play a part in steering plasticity17,139.

Acetylcholine. Cholinergic signalling in the neocortex 
is thought to have an important role in the control of 
brain states, attention and learning. Cholinergic signal-
ling is highly upregulated during wakefulness and with 
sustained attention80. Cholinergic projections from the 
basal forebrain are widely distributed in the cortex and 
show a complex topographical, modality-related organ-
ization140,141. The effects of acetylcholine in the cortex 
are mediated by metabotropic muscarinic receptors and 
ionotropic nicotinic receptors. Nicotinic receptors are 
expressed presynaptically on some thalamocortical 
axons142 and postsynaptically on VIP+ interneurons 
that also express ionotropic serotonin receptors114,143. 
Muscarinic receptors are expressed both presynaptically 
and postsynaptically by pyramidal cells, where they can 
have mixed effects80. Optogenetic activation of cholin-
ergic projections in mice enhances the visual respon-
siveness of neurons in V1 and improves performance in 
an orientation discrimination task144. Many cholinergic 
neurons respond to punishment, and a smaller number 
also respond to unexpected rewards, compatible with a 
role in RPE signalling145,146. Nevertheless, other behav-
ioural factors, such as arousal level, could also influence 
plasticity because they are associated with changes in 
acetylcholine release. Electrical stimulation of cholin-
ergic centres enhances plasticity in the visual cortex 
of mice and the auditory cortex of mice and rats147–151, 
whereas the depletion of acetylcholine suppresses synap-
tic plasticity in the auditory and somatosensory cortices 
of rats151,152. Accordingly, pharmacological blockers of 
cholinergic signalling, or the depletion of cholinergic 
fibres to the temporal lobe using toxins, impair recog-
nition memory and the learning of new sensory stim-
uli153,154, and lesions of the cholinergic nuclei impair 
spatial learning155. Taken together, these results indicate 
that cholinergic neurons could steer cortical plasticity.

Serotonin. The serotonergic system is thought to mod-
ulate sensory processing, cognition and emotional states 
and to regulate innate behaviours such as food intake 
and reproduction156. Serotonergic projections to almost 
all regions of the forebrain originate from two rostral 
serotonergic clusters in the brainstem — the MRN and 
DRN156. In the cortex, the effects of serotonin are highly 
diverse and are mediated by a vast repertoire of presyn-
aptic and postsynaptic metabotropic and ionotropic 
receptors83,157. Among other factors156, the activity of 
sero tonergic neurons depends on the amount of reward 

R E V I E W S

NATURE REVIEWS | NEUROSCIENCE  VOLUME 19 | MARCH 2018 | 175

©
 
2018

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2018

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



Spike-timing-dependent 
plasticity
(STDP). A plasticity rule 
whereby the change in the 
strength of synapses depends 
on the relative timing of 
presynaptic and postsynaptic 
action potentials.

or punishment that is anticipated and received158–163; how-
ever, the effects of reward-related serotonergic signalling 
in the cortex remain unclear. The activation of cortical 
serotonergic inputs facilitates the delivery of AMPARs to 
synapses82,83 and sharpens the whisker barrel map of rats 
during visual deprivation164. Thus, serotonin also affects 
cortical synaptic plasticity.

Noradrenaline. Noradrenergic signalling is associated 
with arousal165 and with the receipt of rewarding stim-
uli166. The most important source of noradrenaline is 
the locus coeruleus, which projects widely to all other 
neuro modulatory centres, as well as to all regions and 
layers of the cortex. Activity of the locus coeruleus 
affects various cognitive and sensory processes165. 
For example, increased activity of the locus coeruleus 
enhances sensory-evoked responses in the thalamus 
and cortex167,168. Noradrenaline exerts its effects pre-
dominantly through adrenoreceptors, which influence 
synaptic plasticity82,169. Furthermore, noradrenergic 
signalling has been shown to induce plasticity in the 
hippocampus, amygdala and neocortex of rodents and 
to enhance contextual learning170, fear conditioning171 
and auditory perception167.

Spike-timing-dependent plasticity. Theories about 
the implementation of reinforcement learning in the 
brain have proposed that the global release of the neu-
romodulators influences plasticity in order to deter-
mine whether selected actions will be taken again in 
the future16,19. They can do so by modifying synapses 
(for example, by changing the surface expression of 
receptors) or by changing the intrinsic properties 
of neurons11,19,25,28,169,172. Several studies have exam-
ined the influence of different neuromodulators on 
spike-timing-dependent plasticity (STDP), wherein the 
increase or decrease of synaptic strength depends on 
the precise time interval between presynaptic and post-
synaptic action potentials. These studies demonstrated 
that dopamine, acetylcholine, noradrenaline, seroto-
nin and endocannabinoids can increase or decrease 
the sensitivity of neurons to STDP paradigms, can 
modify the shape of the STDP function and can even 
determine whether synapses undergo potentiation or 
depression14,84,132,169,173–175. Thus, substantial evidence 
indicates that neuromodulatory systems steer neuronal 
plasticity. However, the field has yet to reach a con-
sensus about the relative importance of these neuro-
modulatory systems — alone or in combination — and 
their precise roles in the control of plasticity.

Gating and steering together
The combination of corticocortical or thalamocortical 
feedback connections and neuromodulatory signals can 
ensure that the information necessary for the synaptic 
update becomes available locally, at the synapse under-
going plasticity (BOX 1). This possibility can be illustrated 
for an example reinforcement learning scenario (FIG. 6A). 
First, activity propagates from the sensory cortex to the 
motor cortex, and the selected motor program pro-
vides feedback to earlier processing levels. Coincident 

activity of feedforward and feedback pathways specif-
ically occurs in the cortical columns that will be held 
accountable (FIG. 6A). In these columns, corticocortical 
and thalamocortical feedback connections induce cal-
cium events in pyramidal dendrites, either through 
direct excitation or through indirect VIP+-neuron-
mediated disinhibition. These events induce eligibility 
traces at the activated feedforward synapses (that is, bio-
chemical modifications that enable their plasticity). One 
or a few seconds later, the action outcome is evaluated 
and an RPE is computed, which then steers the plasticity. 
Eligible synapses are potentiated by neuro modulators if 
the RPE is positive (FIG. 6A) and weakened if the RPE 
is negative. The release of neuromodulators can be 
separated in time from the activation of the neurons 
because the tags can persist in the absence of neuronal 
spiking14,174,175.

Indeed, the persistence of eligibility traces may be 
related to longer-term interactions between plasticity -
inducing events that were observed in the hippo campus 
and gave rise to the ‘synaptic tagging and capture 
hypothesis’ (REFS 15,176,177). According to this hypothesis, 
weak plasticity-inducing events induce synaptic tags that 
cause these synapses to undergo plasticity if stronger 
plasticity-inducing events occur at other synapses of the 
same neuron within hours. As such, the strong poten-
tiation of the other synapses causes the production of 
plasticity-related proteins, which are captured by tagged 
synapses so that they too change their strength. The 
hypotheses that synaptic tags interact with plasticity-
related proteins15,176 or with neuromodulators coding 
for the RPE11,32 are not mutually exclusive, and such 
interactions may occur at different timescales (that is, 
over seconds to bridge delays in reinforcement learning 
and over hours for synaptic tagging and capture). Future 
research could aim to better characterize the processes 
that act on synaptic tags to control plasticity.

Although we focus above on the role of neuro-
modulatory inputs in steering plasticity, some studies 
indicate that neuromodulators may also participate in 
gating processes by altering neuronal excitability178 — 
for example, by altering presynaptic glutamate release179 
or by activating disinhibitory circuits60,84,112,113,117,118. 
However, it is important to note that the neuromodu-
latory projections are relatively diffuse, which implies 
that any gating function they have is likely to be less 
specific than that of corticocortical and thalamocortical 
feedback connections, which are better positioned to tag 
specific relevant synapses.

In line with the ideas presented above, a recent study 
documented the existence of synaptic tags that make 
synapses eligible for plasticity and that are influenced 
by the later release of neuromodulatory substances 
in the striatum14,175. Yagishita et al.14 activated a sin-
gle spine of neurons in slices by uncaging glutamate 
while causing the same cells to fire action potentials by 
injecting current. If dopamine was released within a 
time window of ~1 s after this event, the volume of the 
activated spine increased. This potentiation depended 
on the activity of NMDARs and several intracellular 
messengers and on the delayed signalling in a pathway 
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initiated by the binding of dopamine on D1R (FIG. 6B). 
These two pathways downstream of NMDARs and D1R 
converge to activate calcium/calmodulin-dependent 
protein kinase type II (CaMKII), which is most active 
when dopamine is released after co-activation of the 
presynapse and postsynapse. Similar interactions 
between NMDAR-dependent plasticity and delayed 
dopamine availability occur in hippocampal slices, 
with intervals in the minute range180. It is not yet known 
whether comparable interactions take place in the syn-
apses of cortical neurons, although this could be tested 
with current technology. The mechanisms at work 
within the synapses are complex; therefore, we expect 
that many discoveries about the interaction between 
glutamatergic transmission and neuromodulatory 
signals are still to be made. These studies could give 
new insight into how attentional feedback signals and 
RPEs interact to optimize the contribution of synapses 
to behaviour.

Conclusions
In recent years, researchers have made substantial pro-
gress in understanding how the neural circuits of the 
brain are rewired as the result of learning. Here, we have 
focused on the malleability of representations in sen-
sory and association cortices and reviewed evidence for 
a role of corticocortical and thalamocortical feedback 
connections on the one hand and neuromodulatory 
influences on the other. In combination, these factors 
may permit learning rules that can train the cortical 
circuitry to refine the representations of sensory stim-
uli, as well as their mapping onto appropriate motor 
responses. The resulting learning rules can be imple-
mented by synapses in the brain to overcome the cred-
it-assignment problem. We have briefly touched on the 
emerging insights into how gating and steering factors 
affect the biochemical cascades that control whether a 
synapse strengthens or weakens. Future studies could 
test whether corticocortical and thalamocortical feed-
back tags the circuits that are responsible for stimulus–
response mapping for plasticity, and could elucidate 
the identity of the tags and how they make synapses 
susceptible to neuromodulatory signals. Although 
feedback connections seem to enable the plasticity of 
feedforward connections, it remains to be determined 
whether the interactions between feedforward and 
feedback connections take place with cellular precision 
or with coarser resolution at the level of, for example, 
the cortical column. Furthermore, future studies could 
examine how gating and steering factors might work 
together in scenarios besides reinforcement learning, 
considering the roles of feedback connections and neu-
romodulatory systems in, for example, the detection of 
novelty and surprise.

Although many of the processes determining synaptic 
plasticity remain to be discovered, it is encouraging that 
we have reached a stage where insights from molecular, 
cellular and systems neuroscience and from theories 
of reinforcement learning and deep artificial networks 
inform each other and may now be integrated into a  
unified framework for learning in the brain.
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Fig. 6 | Gating and steering of synaptic plasticity. Aa | Within the cortical column, 
feedback (FB) connections target distal dendrites as well as disinhibitory circuits that 
enable plasticity. Ab | The feedforward (FF) connections propagate activity to higher 
levels, which in turn provide FB to the thalamocortical synapse that is going to be held 
responsible for the outcome of the action. The FB does this by causing dendritic 
calcium events, which induce synaptic tags (indicated by ‘T’ in red circle) on activated 
thalamocortical synapses (and possibly other synapses in the same column). Ac | The 
tag remains once the activity of the column ceases. Ad | The reward-prediction error 
(RPE) gives rise to the release of neuromodulators to increase or decrease the strength 
of tagged synapses, influencing the probability that the same action will be selected in 
the future. Ae | The tagged synapse has now been strengthened. B | Sequence of 
molecular events in postsynaptic spines in the striatum. The binding of glutamate (Glu) 
to NMDA receptors (NMDARs) gates plasticity through calcium influx. 
Neuromodulators, such as dopamine (DA), activate another pathway through, for 
example, D1 dopamine receptor (D1R), adenyl cyclase (AC), cAMP (which is broken 
down by phosphodiesterase (PDE)) and protein kinase A (PKA)–protein phosphatase 1 
regulatory subunit 1B (PPP1R1B; also known as DARPP32)–protein phosphatase 1 (PP1) 
signalling. Both pathways need to be active for the activation of calcium/calmodulin -
dependent protein kinase type II (CAMKII), which causes an increase in synaptic 
strength as measured by an increase in the volume of dendritic spines. APs, action 
potentials; VDCC, voltage-dependent calcium channel. Part B is adapted with 
permission from REF. 14, AAAS.
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