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Julia Trommershäuser1, Laurence T. Maloney2 and Michael S. Landy2

1 Giessen University, Department of Psychology, Otto-Behaghel-Str. 10F, 35394 Giessen, Germany
2 New York University, Department of Psychology and Center for Neural Science, 6 Washington Place, New York, NY 10003, USA

Opinion
We discuss behavioral studies directed at understanding
how probability information is represented in motor and
economic tasks. By formulating the behavioral tasks in
the language of statistical decision theory, we can com-
pare performance in equivalent tasks in different
domains. Subjects in traditional economic decision-
making tasks often misrepresent the probability of rare
events and typically fail to maximize expected gain. By
contrast, subjects in mathematically equivalent move-
ment tasks often choose movement strategies that co-
me close to maximizing expected gain. We discuss the
implications of these different outcomes, noting the
evident differences between the source of uncertainty
and how information about uncertainty is acquired in
motor and economic tasks.

Risky decisions and movement planning
Uncertainty plays a fundamental part in perception, cog-
nition and motor control and a wide variety of biological
tasks can be formulated in statistical terms. How the
organism combines sensory information from many differ-
ent sources (‘cues’) is currently an active area of research.
Several groups have proposed [1,2] that perceptual esti-
mation of properties of the environment can be framed
within Bayesian decision theory, a special case of statisti-
cal decision theory [3]. Here, we show that framing beha-
vioral tasks in the language of statistical decision theory
enables a comparison of performance between motor tasks
and decision making under risk.

Much research concerning decision making seeks to
understand how subjects choose between discrete plans
of action that have economic consequences [4]. A subject
might be given a choice between a 10% chance of winning
$5000 (and otherwise winning nothing) and a 95% chance
of winning $300 (and otherwise winning nothing). These
choices can be written in compact form as lotteries (L):

L1 ¼ ½0:1; $5000; 0:9; $0� andL2 ¼ ½0:95; $300; 0:05; $0�
If subjects are given the probabilities then they are

making ‘decisions under risk’, if not, they are making
‘decisions under uncertainty’ [5]. Here, we are concerned
primarily with the former.

Of course, most subjects would prefer to receive $5000
rather than $300, or to receive $300 rather than $0. The
key difficulty in making such decisions is that no plan of
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(julia.trommershaeuser@psychol.uni-giessen.de).

1364-6613/$ – see front matter � 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tics.2008.0
action (lottery) available to the subject guarantees a
specific outcome.

Here, we review recent experimental work in movement
planning [6–9] in which humans perform speeded move-
ments towards displays with regions that, if touched, lead
to monetary rewards and penalties (Box 1). Our work
shows that humans do very well in making these complex
decisions in motor form. This outcome is particularly sur-
prising because humans typically do not do well in equiv-
alent economic decision-making tasks, as we describe next.

Sub-optimal economic decisions
Human performance in decision making under risk is
markedly sub-optimal and fraught with cognitive biases
[4] that result in serious deficits in performance. Patterned
deviations from maximizing expected gain include a
tendency to frame outcomes in terms of losses and gains
with an exaggerated aversion to losses [10] and a tendency
to exaggerate the weight given to low-probability outcomes
[11,12]. The latter property parallels the human tendency
to overestimate the relative frequencies of rare events
[13,14]. This exaggeration of the frequency of low-fre-
quency events is observed in many, but not all, decision-
making studies [15]. These behaviors are typicallymodeled
by Prospect Theory by introducing a probability weighting
function and by assuming that subjects maximize a trade-
off between losses and gains [10,12].

Motor tasks equivalent to decision making under risk
Recent work in motor control [9] formulates movement
planning in terms of statistical decision theory, effectively
converting the problem of movement planning to a decision
among lotteries that is mathematically equivalent to
decision making under risk. We can compare performance
in economic decision-making tasks with performance in
equivalent motor tasks and also study how organisms
represent value and uncertainty and make decisions in
very different domains [16–22].

In Figure 1a, we illustrate the task and show one of the
target-penalty configurations used in Ref. [6]. The rules of
the task are simple. The configuration appears on a display
screen a short distance in front of the subject. The subject
must reach out and hit somewhere on the display screen
within a limited period of time. The subject knows that
hits within the green circle result in a monetary payoff but
hits within the red result in a loss of money. The amounts
vary with experimental condition but in the example in
Figure 1a they are 2.5 cents and 12.5 cents, respectively.
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Box 1. Constructing motor lotteries

In the main text, we describe a movement task equivalent to decision

making under risk. On each trial in the task, subjects have to reach out

and touch a computer screen within a limited period of time (e.g.

700 ms). Hits inside a green target region, displayed on a computer

screen, yield a gain of 2.5 cents; accidental hits inside a nearby red

penalty region incur losses of 12.5 cents. Movements that do not

reach the screen within the time limit are heavily penalized (after

training, they almost never occur). The subject is not completely

under control of the movement outcome due to the short time limit

[43]. Figure I shows simulated outcomes of attempts to hit the target

center.

A movement that reaches the screen within the time limit can end in

one of four possible regions: penalty only (region R1, gain G1 = �12.5),

target and penalty overlap (region R2, gain G2 = �10), target only

(region R3, gain G3 = 2.5) or neither/background (region R4, gain

G4 = 0). On evaluating movement plans in this task, visuo-motor

plans that lead to a touch on the screen within the time limit differ

only to the extent that they affect the probability Ps(Ri) of hitting each

of the four regions Ri, where i = �1, . . ., 4. The combination of event

probabilities Ps(Ri) resulting from a particular visuo-motor plan (aim

point) s and associated gains Gi form a lottery:

LðsÞ ¼ ½PsðR1Þ;G1; PsðR2Þ;G2; PsðR3Þ;G3; PsðR4Þ;G4� [Equation I]

An alternative visuo-motor plan s0 corresponds to a second lottery:

Lðs0Þ ¼ ½Ps0 ðR1Þ;G1; Ps0 ðR2Þ;G2; Ps0 ðR3Þ;G3; Ps0 ðR4Þ;G4� [Equation II]

Each lottery corresponds to an aim point. The lottery corresponding to

the aim point in Figure Ia has an expected gain of �2.8 cents per trial

(on average, the subject loses money), the expected gain associated

with the aim point in Figure Ib is 0.78 cents per trial. Obviously, the aim

point in Figure Ib offers higher expected gain. In planning movement in

this task, subjects effectively choose between not just these two aim

points but an infinite number of aim points (lotteries). They are

engaged in a continuous decision-making task of extraordinary com-

plexity, and it is a task that is performed every time they move.

Figure Ic is a plot the expected gain associated with every possible

aim point with four of them highlighted. The aim point corresponding

to the yellow diamond maximizes expected gain for the subject in this

task.

Figure I. Equivalence of a movement task and decision making under risk. Subjects must touch a computer screen within a limited period of time (e.g. 700 ms). Subjects

can win 2.5 cents by hitting inside the green circle, lose 12.5 cents by hitting inside the red circle, lose 10 cents by hitting where the green and red circle overlap or win

nothing by hitting outside the stimulus configuration. Each possible aim point on the computer screen corresponds to a lottery. (a) Expected gain for a subject aiming at

the center of the green target (aim point indicated by the blue diamond). Black points indicate simulated end points for a representative subject (with 5.6 mm end-point

standard deviation); target and penalty circles have radii of 9 mm. This motor strategy yields an expected loss of 2.8 cents per trial. The numbers shown below the target

configuration describe the lottery corresponding to this aim point (i.e. the probabilities for hitting inside each region and the associated gain). (b) Expected gain for a

subject with the same motor uncertainty as in (a). Here, we simulate the same subject aiming towards the right of the target center (yellow diamond) to avoid accidental

hits inside the penalty circle. This strategy results in an expected gain of 0.78 cents per trial and corresponds to the strategy (aim point) that maximizes expected gain.

(c) Each possible aim point corresponds to a lottery and has a corresponding expected gain, shown by the grayscale background with four particular aim points

highlighted.
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Within the short time limit for movement execution, the
movement cannot be completely controlled: even if the
subject aims at the center of the green circle there is a
real chance of missing it. And, if the subject aims too close
to the center of the green circle, there is a risk of hitting
inside the red. So, where should the subject aim?

In Box 1, we show how to interpret the subject’s choice
of aim point as a choice among lotteries and how to
determine the aim point that maximizes expected gain.
An economist would use the term ‘utility’, whereas a
researcher inmotor controlwould opt for ‘cost’ or ‘biological
cost’, and a statistician would use ‘loss’ or ‘loss function’.
Adopting a field-neutral term, we refer to rewards and
penalties associated with outcomes as ‘gains’, whether
positive or negative.
292
Wewere surprised to discover that, in this decision task
in motor form, participants typically chose visuo-motor
plans that came close to maximizing expected gain.
Figure 1b is a plot of the subjects’ displacement in the
horizontal direction away from the center of the green
circle versus the displacement that would maximize
expected gain, combining data across several experimental
conditions varying the penalty amount and distance be-
tween target and penalty circles [6,7].

Additional research has extended this conclusion to
tasks that involve precise timing and trade-off between
movement time and reward [23,24] and to tasks involving
rapid choices between possible movement targets [9]. In
most cases, human subjects choose strategies that come
close to maximizing expected gain in motor tasks with



Figure 1. Reaching under risk. (a) An example of a stimulus configuration presented on a display screen. The subject must rapidly reach out and touch the screen. If the

screen is hit within the green circle, 2.5 cents are awarded. If hit within the red circle, there is a penalty of 12.5 cents. The circles are small (9 mm radius) and the subject

cannot completely control this rapid movement because timing constraints force it to be rapid. In Box 1 we explain what the subject should do to maximize winnings. (b) A

comparison of subjects’ performance to the performance that would maximize expected gain. The shift of subjects’ mean movement end points from the center of the

green target region is plotted as a function of the shift of mean movement end point that would maximize expected gain for five different subjects (indicated by five different

symbols) and the six different target-penalty configurations shown in Figure 2a. Replotted, with permission, from Figure 5a in Ref. [6].
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changing stochastic variability [8,25] or combining noisy
sensory input with prior information [26–29].

These results have implications for understanding
movement planning and motor control. Typical compu-
tational approaches to modeling movement-planning take
the form of an optimization problem, in which the cost
function to be minimized is biomechanical and the optim-
ization goal is to minimize some measure of stress on the
muscles and joints. These models differ primarily in the
choice of the cost function. Possible biomechanical cost
functions include measures of joint mobility [30,31],
muscle-tension changes [32], mean-squared rate of change
of acceleration [33], mean torque change [34], total energy
expenditure [35] and peak work [36]. These biomechanical
models have successfully been applied to model the nearly
straight paths and bell-shaped velocity profiles of arm
movements and also capture the human ability to adapt
to forces applied during movement execution [37]. We
emphasize that these models cannot be used to predict
subjects’ performance in our movement-decision tasks in
which performance also depends on externally imposed
rewards and penalties. Moreover, subjects came close to
maximizing expected gain with arbitrary, novel penalties
and rewards imposed on outcomes by the experimenter.

Subjects do not always come close to maximizing
expected gain in movement planning; for example when
the number of penalty and reward regions is increased [38]
and when the reward or penalty received is stochastic
rather than determined by the outcome of the subject’s
movement [39]. Furthermore, when the penalty is so high
that the aim point that maximizes expected gain lies out-
side of the target, results indicate that subjects prefer not
to aim outside of the target that they are trying to hit [8].
Thus, although there is a collection of motor tasks (as
described earlier) in which performance is remarkably
good, we cannot simply claim that performance in any
task with a speeded motor response will come close to
maximizing expected gain. Further work is needed to
delimit the range of movement-planning tasks in which
subjects do well.
One evident question is: are subjects maximizing
expected gain gradually by a process of trial and error?

Learning probabilities versus practicing the task
We were surprised to learn that subjects do not show
trends that are consistent with a gradual approach to
maximizing expected gain. The design of our studies [6–
8] and related work [23] had a peculiar structure. Before
the ‘decision-making’ phase of the experiment, subjects
practiced the speededmotor task extensively by repeatedly
touching single circular targets. During this initial train-
ing period, the experimenter monitored their motor per-
formance until it stabilized and the experimenter could
measure the residual motor variability of each subject.

Only after training did subjects learn about the gains
and losses assigned to each region in the experimental
condition. They were not explicitly told to take into account
the spatial locations of reward and penalty regions and the
magnitude of penalty and reward, but their highly efficient
performance indicates that they did so from the first trial in
which rewards and penalties were specified.

To summarize, in these experiments subjects were first
trained to be ‘motor experts’ in a simple task in which they
were instructed to touch targets on the screen. Only then
were they given a task involving trade-offs between
rewards and penalties. There were no obvious trends in
the aim points of subjects [6,7] that would indicate that
they were modifying their decision-making strategy as
they gained experience with the decision-making task
(Figure 2a).

To see how unusual this outcome is, consider applying a
simple reinforcement-learning model according to which
the aim point is adjusted gradually in response to rewards
and penalties incurred [40–42]. In the absence of any
reward or penalty, a learning model based on reward
and penalty would predict that the subject should aim
at the center of the green circle, just as in the training
trials. The subject would then gradually alter the aim point
in response to rewards and penalties incurred until the
final aim point maximized expected gain (Figure 2b).
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Figure 2. Absence of learning in reaching under risk. (a) Trial-by-trial deviation of

movement end point (in the horizontal direction) from the mean movement end

point in that condition as a function of trial number after introduction of rewards

and penalties (reward: 2.5 cents; penalty �12.5 cents); the six different lines

correspond to the six different spatial conditions of target and penalty off-set

as shown on the right. Data replotted, with permission, from Figure 7 in Ref. [6].

(b) Trend of a hypothetical simple learning model in which a subject changes motor

strategy gradually in response to rewards and penalties incurred. The subject initially

aims at the center of the green circle. Before the subject’s first trial in the decision-

making phase of the experiment, the subject is instructed that red circles carry

penalties and green circles carry rewards. Under this model, subjects would

approach the aim point to maximize expected gain by slowly shifting the aim

point away from the center of the green circle until the winnings match the maximum

expected gain. However, the data shown in (a) do not support this learning model.

Box 2. Decisions from experience

There are several factors that might have contributed to the

remarkable performance of subjects in movement planning under

risk [6–9,44]. In these experiments, the subject makes a long series of

choices and, over the course of the experiment, their accumulated

winnings increase. By contrast, subjects in economic decision-making

experiments typically make a single ‘one-shot’ choice, choosing from

a small set of lotteries. Indeed, when economic decision makers are

faced with a series of decisions, they tend to move closer to maximum

expected gain (e.g. Ref. [45]; and ‘the house money effect’ [46]).

Recent work indicates that subjects who are allowed to simulate a

decision task learn from their experience [47], and, together with the

studies just cited, it is likely that decision making improves with

repetition. However, in the motor tasks discussed here, the learning

phase does not involve explicit probabilities, values or trade-offs

between risk and reward. In the experimental phase (see Figure 2 in

the main text), they show no evidence of learning. This outcome

indicates that they can explicitly transfer experience with motor

uncertainty to the decision task (Figure I), computing probabilities

and planning movements on demand. Although subjects probably

learn from experience in these motor tasks, experience does not

involve simple practice or simulation of the actual decision task.

Figure I. Motor decisions from experience. In the learning phase of the

experiment. subjects learn to hit targets. Their performance improves until

their movement variability has reached a plateau. During training, they have the

opportunity to learn their own motor uncertainty but nothing about the training

task requires that they do so. In the experimental phase, subjects plan

movements that trade off the risk of incurring penalties against the possible

reward of hitting targets. They show little evidence of learning and perform well

in the task. This indicates that they can convert what they learned in the training

phase into the information needed to plan effective movements under risk: the

equivalent of estimating the probabilities of the various outcomes associated

with any proposed aim point, followed by a computation of expected gain.

Opinion Trends in Cognitive Sciences Vol.12 No.8
However, examination of the initial trials of the decision
phase of the experiment indicates that subjects immedi-
ately changed their aim point from that used in training to
that necessary to trade off the probabilities of hitting the
reward and penalty regions (Figure 2a). This apparent lack
of learning is of great interest in that it indicates that,
although subjects certainly learned to carry out the motor
task in the training phases of these experiments, and
learned their own motor uncertainty, they seemed not to
need further experience with the decision-making task to
perform as well as they did, applying the knowledge of that
motor uncertainty to new situations. The trends in per-
formance found by repetition of economic-decision tasks
seem absent in equivalent movement-planning tasks.

The contrast between success in ‘movement planning
under risk’ and decision making under risk is heightened
by the realization that, in decision making under risk,
subjects are told the exact probabilities of outcomes and,
thus, have perfect knowledge of how their choice changes
the probability of attaining each outcome. The knowledge
of probabilities in equivalent motor tasks is never commu-
nicated explicitly and, thus, can equal but never exceed the
294
knowledge available under decision making under risk.
Yet the lack of learning in these motor tasks indicates that
humans are able to estimate the probabilities of each
outcome associated with any given aim point because of
motor uncertainty and make use of this knowledge to
improve their performance [8]. There is mounting evidence
that decision makers behave differently if knowledge of
probabilities is gained through ‘experience’ (Box 2). Our
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results add a new dimension to what kinds of experience
lead to enhanced decision making.

There is growing interest in analyzing brain activity in
response to manipulations of various components of
Box 3. Statistical decision theory and sensory-motor control

Statistical decision theory [48] is a remarkably general framework for

modeling tasks in cognition, perception and planning of movement

[3]. In its simplest forms, it is the mathematical basis for signal-

detection theory and common models of optimal visual classification

[49]. The models of simple movement tasks considered here are

examples of its application. Figure Ia illustrates its application to a

more complex movement task that involves both visual and motor

uncertainty. A dinner guest intends to pick up a salt shaker at the

center of the table with his right hand. We follow this movement from

initial planning to eventual social disaster (Figure Ib) or success

(Figure Ic).

One possible plan of action is schematized as a solid line, sketching

out the path of the hand that the guest plans to take. An actual

movement plan would specify joint movements throughout the

reach. His planning should take into account uncertainty in his

estimates of object location in addition to his accuracy in movement.

If his sensory information is poor under candlelight, he might do well

to choose a path that gives the wine glass a wide berth and proceed

slowly. But, if he moves too slowly, he will never get through his

meal. The potential costs and benefits are measured in units of

disgrace, esteem and dry-cleaning charges. Statistical decision theory

enables us to determine the best possible choice of movement plan

(i.e. the one that maximizes expected gain).

In detail, a movement strategy is a mapping from sensory input V

to a movement plan s(V) (Figure II). The expected gain associated with

the choice of strategy s(V) is given by:

EGðsÞ ¼
Z Z Z

gðt ;wÞpT ðt jsðvÞÞpv ðv jwÞpw ðwÞdv dt dw

[Equation III]

where w is the random state of the world (i.e. positions of arm, salt

shaker, wine glass and so on) with prior distribution pw ðwÞ based on

past sensory information and knowledge of how a table is laid out, V is

Figure I. Example of applying statistical decision theory to modeling goal-directed mo

the salt shaker at the center of the table with his right hand. An intended trajectory is s

that might occur. (b) The actual executed movement might deviate from the intended

his full wine glass. (c) If executed successfully, the dinner guest will pick up the salt
decision making under risk or uncertainty in human sub-
jects (for more extensive reviews, see Refs [16,17,19,20]).
The work described here effectively opens a second window
for neural processing of uncertainty and value by allowing
current sensory information about the state of the world with likelihood

distribution pv ðv jwÞ and T is the stochastic movement trajectory

resulting from the executed movement plan sT (V). The term gðt ;wÞ
specifies the gain resulting from an actual trajectory t in the actual state

of the world w . In the example given, it includes costs incurred by

hitting objects while reaching through the dinner scene and possible

rewards for successfully grasping the salt shaker. Equation III

determines the movement strategy that maximizes expected gain.

Figure II. Application of statistical decision theory to complex visuo-motor tasks.

The goal is a mapping from sensory input V to a movement plan s(V). Gains and

losses gðt ;wÞ are determined by the actual trajectory t executed in the actual

state of the world w . The movement plan that maximizes expected gain depends

on both visual uncertainty and motor uncertainty. {Here, we follow the

convention that random variables are in upper case (e.g. X), whereas the

corresponding specific values that those variables can take on are in lower-case

[e.g. p(x)]}.

vement under visual and motor uncertainty. (a) A dinner guest intends to pick up

hown along with a ‘confidence interval’ to indicate the range of other trajectories

and, instead of grasping the salt shaker, the guest might accidentally knock over

shaker without experiencing social disaster. (Drawings by Andreas Olsson).
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one to present exactly the same decision problems in
different guises.

Statistical decision theory: future directions
The motor task we have considered is simple: a reaching
movement to touch a target. Even this simple motor task
corresponds to complicated choices among lotteries. We
close by illustrating that the underlying statistical frame-
work, statistical decision theory, can be used to model
complex movement tasks shaped by externally imposed
rewards and penalties in which visual uncertainty can play
a larger part (Box 3).

By using the methods described here, visuo-motor and
economic decision-making tasks can be translated into a
commonmathematical language. We can frame movement
in economic terms or translate economic tasks into equiv-
alent visuo-motor tasks. Given the societal consequences
associated with failures of decision making in economic,
military, medical and legal contexts, it is worth investi-
gating decision tasks in domains in which humans seem to
do very well.
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