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Abstract

Cognitive behaviour requires complex context-dependent processing of information that emerges from the links between attentional perceptual

processes, working memory and reward-based evaluation of the performed actions. We describe a computational neuroscience theoretical

framework which shows how an attentional state held in a short term memory in the prefrontal cortex can by top-down processing influence ventral

and dorsal stream cortical areas using biased competition to account for many aspects of visual attention. We also show how within the prefrontal

cortex an attentional bias can influence the mapping of sensory inputs to motor outputs, and thus play an important role in decision making. We also

show how the absence of expected rewards can switch an attentional bias signal, and thus rapidly and flexibly alter cognitive performance. This

theoretical framework incorporates spiking and synaptic dynamics which enable single neuron responses, fMRI activations, psychophysical

results, the effects of pharmacological agents, and the effects of damage to parts of the system to be explicitly simulated and predicted. This

computational neuroscience framework provides an approach for integrating different levels of investigation of brain function, and for

understanding the relations between them. The models also directly address how bottom-up and top-down processes interact in visual cognition,

and show how some apparently serial processes reflect the operation of interacting parallel distributed systems.
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Understanding the fundamental principles underlying higher

brain functions requires the integration of different levels of

experimental investigation in cognitive neuroscience (from the

operation of single neurons and neuroanatomy, neurophysiol-

ogy, neuroimaging and neuropsychology to behaviour) via a

unifying theoretical framework that captures the neural

dynamics inherent in the computation of cognitive processes.

A theoretical framework that fulfils these requirements can be

obtained by developing explicit mathematical neurodynamical

models of brain function based at the level of neuronal spiking

and synaptic activity (Rolls and Deco, 2002; Dayan and Abbott,

2001). In this article we show how this approach is being used to

produce a unified theory of visual attention and working

memory, and how these processes are influenced by rewards to

influence decision making.

In particular, this review focusses on a computational

neuroscience perspective that adds to the general framework of

the Biased Competition Hypothesis (Moran and Desimone,

1985; Spitzer et al., 1988; Motter, 1993; Miller et al., 1993;

Chelazzi et al., 1993; Reynolds and Desimone, 1999; Chelazzi,

1998; Rolls and Deco, 2002). In this approach (Rolls and Deco,

2002) multiple activated populations of neurons which may be

hierarchically organized engage in competitive interactions,

and external top-down effects bias this competition in favour of

specific neurons. The aim of the framework is to show how the

integration of evidence from low levels of investigation

(including detailed evidence of what is represented by the

computing elements of the brain, single neurons) is taken to be

very relevant to the computational theory. This is somewhat in

contrast to the approach advocated by Marr (1982), who

proposed that the first stage should be specification of the

computational theory, the second specification of the algorithm,

and the third specification of the implementation. In this review,

we show that the experimental evidence and what is plausible in

biological systems provide important constraints on the

computational theory. Moreover, again based on the experi-

mental evidence, instead of adopting a primarily bottom-up or

feed-forward approach (Marr, 1982), we incorporate top-down

and interactive effects in the theory. Computational neu-

roscience approaches to other aspects of visual cognition

including bottom-up saliency map approaches to attention (Itti

and Koch, 2001; Wolfe, 1994) and the computation of invariant

representations (Wallis and Rolls, 1997; Riesenhuber and

Poggio, 2000; Salinas and Abbott, 1997; Wiskott and

Sejnowski, 2002; Rolls and Milward, 2000; Rolls and Deco,

2002) are described elsewhere (Buracas et al., 1996; O’Reilly

and Munakata, 2000; Rao et al., 1997).

1. The cognitive neuroscience of attention

One type of attentional process operates when salient

features in a visual scene attract attention (Itti and Koch, 2001).

This visual processing is described as feedforward and bottom-

up, in that it operates forward in the visual pathways from the

visual input (see Fig. 1). A second type of selective attentional

process, with which we are concerned here, involves actively

maintaining in short-term memory a location or object as the
target of attention, and using this by top-down processes to

influence earlier cortical processing.

One approach to top-down selective attention utilizes the

metaphor of a spotlight that ‘illuminates’ a portion of the field

of view where stimuli are processed in higher detail

(Helmholtz, 1967; Treisman, 1982). This has been developed

into a Feature Integration Theory of visual selective attention

with two processing stages (Treisman, 1988; Treisman and

Gelade, 1980). The first preattentive process runs in parallel

across the complete visual field extracting single primitive

features without integrating them. The second attentive stage

corresponds to the serial specialized integration of information

from a limited part of the field at any one time. Evidence for

these two stages of attentional visual processing comes from

psychophysical experiments using visual search tasks where

subjects examine a display containing randomly positioned

items in order to detect an a priori defined target.

A second approach, the biased competition model (Duncan

and Humphreys, 1989; Duncan, 1996), states that the multiple

stimuli in the visual field activate populations of visual

cortical neurons that engage in competitive interactions, and

that attentional signals from outside the visual cortex bias the

competition such that the cells representing the attended

stimulus win (Duncan and Humphreys, 1989; Duncan, 1996).

This competition works in parallel across the visual field as

shown by psychophysical experiments (Duncan et al., 1997;

Mozer and Sitton, 1998; Phaf et al., 1990; Tsotsos, 1990).

Neurophysiological experiments from extrastriate areas are

consistent with the biased competition hypothesis in showing

that attention serves to modulate the suppressive interaction

between two or more stimuli within the receptive field (Moran

and Desimone, 1985; Spitzer et al., 1988; Sato, 1989; Motter,

1993; Miller et al., 1993; Chelazzi et al., 1993; Motter, 1994;

Reynolds and Desimone, 1999; Chelazzi, 1998). For example,

Moran and Desimone (1985) showed that the firing activity of

visually tuned neurons in the extrastriate cortex was

modulated if monkeys were instructed to attend to the

location of the target stimulus, and this result is found in V4

(Luck et al., 1997; Reynolds et al., 1999), V2 (Reynolds et al.,

1999), and even weakly in V1 (McAdams and Maunsell,

1999) (see Fig. 1). Direct physiological evidence for the

existence of an attentional bias was provided by Luck et al.

(1997) and by Spitzer et al. (1988). Luck et al. (1997) showed

that attending to a location within the receptive field of a V2

or V4 neuron increased its spontaneous firing activity by a

small amount. When a single stimulus is presented in the

receptive field of a V4 neuron, Spitzer et al. (1988) observed

an increase of the neuronal response to that stimulus when the

monkey directed attention inside the receptive field,

compared to when attention was directed outside the field.

Evidence for the biased competition hypothesis as a

mechanism for the selection of non-spatial, object-related

attributes is that inferior temporal cortex (IT) neurons in

monkeys respond more to a target than to a distractor

(Chelazzi et al., 1993). Attention also influences the responses

of neurons in the dorsal visual stream (Duhamel et al., 1992;

Colby et al., 1993; Gnadt and Andersen, 1988), and Maunsell
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Fig. 1. (a) Lateral view of the macaque brain showing the connections in the ventral and dorsal visual streams (V1: primary visual area, V2, V4: extrastriate visual

areas, IT: inferior temporal, PP: posterior parietal) and the anterior (PFCv: ventrolateral prefrontal cortex, PFCd: dorsolateral prefrontal cortex) brain areas. (b) The

systems-level architecture of a model of the cortical mechanisms of visual attention and memory. The system is essentially composed of six modules which model the

two known main visual pathways of the primate visual cortex. Information from the retina via the lateral geniculate nucleus enters the visual cortex through area V1 in

the occipital cortex and proceeds into two forward or bottom-up processing streams. The occipital-temporal stream leads ventrally through V2–V4 and IT, and is

mainly concerned with object recognition. The occipito-parietal stream leads dorsally into PP and is responsible for maintaining a spatial map of an object’s location.

Both posterior visual pathways send connections to and receive connections from the lateral prefrontal cortex, where short-term memory functions take place.

Forward connections are indicated by solid lines; backprojections, which could implement top-down processing, by dashed lines; and recurrent connections within an

area by dotted lines. s—superficial pyramidal cells; d—deep pyramidal cells.

1 Covert attention refers to attentional processes that occur in the absence of

eye movements. Active visual search using eye movements (overt search) is

often necessary in complex natural scenes, because the inferior temporal visual

cortex represents primarily what is close to the fovea (Rolls et al., 2003).
(1995) demonstrated that the biased competitive interaction

due to spatial and object attention exists not only for objects

within the same receptive field of MT neurons, but also for

objects in spatially distant receptive fields. This suggests that

mechanisms exist to provide biased competition of a more

global nature in the dorsal visual stream.

Further evidence comes from functional magnetic resonance

imaging (fMRI) in humans (Kastner et al., 1998, 1999) which

indicates that when multiple stimuli are present simultaneously

in the visual field, their cortical representations within the

object recognition pathway interact in a competitive, suppres-

sive fashion, which is not the case when the stimuli are

presented sequentially. It was also observed that directing

attention to one of the stimuli counteracts the suppressive

influence of nearby stimuli.

There is evidence that visual object recognition can

operate in a largely feedforward mode (Marr, 1982; Rolls,

2000a). For example, Rolls et al. (1994) (see Rolls (2003))

showed in a backward masking paradigm that when humans

could just identify faces, inferior temporal cortex neurons fire

for only 30 ms, leaving insufficient time for information to

return from the inferior temporal cortex to V1 to contribute to

object identification. Also, Thorpe et al. (1996) demonstrated
that people and monkeys could perform categorization tasks

very rapidly, and that the event-related potentials (ERP)

relevant to decision making emerge in the prefrontal areas

within 150 ms, leaving little time for feedback to work its

way back down the visual hierarchy. Further, many object

recognition algorithms (Riesenhuber and Poggio, 2000;

Wallis and Rolls, 1997; Rolls and Milward, 2000; Rolls

and Deco, 2002) are based only on feedforward algorithms. In

contrast, with respect to attention, our proposal here stresses

that feedback is an inherent and integrated part of covert

attentional processes including object localization and

recognition when there are multiple objects in a visual

scene.1 Consistent with this proposal, there is evidence that

top-down effects can influence early cortical visual proces-

sing quite rapidly (Haenny and Schiller, 1988; Motter, 1993;

Lamme, 1995; Zipser et al., 1996; Lee et al., 1998; Ito and

Gilbert, 1999; Roelfsema et al., 1998; Hupe et al., 1998; Lee

and Nguyen, 2001; Lee et al., 2002).
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2. The computational neuroscience of visual attention

What are the theoretical tools for achieving the proper level

of description of the neurodynamical mechanisms that

underlie brain functions? On one hand, the level of description

should be accurate enough to allow the relevant mechanisms at

the level of neurons and synapses to be properly taken into

account. On the other hand, the description should be simple

enough, so that we can really infer by abstraction the relevant

principles substantiating perception and cognition. A mere

reproduction of phenomena of a complex system, like the

brain, just by simulating the same kind of artificial complex

system, is most of the time not useful, because there are usually

no explicit underlying First Principles, and it is also

unrealistic.

We assume, with others (Tuckwell, 1988; Brunel and Wang,

2001; Amit and Brunel, 1997; Del Giudice et al., 2003; Brunel

and Wang, 2001), that a proper level of description at the

microscopic level is captured by the spiking and synaptic

dynamics of one-compartment, point-like models of neurons,

such as Integrate-and-Fire Models. The realistic dynamics

allow the use of realistic biophysical constants (like con-

ductances, delays, etc.) in a thorough study of the realistic time

scales and firing rates involved in the evolution of the neural

activity underlying cognitive processes, for comparison with

experimental data. We believe that it is essential of a

biologically plausible model that the different time scales

involved are properly described, because the system that we are

describing is a dynamical system that is sensitive to the

underlying different spiking and synaptic time courses, and the

non-linearities involved in these processes. For this reason, it is

convenient to include a thorough description of the different

time courses of the synaptic activity, by including fast and slow

excitatory receptors (AMPA and NMDA) and GABA-

inhibitory receptors. A second reason why this temporally

realistic and detailed level of description of synaptic activity is

required is the goal to perform realistic fMRI-simulations.

These involve the realistic calculation of BOLD-signals that are

intrinsically linked with the synaptic dynamics, as recently

found by Logothetis et al. (2001). A third reason is that one can

consider the influence of neurotransmitters and pharmacolo-

gical manipulations, e.g. the influence of dopamine on the

NMDA and GABA receptor dynamics (Zheng et al., 1999;

Law-Tho et al., 1994), to study the effect on the global

dynamics and on the related cortical functions (e.g. working

memory Deco et al. (2004), and Deco and Rolls (2003)). A

fourth reason for analysis at the level of spiking neurons is that

the computational units of the brain are the neurons, in the sense

that they transform a large set of inputs received from different

neurons into an output spike train, that this is the single output

signal of the neuron which is connected to other neurons, and

that this is therefore the level at which the information is being

transferred between the neurons, and thus at which the brain’s

representations and computations can be understood (Rolls and

Treves, 1998; Rolls and Deco, 2002).

The ways in which we implement the models at the

Integrate-and-Fire level are described in Appendix A.
2.1. A functional architecture for visual attention

We consider here top-down processes in attention, and how

they interact with bottom-up processing, in a model of visual

attentional processing which has multiple hierarchically

organized modules in the architecture shown schematically

in Fig. 1b. The model shows how the dorsal (sometimes called

where) visual stream (reaching the posterior parietal cortex, PP)

and the ventral (what) visual stream (via V4 to the inferior

temporal cortex, IT) could interact through early visual cortical

areas (such as V1 and V2) to account for many aspects of visual

attention (Deco, 2001; Deco and Zihl, 2001; Rolls and Deco,

2002; Deco and Lee, 2002; Corchs and Deco, 2002; Heinke

et al., 2002; Deco and Lee, 2004). The system modelled is

essentially composed of six modules (V1 (the primary visual

cortex), V2–V4, IT, PP, ventral prefrontal cortex v46, and

dorsal prefrontal cortex d46). These six modules are

reciprocally connected in a parallel (dorsal and ventral)

hierarchy in accord with anatomical data (Felleman and Van

Essen, 1991). Some details of the background for and

architecture of the model (Deco and Lee, 2004; Deco and

Rolls, 2004; Rolls and Deco, 2002) are as follows.

2.1.1. Details of the architecture

Information from the retino-geniculo-striate pathway enters

the visual cortex through area V1 in the occipital lobe and

proceeds into two processing streams. The occipital-temporal

stream leads ventrally through modules V2, V4 to IT (the

inferior temporal cortex), and is mainly concerned with object

recognition, independently of position and scaling. The

occipito-parietal stream leads dorsally into PP (the posterior

parietal complex) and is responsible for maintaining a spatial

map of an object’s location and/or the spatial relationship of an

object’s parts as well as for moving the spatial location of

attention. In the model, the ventral stream consists of the four

modules V1, V2, V4 and IT. This part of the architecture is

similar to VisNet in architecture and training (Wallis and Rolls,

1997; Rolls and Milward, 2000; Elliffe et al., 2002; Rolls and

Deco, 2002), except that backprojections are incorporated, and

the numbers of neurons are reduced for simplicity. These

different modules allow combinations of features or inputs that

occur in a given spatial arrangement to be learned by neurons,

ensuring that higher-order spatial properties of the input stimuli

are represented in the network (Elliffe et al., 2002). This is

implemented via convergent connections to each part of a layer

from a small region of the preceding layer, thus allowing the

receptive field size of cells to increase through the ventral visual

processing areas, as is observed in the primate ventral visual

stream (see Fig. 1b). An external top-down bias, coming it is

postulated from a short-term memory for shape features or

objects in the more ventral part of the prefrontal cortex area

v46, generates an object-based attentional component that is

fed back down through the recurrent connections from IT

through V4 and V2 to V1 (see Fig. 1b). The V1 module contains

hypercolumns, each covering a pixel in a topologically

organized model of the scene. Each hypercolumn contains

orientation columns of orientation-tuned (complex) cells with



G. Deco, E.T. Rolls / Progress in Neurobiology 76 (2005) 236–256240
Gabor filter tuning at octave intervals to different spatial

frequencies. V1 sends visual inputs to both the ventral and

dorsal streams, and in turn receives backprojections from each

stream, providing a high-resolution representation for the two

streams to interact. This interaction between the two streams

made possible by the backprojections to V1 is important in the

model for implementing attentional effects. In the brain, there

may be contributions to this interaction from further cross-links

between the processing streams, occurring for example in V2,

but the principle of the interaction is captured in the model by

the common V1 module. The V2, V4 and IT modules each

receive inputs from a small region of the preceding module,

allowing the receptive field sizes of the neurons to increase

gradually through the pyramidal structure of the network. Each

of these modules acts like a competitive network (see Rolls and

Treves, 1998, Rolls and Deco, 2002 and Wallis and Rolls, 1997)

which enables neurons to learn to respond to spatially organized

combinations of features detected at the preceding stage, thus

helping to solve the binding problem (Elliffe et al., 2002), and

also implementing a certain degree of localized competitive

interaction between different targets. All the feedforward

connections are trained by an associative (Hebb-like) learning

rule with a short-term memory (the trace learning rule) in a

learning phase in order to produce invariant neuronal responses

(Rolls, 1992; Wallis and Rolls, 1997; Rolls and Milward, 2000).

The backprojections between modules, a feature of cortical

connectivity (Rolls and Treves, 1998; Rolls and Deco, 2002)

are symmetric and reciprocal in their connectivity with the

forward connections. The average strength of the back-

projections is set to be a specified fraction of the strength of

the forward connections (by a single parameter in the model) so

that the backprojections can influence but not dominate activity

in the input layers of the hierarchy (Renart et al., 1999a, b).

Intramodular local competition is implemented in all modules

by lateral local inhibitory connections between a neuron and its

neighboring neurons via a Gaussian-like weighting factor as a

function of distance (see Deco and Rolls, 2004).

The inputs to module V1 of the network are provided by

neurons with simple cell-like receptive fields. This input

filtering enables real images to be presented to the network.

Following Daugman (1988) the receptive fields of these input

neurons are modelled by 2D-Gabor functions. The Gabor

receptive fields have five degrees of freedom given essentially

by the product of an elliptical Gaussian and a complex plane

wave. The first two degrees of freedom are the 2D-locations of

the receptive field’s centre; the third is the size of the receptive

field; the fourth is the orientation of the boundaries separating

excitatory and inhibitory regions; and the fifth is the symmetry.

This fifth degree of freedom is given in the standard Gabor

transform by the real and imaginary part, i.e. by the phase of the

complex function representing it, whereas in a biological

context this can be done by combining pairs of neurons with

even and odd receptive fields. This design is supported by the

experimental work of Pollen and Ronner (1981), who found

simple cells in quadrature-phase pairs. Even more, Daugman

(1988) proposed that an ensemble of simple cells is best

modelled as a family of 2D-Gabor wavelets sampling the
frequency domain in a log-polar manner as a function of

eccentricity. Experimental neurophysiological evidence con-

strains the relation between the free parameters that define a

2D-Gabor receptive field (De Valois and De Valois, 1988).

There are three constraints fixing the relation between the

width, height, orientation, and spatial frequency (Lee, 1996).

The first constraint posits that the aspect ratio of the elliptical

Gaussian envelope is 2:1. The second constraint postulates that

the plane wave tends to have its propagating direction along the

short axis of the elliptical Gaussian. The third constraint

assumes that the half-amplitude bandwidth of the frequency

response is about 1–1.5 octaves along the optimal orientation.

Further, we assume that the mean is zero in order to have an

admissible wavelet basis (Lee, 1996). The neuronal pools in our

V1 module cells are modelled by the power modulus of a 2D-

Gabor function sensitive to a particular location, orientation,

symmetry, and spatial frequency according to the constraints

described above. The V1 module contains NV1 � NV1

hypercolumns, covering a N � N pixel scene. Each hypercol-

umn contains L orientation columns of complex cells with K

octave levels corresponding to different spatial frequencies.

The cortical magnification factor is explicitly modelled by

introducing more high spatial resolution neurons in a

hypercolumn the nearer this hypercolumn is to the fovea.

The density of the fine spatial resolution neurons across the

visual field decreases in the model according to a Gaussian

function centred on the fovea. In other words, in the periphery

far from the fovea only coarse spatial resolution V1 pools are in

the respective hypercolumn, whereas in regions near to the

fovea, the V1 hypercolumns include also high spatial resolution

input neurons.

The modules V2, V4 and IT consist also of C-dimensional

columns of neuronal pools (i.e., each column contains C pools)

distributed in a topographical lattice with NV2 � NV2,

NV4 � NV4, and NIT � NIT neurons, respectively. The con-

nectivity between modules V1–V2, V2–V4 and V4–IT is

intended to mimic the convergent forward connectivity of the

cerebral cortex. This connectivity helps to implement the

gradually increasing receptive field size as one proceeds up the

cortical hierarchy, and the formation of neurons that respond to

combinations of inputs with features in a defined spatial

configuration (Rolls, 1992; Wallis and Rolls, 1997; Elliffe et al.,

2002). The connections to neuronal pools in a column in an

upper module are limited to neuronal pools in a column in the

immediately connected lower module that are within a certain

radius around the focal point of connection (see Fig. 1). This

connectivity is reciprocated by the backprojections.

In this model system (Deco and Lee, 2004; Deco and Rolls,

2004; Rolls and Deco, 2002), one particular aspect of ventral

stream function was modelled: translation invariant object

recognition. One particular aspect of parietal cortex function

was modelled: the encoding of visual space in retinotopic

coordinates. (This is obviously a great simplification of the

complex hierarchical architecture and functions of the primate

visual system, but the model is sufficient to test and

demonstrate our fundamental proposals for how the object

and spatial streams interact to implement visual attentional
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processes. The way in which connectivity in the ventral visual

stream could self-organize appropriately to implement

translation invariance by using a modified associative learning

rule with a short-term memory trace of preceding neuronal

activity which statistically is likely to be a transform of the

same object has been studied by Rolls and colleagues (Wallis

and Rolls, 1997; Rolls and Milward, 2000; Elliffe et al., 2000;

Rolls and Stringer, 2001; Elliffe et al., 2002; Stringer and

Rolls, 2002; Rolls and Deco, 2002), and these ideas were

incorporated into the dynamical model of ventral and dorsal

visual stream operation in attention by Deco and Rolls (2004).

Further details of the model, including the equations for the

dynamics and the connectivity, are provided by Deco and Lee

(2004) and Rolls and Deco (2002).) In the model, top-down

connections from prefrontal cortex area 46 (modules d46 and

v46) provide the external top-down bias that specifies the

processing conditions of earlier modules. In particular, the

feedback connections from area v46 with the IT module

specify the target object in a visual search task; and the

feedback connections from area d46 with the PP module

generate the bias to a targeted spatial location in an object

recognition task given a spatial attentional cue. These top-

down inputs produce effects in the whole system by a biased

competition process, which has been modelled only in an

individual module such as IT previously (Usher and Niebur,

1996).2 Each node or computational unit in the modules

represents a population or pool of neurons. The activity of each

computational unit is described by a dynamical equation

derived from the mean-field approximation (see Appendix A

and Rolls and Deco, 2002 for details). The mean-field

approximation consists of replacing the temporally averaged

discharge rate of a neuron with the instantaneous ensemble

average of the activity of the neuronal population or pool

(corresponding to the assumption of ergodicity). The

dynamical evolution of activity at the level of a cortical area

can be simulated in the framework of the present model by

integrating the pool activity in a given area over space and time.

2.1.2. Operation of the model

The system operates in two different modes: the learning

mode and the recognition mode. During the learning mode the

synaptic connections between V4 and IT are trained by means

of Hebbian (associative) learning during several presentations

of a specific object at changing random positions in the visual

field. This is the simple way in which translation invariant

representations are produced in IT in this model. During the

recognition mode there are two possibilities for running the

system, illustrated in Fig. 2.

First, in visual spatial search mode (Fig. 2b), an object can

be found in a scene by biasing the system with an external top-

down (backprojection) component (from e.g. prefrontal area

v46) to the IT module. This drives the competition in IT in
2 The hypothesis for this mechanism can be traced back to the ‘adaptive

resonance’ model (Grossberg, 1987) in the neural network literature and the

‘interactive activation’ model (McClelland and Rumelhart, 1981) in the con-

nectionist literature.
favour of the pool associated with the specific object to be

searched for. Then, the intermodular backprojection attentional

modulation IT–V4–V1 will enhance the activity of the pools in

V4 and V1 associated with the component features of the

specific object to be searched for. This modulation will add to

the visual input being received by V1, resulting in greater local

activity where the features in the topologically organized visual

input features match the backprojected features being facili-

tated. Finally, the enhanced firing in a particular part of V1 will

lead to increased activity in the topologically mapped forward

pathway from V1 to V2–V4 to PP, resulting in increased firing

in the PP module in the location that corresponds to where the

object being searched for is located. In this way, the architecture

automatically finds the location of the object being searched for,

and the location found is made explicit by which neurons in the

spatially organized PP module are firing.

Second, in visual object identification mode (Fig. 2a), the PP

module receives a top-down (backprojection) input (from e.g.

prefrontal area d46) which specifies the location in which to

identify an object. The spatially biased PP module then drives

by its backprojections the competition in the V2–V4 module in

favour of the pool associated with the specified location. This

biasing effect in V1 and V2–V4 will bias these modules to have

a greater response for the specified location in space. The shape

feature representations which happen to be present due to the

visual input from the retina at that location in the V1 and V2–

V4 modules will therefore be enhanced, and the enhanced firing

of these shape features will by the feedforward pathway V1–

V4–IT favour the IT object pool that contains the facilitated

features, leading to recognition in IT of the object at the

attentional location being specified in the PP module. The

operation of these two attentional modes is shown schemati-

cally in Fig. 2.

The operation of this system is illustrated in Fig. 3. (The

whole system was described by Deco and Rolls (2004), and the

simulation illustrated in Fig. 3 is a simplified simulation

including only the IT–V1–PP modules performed by Deco and

Lee (2004) just to show the main aspects of the dynamics.)

Fig. 3I illustrates operation in the spatial attention mode when

the object at that location was to be identified (cf. Fig. 2a; see

figure legend for details). Fig. 3II shows the operation of the

system in object attention mode, i.e. in the visual search task

when the system was looking for the location of a particular

object in a visual scene (cf. Fig. 2b; see figure legend for details,

and Rolls and Deco (2002)). (The parameters for this

simulation were obtained from the mean-field analysis, and

the source of the fluctuations was noise introduced at the mean-

field level, which can be interpreted as the effect of finite-size

noise (Mattia and Del Giudice, 2002, 2004).)

2.2. Linking computational and single-neuron data

Is this theoretical framework (described in Section 2.1 and in

detail by Rolls and Deco (2002)) relevant to understanding the

visual system? By design, our model attempts to explain a

potential functional role of the backprojection connections in

the visual cortex. But do the computational units in this model



G. Deco, E.T. Rolls / Progress in Neurobiology 76 (2005) 236–256242

Fig. 2. Attentional modulation for finding an object (in visual object identification mode) at a specific spatial location using spatial bias to the PP module from for

example a prefrontal module d46. See text for details. (b) Attentional modulation for finding a visual spatial location (in visual spatial search mode) when an object is

specified by bias to the IT module from for example a prefrontal module v46.
system behave in a similar way to the neurons observed in

neurophysiological experiments? We address this in this

Section X. We then show that the same theoretical framework

and model can also be directly related to functional

neuroimaging data (Section 2.3), to psychophysical data on

serial versus parallel processing (Section 2.4), and to

neuropsychological data (Section 2.5). The framework and

model operate in the same way to account for findings at all

these levels of investigation, and in this sense provide a

unifying framework.

In neurophysiological experiments, it is found that neurons

in V4 and IT show competitive interactions between stimuli

presented within the receptive field, and that the suppression of

a neuronal response to a feature within the receptive field can be

overcome if attention is paid to the location of the feature

(Moran and Desimone, 1985; Chelazzi et al., 1993; Reynolds

et al., 1999). Similar effects are found for single neuron

responses in the model (as shown in Fig. 6.4 of Rolls and Deco,

2002). In another comparison, Deco and Lee (2004) and Corchs

and Deco (2002) showed a long-latency enhancement effect on

V1 units in the model under top-down attentional modulation

(compare Fig. 3Ib with Fig. 3Ia) which is similar to the long-

latency contextual modulation effects observed in early visual

cortex (Lamme, 1995; Zipser et al., 1996; Lee et al., 1998;

Roelfsema et al., 1998; Lee et al., 2002). Interestingly, in our

simulation, we found that the observed spatial or object

attentional enhancement is stronger for weaker stimuli. This

predicted result has been confirmed neurophysiologically by
Reynolds et al. (2000). The mechanism for this may be that the

top-down attentional influence can dominate the firing of the

neurons relatively more as there are fewer feedforward forcing

and shunting effects on the neurons. An extension of this model

(Deco and Rolls, 2004) can account for the reduced receptive

fields of inferior temporal cortex neurons in natural scenes

(Rolls et al., 2003), and makes predictions about how the

receptive fields are affected by interactions of features within

them, and by object-based attention.

The model has also been extended to the level of spiking

neurons which allows biophysical properties of the ion

channels affected by synapses, and of the membrane dynamics,

to be incorporated, and shows how the non-linear interactions

between bottom-up effects (produced for example by altering

stimulus contrast) and top-down attentional effects can account

for new neurophysiological results in areas MT and V4 (Deco

and Rolls, 2005a). The model and simulations show that

attention has its major modulatory effect at intermediate levels

of bottom-up input, and that the effect of attention disappears at

low and high levels of contrast of the competing stimulus. The

model assumed no kind of multiplicative attentional effects on

the gain of neuronal responses. Instead, in the model, both top-

down attention and bottom-up input information (contrast) are

implemented in the same way, via additive synaptic effects in

the postsynaptic neurons. There is of course a non-linearity in

the effective activation function of the integrate-and-fire

neurons, and this is what we identify as the source of the

apparently multiplicative effects (Martinez-Trujillo and Treue,



G. Deco, E.T. Rolls / Progress in Neurobiology 76 (2005) 236–256 243

Fig. 3. I. Effect of spatial attention on neural activities shown in three modules when performing object recognition. A top-down spatial attentional bias was

introduced to the dorsal PP module pool that encodes the location of the sculpture in the scene (curves marked ‘With Attention’), or there was no attentional input

(curves marked ‘Without Attention’). The responses of neuronal pools in the corresponding locations in the dorsal stream PP module and the V1 module, and the

response of the neuronal pool encoding the sculpture in the ventral stream IT module were compared with and without spatial attention. (a) The evolution of the

neuronal pool response at the dorsal stream PP module with and without the top-down spatial attentional bias. When the top-down bias was absent, the competition in

the dorsal stream PP module was entirely determined by the bottom-up signals from V1. In this case, the sculpture shape did not provide the strongest input and was

rapidly suppressed by the competitive interactions from the neuronal activities in the other locations in the scene. When there was a top-down spatial bias to the PP

neuronal pool, the neuronal pool’s activity rose rapidly and was maintained at a sustained level. (b) The increase in the activity of the neuronal pool in the dorsal

stream PP module enhanced the activity at the corresponding retinotopic location in the early V1 module, particularly in the latter phase of the response, producing a

highlighting effect. (c) The response of the ventral stream IT module neuron pool coding for the sculpture was substantially stronger when the spatial attention bias to

the PP module was allocated to the location of the sculpture than when there was no spatial attention. The spatial highlighting gated the sculpture image to be analyzed

and recognized by the ventral stream IT module neurons. Without spatial attention, the sculpture did not have bottom-up saliency to enable the domination of the

sculpture neuron in the ventral stream IT module. II. Neuronal activities shown in three modules during visual search in object attention mode. The maximum

population activity of the neuronal pools corresponding to the identity or location of the sculpture in the scene in the three modules was compared against the

maximum activity in pools coding any other locations or objects when sculpture was the target object of attention. The effect of attention, i.e. differentiation of

neuronal response between the target and distractor conditions, was observed to start at the ventral stream IT module, and then to propagate to the early V1 module and

the dorsal stream PP module. (a) The neuronal activity of the top-down biased ‘sculpture’ neuronal pool in the ventral-stream module was compared against the

maximum activity of all other object pools. The increase in the response of the sculpture pool relative to the response in all other pools was observed to rise rapidly as a

result of the top-down object attentional bias applied to the IT module. (b) The maximum population activity at the sculpture location in the early V1 visual module

was compared against the maximum activity of pools at all other locations in the scene. (c) The maximum activity of the pools coding in the dorsal stream PP module

for the sculpture location was compared against the maximum activity of the pools encoding the other locations.
2002) of top-down attentional biases on bottom-up inputs. The

relevant part of the effective activation function of the neurons

(the relation between the firing and the injected excitatory

currents) is the threshold non-linearity, and the first steeply

rising part of the activation function, where just above threshold

the firing increases markedly with small increases in synaptic

inputs (cf. Amit and Brunel (1997) and Brunel and Wang

(2001)). Attention could therefore alternatively be interpreted

as a phenomenon that results from purely additive synaptic

effects, non-linear effects in the neurons, and cooperation-

competition dynamics in the network, which together yield a

variety of modulatory effects, including effects that appear
(Martinez-Trujillo and Treue, 2002) to be multiplicative. In

addition, we were able to show that the non-linearity of the

NMDA receptors may facilitate non-linear attentional effects,

but is not necessary for them. This was shown by disabling the

voltage-dependent non-linearity of the NMDA receptors in the

simulations (Deco and Rolls, 2005a).

2.3. Linking computational and functional neuroimaging

data

This type of computational neuroscience approach is also

able to simulate and predict functional neuroimaging data
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obtained with for example functional magnetic resonance

imaging (fMRI), as shown in Appendix B. For example, Corchs

and Deco (2002) simulated fMRI signals from V4 in the

attentional paradigm studied by Kastner et al. (1999), and

reproduced the experimental result that when multiple stimuli

are present simultaneously in the visual field, their cortical

representations within the object recognition pathway interact

in a competitive, suppressive fashion. In addition, directing

attention to one of the stimuli counteracted the suppressive

influence of nearby stimuli. In these simulations, the activity of

neuronal populations or pools in a given area in the model

described above was integrated over space and time, to make it

relevant to interpreting fMRI signals. Simulations of this type

can help to interpret fMRI data, and indeed Deco et al. (2004)

showed that differences in the fMRI BOLD-signal from the

dorsal as compared to the ventral prefrontal cortex in working

memory tasks may reflect a higher level of inhibition in the

dorsolateral prefrontal cortex, rather than necessarily spatial

working memory functions dorsally, and object working

memory functions ventrally.

2.4. Linking computational and psychophysical data:

‘serial’ versus ‘parallel’ processing

In the visual search tasks we consider, subjects examine a

display containing randomly positioned items in order to detect
Fig. 4. (a) Parallel search example: an image that contains a target E in a field of

component lines have different orientations, E pops out from X, and its location can

image. This is called parallel search. (b) Serial search example: an image that contain

and horizontal lines, there is no difference in the elementary features to produce a pre

their features are bound or glued by attention. The time required to locate the target

This is called serial search and has been thought to involve the scanning of the sce

performing visual search on images (a) and (b) respectively. The difference (polariz

target locations and the maximum activity of all other neuronal pools in the dorsal PP

to a threshold, corresponding to localization of the object, at about the same time in

polarization signal to rise to a threshold increased linearly with the number of dis
an a priori defined target (i.e. a target that the subject is paying

attention to and must search for), and other items in the display

which are different from the target serve the role of distractors.

In a feature search task the target differs from the distractors in

one single feature, e.g. only colour. In a conjunction search task

the target is defined by a conjunction of features, and each

distractor shares at least one of those features with the target.

Conjunction search experiments show that search time

increases linearly with the number of items in the display,

which has been taken to imply a serial process, such as an

attentional spotlight moving from item to item in the display

(Treisman, 1988). An example of a display with this ‘serial’

search is shown in Fig. 4b, in which an E is the target and Fs are

the distractors. On the other hand, search times in a feature

search can be independent of the number of items in the display,

and this is described as a preattentive parallel search (Treisman,

1988) (see further (Deco and Zihl, 2001; Rolls and Deco, 2002;

Deco and Lee, 2004)). An example of a display with this

‘parallel’ search is shown in Fig. 4a, in which an E is the target

and Xs are the distractors.

In a simulation of these feature and conjunction search tasks

just described with the architecture of the type described in

Section 2.1, the results shown in Fig. 4c and d were obtained

(Deco and Zihl, 2001) (see also Rolls and Deco, 2002). The

results of the simulations are consistent with existing experi-

mental results (Quinlan and Humphreys, 1987). Although the
X distractors. Since the elementary features in E and X are distinct, i.e. their

be rapidly localized independently of the number of distracting X shapes in the

s a target E in a field of F distractors. Since both letters are composed of vertical

attentive pop-out, so the E and F can be distinguished from each other only after

in such an image increases linearly with the number of distractors in the image.

ne with a covert attentional spotlight. (c)–(d) Simulation result of the network

ation) between the maximum activity in the neuronal pool corresponding to the

module is plotted as a function of time. (c) shows that the difference signal rose

dependently of the numbers of distractor items. (d) shows that the time for the

tracting items, with an additional 25 ms required per item.
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whole simulation is parallel, and involves no serial moving

spotlight process, the conjunction search takes longer with

more distractors because the constraints are then more difficult

to satisfy, and the dynamics of the coupled set of networks

takes longer to settle. (The constraints are more difficult to

satisfy in the conjunction search task in that the features, which

include oriented line elements, are more similar to each other

in the E versus F case, and may use feature conjunctions to

solve the fact that the F uses a subset of the feature

combinations present in the E, see (Elliffe et al., 2002).) This

is an important result, for it provides direct computational

evidence that some apparently serial cognitive tasks may in

fact be performed by fully parallel processing neuronal

networks with realistic dynamics. Deco et al. (2002) extended

this approach to deal with serial search when there are

conjunctions of different numbers of features. The model

predicted different slopes for different kinds of conjunction

search, and these predictions were confirmed by psychophy-

sical investigations (Deco et al., 2002).

The results of this neurodynamical model thus extend the

ideas of Duncan and Humphreys (1989) who used the biased

competition mechanism to conceptually explain serial visual

search as involving a top-down process influencing the

competition between neurons that code for different object

attributes in the early visual areas, thus leading to the selection

of one object in the visual field. The basic hypothesis for this

mechanism can be traced back to earlier neural network models

such as the adaptive resonance model (Grossberg, 1987) or the

interactive activation model (McClelland and Rumelhart,

1981). The idea that some relatively early visual areas, such

as MT, can potentially mediate the interaction of dorsal and

ventral streams in visual search can be traced back to a

workshop paper by Buracas et al. (1996).

2.5. Linking computational and neuropsychological data

on attention

By artificially damaging the connections in the model, it is

possible to account for a number of attentional deficits

occurring in humans after brain damage. For example, with

graded damage increasing in severity towards the right of the

topologically organized parietal module, the model repro-

duces some of the symptoms of the left hemineglect of space

that occurs after right parietal cortex damage in humans

(Rolls and Deco, 2002; Heinke et al., 2002). If this lesion is

combined with local lateral inhibition (rather than the global

inhibition) within a processing module, then it is even

possible to account for object-based neglect, in which the

left half only of object in a series of objects arranged

across the visual field is not seen (Deco and Rolls, 2002).

Moreover, the model makes predictions about how patients

with object-based neglect will perceive objects when they are

brought towards each other, or are joined by cross-links (Deco

and Rolls, 2002), and these predictions are useful, in part

because they allow the model to be tested, as described by

Rolls and Deco (2002) on pages 394–398, and by Heinke

et al. (2003).
3. A unified model of attention and working memory

3.1. A model of the effects of attention on working memory

and decision making

There is much evidence that the prefrontal cortex is involved

in at least some types of working memory and related processes

such as planning (Fuster, 2000). Working memory refers to an

active system for maintaining and manipulating information in

mind, held during a short period, usually of seconds. Recently,

Asaad et al. (2000) investigated the functions of the prefrontal

cortex in working memory by analyzing neuronal activity when

the monkey performs two different working memory tasks

using the same stimuli and responses. In a conditional object–

response (associative) task with a delay, the monkey was shown

one of two stimulus objects (O1 or O2), and after a delay had to

make either a rightward or leftward oculomotor saccade

response depending on which stimulus was shown. In a delayed

spatial response task the same stimuli were used, but the rule

required was different, namely to respond after the delay

towards the left or right location where the stimulus object had

been shown (Asaad et al., 2000). The main motivation for such

studies was the fact that for real-world behaviour, the mapping

between a stimulus and a response is typically more

complicated than a one-to-one mapping. The same stimulus

can lead to different behaviours depending on the situation, or

the same behaviour may be elicited by different cueing stimuli.

In the performance of these tasks populations of neurons were

found that respond in the delay period to the stimulus object or

its position (‘sensory pools’), to combinations of the response

and the stimulus object or position (‘intermediate pools’), and

to the response required (left or right) (‘premotor pools’).

Moreover, the particular intermediate pool neurons that were

active depended on the task, with neurons that responded to

combinations of the stimulus object and response active when

the mapping was from object to behavioural response, and

neurons that responded to combinations of stimulus position

and response when the mapping rule was from stimulus position

to response (Asaad et al., 2000). In that different sets of

intermediate population neurons are responsive depending on

the task to be performed, PFC neurons provide a neural

substrate for responding appropriately on the basis of an

abstract rule or context.

Neurodynamics helps to understand the underlying mechan-

isms that implement this rule-dependent mapping from the

stimulus object or the stimulus position to a delayed

behavioural response. Deco and Rolls (2003) formulated a

neurodynamical model that builds on the integrate-and-fire

attractor network by introducing a hierarchically organized set

of different attractor network pools in the lateral prefrontal

cortex. The hierarchical structure is organized within the

general framework of the biased competition model of attention

(Chelazzi, 1998; Rolls and Deco, 2002). There are different

populations or pools of neurons in the prefrontal cortical

network, as shown in Fig. 5. (In order to be able to analyze and

constrain the problem, we adopt a minimalistic approach and

assume a minimal number of neuronal pools for coding two
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Fig. 5. Network architecture of the prefrontal cortex unified model of attention, working memory, and decision making. There are sensory neuronal populations or

pools for object type (O1 or O2) and spatial position (S1 or S2). These connect hierarchically (with stronger forward than backward connections) to the intermediate

or ‘associative’ pools in which neurons may respond to combinations of the inputs received from the sensory pools for some types of mapping such as reversal, as

described by Deco and Rolls (2003). For the simulation of the data of Asaad et al. (2000) these intermediate pools respond to O1-L, O2-R, S1-L, or S2-R. These

intermediate pools receive an attentional bias, which in the case of this particular simulation biases either the O pools or the S pools. The intermediate pools are

connected hierarchically to the premotor pools, which in this case code for a Left or Right response. Each of the pools is an attractor network in which there are

stronger associatively modified synaptic weights between the neurons that represent the same state (e.g. object type for a sensory pool, or response for a premotor

pool) than been neurons in the other pools or populations. However, all the neurons in the network are associatively connected by at least weak synaptic weights. The

attractor properties, the competition implemented by the inhibitory interneurons, and the biasing inputs, result in the same network implementing both short term

memory and biased competition, and the stronger feed forward than feedback connections between the sensory, intermediate, and premotor pools results in the

hierarchical property by which sensory inputs can be mapped to motor outputs in a way that depends on the biassing contextual or rule input.
different objects and two positions. This simplification allows a

detailed study of the dynamics, and is enough to capture the

main aspects of the dynamics associated with the memory

functions that we aim to study here.) There are four types of

excitatory pool, namely: sensory, intermediate (or associative,

in that they respond to combinations), premotor, and non-

selective. The sensory pools encode information about objects

(O1 and O2), or spatial location (S1 and S2). The premotor

pools encode the motor response (in our case the leftward (L) or

rightward (R) oculomotor saccade). The intermediate (asso-

ciative) pools are task-specific or rule-specific and perform the

mapping between the sensory stimuli and the required motor

response. The intermediate pools respond to combinations of

the sensory stimuli and the response required, with one pool for

each of the four possible stimulus–response combinations (O1-

L, O2-R, S1-L and S2-R). The intermediate pools can be

considered as being in two groups, one for the delayed object–
response associative task, and the other for the delayed spatial

response task. The intermediate pools receive an external

biasing context or rule input (see Fig. 5) that reflects the current

rule. The remaining excitatory neurons do not have specific

sensory, response or biasing inputs, and are in a non-selective

pool. All the inhibitory neurons are clustered into a common

inhibitory pool, so that there is global competition throughout

the network.

The parameters of the model (Deco and Rolls, 2003) were

set using a mean-field analysis as follows, as this analysis

enables the dependencies of specific network behaviours on the

network parameters to be assessed. In particular, we showed

that the inter-pool connection strengths along the processing

pathway cannot be equal, and an asymmetry is needed so that a

response is computed by the network. The mean-field analysis

shows the states that the system can reach, and enables further

constraints to be identified to produce behaviour of the system
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Fig. 6. Delayed spatial–response and delayed object–response simulations. Rastergrams of randomly selected neurons for each pool in the PFC network (5 for each

sensory, intermediate and premotor pool, 20 for the non-selective excitatory pool, and 10 for the inhibitory pool) and for all task conditions after the experimental

paradigms of Asaad et al. (2000). The spatio-temporal spiking activity shows that during the short-term memory delay period only the sensory cue, associated future

oculomotor response, and intermediate neurons maintain persistent activity and build up the stable global attractor of the network. The underlying biased competition

mechanisms are explicit. Pool names: Task Spa 2-intermediate pool responding in the delayed spatial response task to a combination of spatial location 2 and a Right

motor response; Task Obj 1-intermediate pool responding in the delayed object–response task to a combination of object 1 and a left motor response; Space 1-sensory

pool responding to the stimulus when it is in spatial position 1; Object 1-sensory pool responding to the stimulus when it is object 1 (after Deco and Rolls, 2003).
that correlates best to the corresponding data, and also better

theoretical descriptions for the dependencies of specific

behaviours on the network parameters (see Loh et al., 2004).

Fig. 6 plots the rastergrams of randomly selected neurons for

each pool in the network. The spatio-temporal spiking activity

shows that during the short-term memory delay period only the

relevant sensory cue, associated future oculomotor response,

and intermediate neurons maintain persistent activity, and build

up a stable global attractor in the network. The underlying

biased competition mechanisms that operate as a result of the

rule/context input (see Fig. 5) biasing the correct intermediate

pool neurons are very explicit in this experiment. Note that

neurons in pools for the irrelevant input sensory dimension
(location for the object–response associative task, and object

for the delayed spatial response task), are inhibited during the

sensory cue period and are not sustained during the delay short-

term memory period. Only the relevant single pool attractors,

given the rule context, that are suitable for the cue–response

mapping survive the competition and are persistently main-

tained with high firing activity during the short-term memory

delay period.

This model thus shows how a rule or context input can

influence decision making by biasing competition in a

hierarchical network that thus implements a flexible mapping

from input stimuli to motor outputs (Rolls and Deco, 2002;

Deco and Rolls, 2003). The model also shows how the same
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network can implement a short-term memory, and indeed how

the competition required for the biased competition selection

process can be implemented in an attractor network which itself

requires inhibition implemented through the inhibitory

neurons. The short-term memory of the system, evident by

the continuing firing of the relevant neuronal sensory,

intermediate combination, and motor pools in the delay period

from 1000 to 2000 ms in Fig. 6, is implemented both by the

recurrent associatively modified connections within each pool

of neurons shown in Fig. 5, but also by the associatively

modified feedforward and feedback connections between the

pools at the different levels of the hierarchy shown in Fig. 5. It is

an interesting property of the model that the system consists of

sets of hierarchically but reciprocally connected attractor

networks which together contribute to the short-term memory

implemented in the system. We note that the types of neuron

included in the model are the types recorded by Asaad et al.

(2000) during the performance of the task, and that a

combinatorial explosion of required neuron types may be

avoided by the fact that neurons in the prefrontal cortex adapt

their response properties to the task demands (Freedman et al.,

2003).

Another issue is how the connectivity between the different

pools is set up during the learning phase. One process, which

works for many of the connections, is Hebbian associative

learning. However, even in the cases when the forward and

backward connections are not identical (as in our model), the

pattern of the synaptic weights required can still be set up

during training by simple associative learning. All that is

required even in these cases is some asymmetry in the gain of

the forward and backward connections. This could be

implemented by the forward and backward connections

terminating on different parts of the dendrite, as occurs for

connections between cortical areas (see Rolls and Treves, 1998

and Rolls and Deco, 2002). The implication of this would be

that there would be a trend through prefrontal cortical areas,

from those closer to the sensory input, through areas between

the sensory and motor-related areas, to areas with response-

related neuronal activity. With the connections through the

networks in this direction, there would be stronger connections

in the correct (forward) direction, because the forward

connections are more likely to end on the main part of the

dendrites of pyramidal cells, and the backprojections are more

likely to end on the apical dendrites of cortical pyramidal cells

(Rolls and Treves, 1998; Rolls and Deco, 2002). Such a trend,

from prefrontal cortical areas that receive from posterior

perceptual areas, through regions that are intermediate, through

to regions closer to motor output, could in fact be one of the

principles of prefrontal cortical connectivity, which would not

be inconsistent with what is known about prefrontal

connectivity. For example, the orbitofrontal cortex has mainly

sensory inputs (with little response-related neuronal activity)

(Rolls, 1999, 2005), and so does the ventrolateral prefrontal

cortex (area 47/12). The dorsolateral prefrontal cortex is more

of a mixed area, with neurons that respond to combinations of

sensory inputs and responses, and where effects of biassing

attentional signals are evident (Asaad et al., 2000, 1998).
Finally the more dorsal and posterior prefrontal cortical areas

may be more closely related to the responses being made,

including oculomotor responses (Kandel et al., 2000).

Synaptic plasticity is dependent on the timing of the spikes

in the pre- and postsynaptic neuron (Markram et al., 1997; Bi

and Poo, 2001; Senn et al., 2001), and a theoretical and

computational analysis of these effects in the context of

working memory formation in the prefrontal cortex has been

performed by Fusi and colleagues (Fusi, 2003, 2002; Fusi et al.,

2000; Fusi and Mattia, 1999). They have shown how Hebbian

dynamic learning can cope with both stability of the network

states and stability of the learning process. They have shown

that a spike-time based learning rule can result in a rate

dependent long-term synaptic modification, and that a working

memory prefrontal architecture similar to ours (i.e. excitatory

pools of neurons strongly connected within a pool, and weakly

connected between other excitatory pools, and with a common

inhibitory pool) can indeed be formed by this kind of spike-time

based learning. Further, there is accumulating evidence

(Sjöström et al., 2001) that a more realistic description of

the protocols for inducing LTP and LTD probably requires a

combination of dependence on spike-timing – to take into

account the effects of the backpropagating action potential –

and dependence on the sub-threshold depolarization of the

postsynaptic neuron. However these spike-timing-dependent

synaptic modifications may be evident primarily at low firing

rates (Sjöström et al., 2001), and may not be especially

reproducible in the cerebral neocortex.

3.2. The topographical structure of the prefrontal cortex

A ‘what’/‘where’ hypothesis proposes that visual working

memory is organized into two networks within the PFC, with

spatial working memory supported by the dorsolateral PFC, and

object working memory supported by the ventrolateral PFC of

the lateral convexity (Leung et al., 2002; Goldman-Rakic,

1987). A second hypothesis proposes a hierarchical organiza-

tion of the PFC by which non-mnemonic higher-order functions

(e.g. manipulation) are ascribed to dorsolateral prefrontal areas,

and short-term memory maintenance functions are allocated to

inferior prefrontal areas (Postle and D’Esposito, 2000; Rao

et al., 1997).

Deco et al. (2004) modelled the underlying mechanisms that

implement the working memory-related activity observed in

the primate PFC as evidenced by single-cell data and in the

human PFC as evidenced with event-related fMRI during the

execution of delay tasks with a ‘what’-then-‘where’ design.

Their main finding was that the model could account for the

neurophysiological activity seen in both the ventrolateral and

dorsolateral PFC during the delay periods of Working Memory

tasks (as found in the neurophysiological results of Rao et al.

(1997)), and at the same time could provide simulated fMRI

signals that matched experimental findings during a ‘what-

then-where’ short-term memory task for both PFC sectors (as

shown by the fMRI findings of Postle and D’Esposito (2000)).

However, the fMRI data were most easily modelled by

hypothesizing that the differences between these two prefrontal
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regions resulted from assigning a greater amount of inhibition

to the dorsolateral portion of the prefrontal cortex. Both brain

areas may show short-term memory maintenance capabilities

related to their capacities to maintain stable attractors during

delay periods, but the increased level of inhibition assumed in

the dorsolateral PFC may be associated with the capacity of this

brain region to support more complex functions. Exactly what

those more complex functions may be is not revealed by the

studies of Deco et al. (2004), but higher inhibition in the

dorsolateral prefrontal cortex might be useful for maintaining

several separate representations and preventing the formation

of a global attractor, which could be useful if several items must

be held in memory for manipulation. The same model made the

prediction that drugs acting at D1 receptors would impair both

short-term memory and attention, for by reducing the

maximum current that can flow through NMDA receptor

activated channels, the attractors that represent different short-

term memory states become less distinct.

4. Closing the cognitive loop: reward reversal and
decision making

The prefrontal architecture shown in Fig. 5 uses a context or

rule bias to influence the mapping from stimulus to response,

and thus to influence decision making. The question we now

address is how the change in the rewards being received when

the task is changed could implement a switch from one rule to

another. Deco and Rolls (2005c) proposed that the rule is held

in a separate attractor network as shown in Fig. 5 which is the

source of the biased competition. Different sets of neurons in

this network are active according to which rule is current.

Consistent with this Wallis et al. (2001) have described neurons

in the primate PFC that reflect the explicit coding of abstract

rules. We propose that the synapses in the recurrent attractor

rule network show some adaptation, and that when an error

signal is decoded by neurons in the orbitofrontal cortex (a part

of the prefrontal cortex) that respond when an expected reward

is not obtained (Thorpe et al., 1983; Rolls, 1999, 2000b, 2004,

2005), activation of the inhibitory interneurons reduces activity

in the attractor networks, including that which holds the current

rule. This reduction of firing is sufficient in the simulations to

stop the dynamical interactions between the neurons that

maintain the current attractor. When the attractor network starts

up again after the inhibition, it starts with the other attractor

state active, as the synapses of this other attractor have not

adapted as a result of previous activity (Deco and Rolls, 2005c).

In order to model reward reversal in a Go-NoGo paradigm,

we used the architecture illustrated in Fig. 7, with the different

neuron pools as follows (Deco and Rolls, 2005c). In a sensory–

intermediate neuron–reward module, there are four subtypes of

excitatory pool, namely: object-tuned (visual sensory pools),

object-and-expected-reward-tuned (intermediate or associative

pools), reward (versus punishment)-tuned pools, and non-

selective pools. Object pools are feature-specific, encoding for

example the identity of an object (in our case two object-

specific pools: triangle versus square). The Reward/Punishment

pools represent whether the visual stimulus being presented is
currently associated with Reward (and for other neurons, with

Punishment). Reward neurons are envisaged as naturally

leading to an approach response, such as Go, and Punishment

neurons as naturally leading to escape or avoidance behaviour,

characterized as NoGo behaviour. (In the brain, part of the

utility of Reward and Punishment representations is that the

animal can learn any action to obtain the reward or avoid the

punishment, but for the purposes of the simulation we assume

that Rewards lead to Go behaviour such as a lick to obtain

glucose taste, and Punishment-association decoding by these

neurons to NoGo behaviour such as no lick in order to avoid the

taste of aversive saline.) The intermediate or associative pools

(in that they are between the sensory and Reward/Punishment-

association representing pools) are context-specific and per-

form the mapping between the sensory stimuli to the

anticipated reward/punishment pool. (In our case there are

four pools at the intermediate level, two for the direct rewarding

context: triangle-rewarding, square-punishing, and two for the

reversal condition: triangle-punishing, square-rewarding.)

These intermediate pools respond to combinations of the

sensory stimuli and the expected reward, e.g. to triangle and an

expected reward (glucose obtained after licking). The sensory–

intermediate–reward module consists of three hierarchically

organized levels of attractor network, with stronger synaptic

connections in the forward than the backprojection direction.

The rule module acts as a biassing input to bias the competition

between the object–reward combination neurons at the

intermediate level of the sensory–intermediate–reward module.

It is an important part of the architecture that at the intermediate

level of the sensory–intermediate–reward module one set of

neurons fire if an object being presented is currently associated

with reward, and a different set if the object being presented is

currently associated with punishment. This representation

means that these neurons can be used for different functions,

such as the elicitation of emotional or autonomic responses,

which occur for example to stimuli associated with particular

reinforcers (Rolls, 1999).

In the rule-module, there are two different types of

excitatory pools: context-tuned (rule-pools), and the non-

selective pools. The rule-pools encode the context (in our case,

one pool represents: the triangle is rewarding (in that glucose

taste reward is obtained if a lick is made) and the square is

punishing (associated with aversive saline taste so that licking

should be avoided); and the other pool represents the reverse

associations hold currently.

The cue–response mapping required under a specific context

is achieved via the biassing effect of the spiking information

coming from the rule-pools. For a specific context a specific

rule-pool will be activated, and the other rule-pools are inactive.

When a reward reversal occurs, the rule-pools switch their

activity, i.e. the previously activated context-specific rule-pool

is inactivated, and a new rule-pool (which was previously

inactive) is now activated, to encode the new context. Switching

the rule-pools switches the bias being applied to the

intermediate pools, which effectively represent when a stimulus

is shown whether it is (in the context of the current rule)

associated with reward or with aversive saline. From the



G. Deco, E.T. Rolls / Progress in Neurobiology 76 (2005) 236–256250

Fig. 7. Cortical architecture or the reward reversal model. There is a rule module (top) and a sensory–intermediate neuron–reward module (below). Neurons within

each module are fully connected, and form attractor states. The sensory–intermediate neuron–reward module consists of three hierarchically organized levels of

attractor network, with stronger synaptic connections in the forward than the backprojection direction. The intermediate level of the sensory–intermediate neuron–

reward module contains neurons that respond to combinations of an object and its association with reward or punishment, e.g. object1–reward (O1R, in the direct

association set of pools), and object1–punishment (O1P in the reversed association set of pools). The rule-module acts as a biassing input to bias the competition

between the object–reward combination neurons at the intermediate level of the sensory–intermediate neuron–reward module. The synaptic current flows into the

cells are mediated by four different families of receptors. The recurrent excitatory postsynaptic currents are given by two different types of EPSP, respectively,

mediated by AMPA and NMDA receptors. These two glutamatergic excitatory synapses are on the pyramidal cells and interneurons. The external background is

mediated by AMPA synapses on pyramidal cells and interneurons. Each neuron receives Next excitatory AMPA synaptic connections from outside the network. The

visual input is also introduced by AMPA synapses on specific pyramidal cells. Inhibitory GABAergic synapses on pyramidal cells and interneurons yield

corresponding IPSPs (see Deco and Rolls, 2005c for details).
intermediate pool, the mapping is then straightforward to the

reward/punishment pools (which have implied connections to

produce a Go response (of licking) if a currently reward-

associated visual stimulus is being shown, and a NoGo response

of not licking if a stimulus currently associated with aversive

saline is shown. To achieve the reversal in the rule-module, we

assume that the attractor state in the rule-module is reset via a

non-specific global inhibitory signal, which is received after

each punishment or absence of an expected reward. Neurons

which respond in just this way, i.e. when an expected reward is

not obtained, and a stimulus-reinforcement reversal must occur,

were found in the orbitofrontal cortex by Thorpe et al. (1983).

These neurons can be described as error neurons (Rolls, 2005).

In our implementation, we implemented the effects of this error

signal by increasing for 50 ms the external AMPA-input to the

inhibitory pool of the rule module (see Fig. 7). (The increase

was from next to next þ lPunish with lPunish ¼ 500 Hz.) (The

increase was from next to next þ lPunish with lPunish ¼ 900 Hz,

which corresponds to an increase of 1.125 Hz to each of the 800

external synapses impinging on the neurons of the inhibitory
pool. This compares to the mean value of the spontaneous

external input of 3 Hz per synapse.) This increased the global

inhibition of the rule-module, and suppressed the activity of all

the excitatory neuronal pools in the rule-module. Effectively,

the firing of the error neurons activated the inhibitory neurons in

the rule-module. (The effect could be implemented in the brain

by the active error neurons activating inhibitory interneurons

which influence, among other neurons, the rule-module

excitatory neurons. The system would work just as well if

this inhibitory feedback was applied to both the modules shown

in Fig. 7, not just the rule-module, and this might be more

parsimonious in terms of the connectivity required in the brain.)

We incorporate into the excitatory synaptic connections

between the neurons in the rule-module the property that they

show some spike-frequency-adaptation process (with details

provided below). This provides a mechanism that implements a

temporal memory of the previously activated pool. When the

attractor state of the rule-module is shut down by the inhibitory

input, then the attractor state that subsequently emerges when

firing starts again will be different from the state that has just
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been present, because of the synaptic adaptation in the synapses

that supported the previous attractor state. In order to assure that

one of the rule-pools is active, and to promote high competition

between the possible reward contexts, we excite externally all

rule-pools with the same non-specific input by increasing the

external input Poisson firing rate impinging on the excitatory

pools of the rule-module (from next to next þ B with

B ¼ 200 Hz).

We describe now the specific implementation of the spike-

frequency-adaptation mechanism that we used in the rule-

module: a short-term synaptic depression (Abbott and Nelson,

2000), following the details provided by Dayan and Abbot

(2001, p. 185). In particular, the probability of release Prel was

decreased after each presynaptic spike by a factor Prel ¼ Prel fD
with fD ¼ 0:994. Between presynaptic action potentials the

release probability Prel is updated by

tP
dPrel

dt
¼ P0 � Prel (1)

with P0 ¼ 1.

Fig. 8 shows the results of a simulation of the more usual Go/

NoGo task design with a pseudorandom sequence of trials

(Deco and Rolls, 2005c). On each trial, either a triangle or a

square was shown. In Fig. 8, on trial 1 the rule network was

operating in the direct mapping state, the sensory pool
Fig. 8. Model of reward reversal. Temporal evolution of the averaged population act

Punishment) in the stimulus– intermediate–reward module and the rule-module durin

a pseudorandom trial sequence after Thorpe et al. (1983) and Rolls et al. (1996). Bott

triangle (red), and the other to Object 2, a square (blue). The intermediate neurons res

trial 1). The top row shows the firing rate activity in the rule-module, with the thi

transmitter from the synapses of each population of neurons. The arrows show when

Reversal trial, i.e. the first trial after the reward contingency was reversed when Rew

The yellow line shows the average activity of the inhibitory neurons (see text and
responded to the triangle, the intermediate pool that was

selected based on this sensory input and the direct rule bias was

the triangle-reward pool, this pool led to activation of the

Reward (or Go) pool, and a reward (R) was obtained. On trial 2

the sensory pool for the square responded, and this with the

direct rule bias led to the intermediate square-Non-reward pool

to be selected, and this in turn led to Punishment neurons being

active, leading to a NoGo response (i.e. no action). On trial 3 the

sensory triangle pool was activated, leading because of the

direct rule to activation of the intermediate triangle-reward

pool, and Reward was decoded (leading to a Go response being

made). However, because this was a reversal trial, punishment

was obtained, leading to activation of the error input, which

increased the inhibition in the rule-module, and quenching of

the rule-module attractor. When the rule-module attractor

started up again, it started with the reverse rule neurons active,

as they won the competition with the direct rule neurons, whose

excitatory synapses had adapted during the previous few trials.

On trial 4 the sensory-square input neurons were activated, and

the intermediate neurons representing square-reward were

activated (due to the biassing influence of the reversed rule

input to these intermediate neurons), the Reward neurons in the

third layer were activated (leading to a Go response), and

reward was obtained. On trial 5 the sensory-triangle neurons

activated the triangle-Non-reward intermediate neurons under
ivity for all neural pools (sensory, intermediate (stimulus-reward), and Reward/

g the execution and the reversal of the Go/NoGo visual discrimination task with

om row: the sensory neuronal populations, one of which responds to Object 1, a

pond to for example Object 1 (Tr) when it is associated with reward (Rw) (e.g. on

n line at the top of this graph showing the mean probability of release Prel of

the reversal contingencies reversed. R: Reward trial; P: Punishment trial; Rev:

ard was expected but Punishment was obtained. The intertrial interval was 4 s.

Deco and Rolls, 2005c for further details).
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the biassing influence of the reversed rule input, and Punish-

ment was decoded by the third layer (resulting in a NoGo

response). On trial 6, the sensory-square neurons were activated

leading to activation of the intermediate square-reward

neurons, and Reward (and a Go response) was produced.

However, this was another reversal trial, non-reward or

punishment activated the error inputs, and the rule neurons

in the rule module were quenched, and started up again with the

direct rule neurons active in the rule-module, due to the

synaptic depression of the synapses between the reversed rule

neurons.

The results of this dynamical simulation (Deco and Rolls,

2005c) demonstrate one way in which punishers, or the absence

of expected rewards, can produce rapid, one trial reversal, and

thus close the cognitive loop in such a way that cognitive

functions are guided by the rewards being received. The rapid

reversal is in this case the reversal of a reward, but applies

equally to the rule-biased mapping from stimulus to response in

the architecture illustrated in Fig. 5 (Deco and Rolls, 2003), and

this stimulus-to-response reversal was also simulated by Deco

and Rolls (2005c).

The model can in principle be extended to more than one

rule, and indeed, we have described a network that can recall

the order of a sequence of several items that are presented

(Deco and Rolls, 2005b). The principle is that after a sequence

of items has been presented to the attractor network with some

habituation in the synapses or neurons, each time the network is

quenched, the least recently presented item will be retrieved

from the spontaneous firing, as its synapses or neurons are the

least adapted. More that one rule has also been simulated in a

model of the Wisconsin task (Stemme et al., 2005).

5. Conclusions

In summary, computational neuroscience provides a

mathematical framework for studying the mechanisms

involved in brain function, such as visual attention, working

memory, and the control of behaviour by reward mechanisms,

as reviewed here. Analysis of networks of neurons each

implemented at the integrate-and-fire neuronal level, and

including non-linearities, enables many aspects of brain

function, from the spiking activity of single neurons and the

effects of pharmacological agents on synaptic currents, through

fMRI and neuropsychological findings, to be integrated (see

Appendices A and B), and many aspects of cognitive function

including visual cognition and attention to be modelled and

understood. The theoretical approach described makes explicit

predictions at all these levels which can be tested to develop and

refine our understanding of the underlying processing, and its

dynamics. We believe that this kind of analysis is fundamental

for a deep understanding in neuroscience of how the brain

performs complex tasks.
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Appendix A. The mathematics of neurodynamics

For the reasons set out at the start of Section 2, the non-

stationary temporal evolution of the spiking dynamics is

addressed by describing each neuron by an integrate-and-fire

model. The subthreshold membrane potential VðtÞof each

neuron evolves according to the following equation:

Cm

dVðtÞ
dt

¼ �gmðVðtÞ � VLÞ � IsynðtÞ (A.1)

where IsynðtÞ is the total synaptic current flow into the cell, VL

the resting potential, Cm the membrane capacitance, and gm the

membrane conductance. When the membrane potential VðtÞ
reaches the threshold u a spike is generated, and the membrane

potential is reset to Vreset. The neuron is unable to spike during

the first tref which is the absolute refractory period.

The total synaptic current is given by the sum of

glutamatergic excitatory components (NMDA and AMPA)

and inhibitory components (GABA). As we described above,

we consider that external excitatory contributions are produced

through AMPA receptors (IAMPA;ext), while the excitatory

recurrent synaptic currents are produced through AMPA and

NMDA receptors (IAMPA;rec and INMDA;rec). The total synaptic

current is therefore given by:

IsynðtÞ ¼ IAMPA;extðtÞ þ IAMPA;recðtÞ þ INMDA;recðtÞ þ IGABAðtÞ
(A.2)

where the current generated by each receptor type follows the

general form:

IðtÞ ¼ gðVðtÞ � VEÞ
XN
j¼1

wjs jðtÞ (A.3)

and VE ¼ 0 mV for the excitatory (AMPA and NMDA)

synapses and �70 mV for the inhibitory (GABA) synapses.

The synaptic strengths wj are specified by the architecture. The

time course of the current flow through each synapse is

dynamically updated to describe its decay by altering the

fractions of open channels s according to equations with the

general form:

ds jðtÞ
dt

¼ � s jðtÞ
t

þ
X
k

dðt � tkjÞ (A.4)

where the sums over k represent a sum over spikes emitted by

presynaptic neuron j at time tkj , and t is set to the time constant

for the relevant receptor. In the case of the NMDA receptor, the

rise time as well as the decay time is dynamically modelled, as

it is slower. Details are provided by Deco and Rolls (2003).

The problem now is how to analyze the dynamics and how to

set the parameters which are not biologically constrained by

experimentally determined values. The standard trick is to

simplify the dynamics via the mean-field approach at least for

the stationary conditions, i.e. for periods after the dynamical
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transients, and to analyze there exhaustively the bifurcation

diagrams of the dynamics. This enables a posteriori selection of

the parameter region which shows in the bifurcation diagram

the emergent behaviour that we are looking for (e.g. sustained

delay activity, biased competition, etc.). After that, with this set

of parameters, we perform the full non-stationary simulations

using the true dynamics only described by the full integrate-

and-fire scheme. The mean-field study assures us that this

dynamics will converge to a stationary attractor that is

consistent with what we were looking for (Del Giudice

et al., 2003; Brunel and Wang, 2001; Fusi and Mattia, 1999).

This philosophy is schematized in Fig. A.1.

In the standard mean-field approach, the network is

partitioned into populations of neurons, which share the same

statistical properties of the afferent currents, and fire spikes

independently at the same rate. The essence of the mean-field

approximation is to simplify the integrate-and-fire equations by

replacing after the diffusion approximation (Tuckwell, 1988),

the sums of the synaptic components by the average DC

component and a fluctuation term. The stationary dynamics of

each population can be described by the population transfer

function Fð�Þ, which provides the average population rate as a

function of the average input current. The set of stationary, self-
Fig. A.1. The approach to understanding the dynamical systems described in this pap

and how the system operates for different values of the parameters; and the integrate-

parameters defined in the mean-field analysis (see text).
reproducing rates ni for the different populations i in the

network can be found by solving a set of coupled self-

consistency equations:

ni ¼ Fðmiðn1; . . . ; nNÞ; siðn1; . . . ; nNÞÞ (A.5)

where mið�Þ and sið�Þ are the mean and standard deviation of the

corresponding input current, respectively. To solve these equa-

tions, a set of first-order differential equations, describing a fake

dynamics of the system, whose fixed point solutions correspond

to the solutions of Eq. (A.5), is used:

ti
dniðtÞ
dt

¼ �niðtÞ þ Fðmiðn1; . . . ; nNÞ; siðn1; . . . ; nNÞÞ (A.6)

The standard mean-field approach neglects the temporal prop-

erties of the synapses, i.e. considers only delta-like spiking

input currents. Consequently, after this simplification, the

transfer function Fð�Þ is an Ornstein-Uhlenbeck solution for

the simplified integrate-and-fire equation tx
dVðtÞ

dt ¼ �VðtÞþ
mx þ sx

ffiffiffiffi
tx

p
hðtÞ, as detailed by Brunel and Wang (2001). An

extended mean-field framework, which is consistent with the

integrate-and-fire and synaptic equations described above, i.e.

that considers both the fast and slow glutamatergic excitatory

synaptic dynamics (AMPA and NMDA), and the dynamics of
er utilizes a mean-field approach to establish the static parameters of the system

and-fire approach is used to identify the spiking dynamics of the system with the
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Fig. B.1. The hemodynamic standard response function hðtÞ(see text).
GABA-inhibitory synapses, was derived by Brunel and Wang

(2001).

Appendix B. Simulation of fMRI signals: hemodynamic

convolution of synaptic activity

The functional magnetic resonance neuroimaging (fMRI)

BOLD (blood oxygen level-dependent) signal, which is likely

to reflect the total synaptic activity in an area (as ions need to be

pumped back across the cell membrane) rather than the spiking

neuronal activity (Logothetis et al., 2001), is spatially and

temporally filtered. The filtering reflects the inherent spatial

resolution with which the blood flow changes, as well as the

resolution of the scanner, and filtering which may be applied for

statistical purposes, and the slow temporal response of the

blood flow changes (Glover, 1999; Buxton and Frank, 1997;

Buxton et al., 1998). Glover (1999) demonstrated that a good

fitting of the hemodynamical response hðtÞ can be achieved by

the following analytic function:

hðtÞ ¼ c1t
n1 e�t=t1 � a2c2t

n2 e�t=t2 ; ci ¼ maxðtni e
� t

tiÞ

where t is the time, and c1, c2, a2, n1, and n2 are parameters that

are adjusted to fit the experimentally measured hemodynamical

response. Fig. B.1 plots the hemodynamic standard response

hðtÞ for a biologically realistic set of parameters (see Deco

et al., 2004).

The temporal evolution of fMRI signals can be simulated

from an integrate-and-fire population of neurons (see

Appendix A) by convolving the total synaptic activity in the

simulated population of neurons with the standard hemody-

namic response formulation of Glover (1999) presented above

(Deco et al., 2004; Horwitz and Tagamets, 1999)). The total

synaptic current (Isyn) is given by the sum of the absolute values

of the glutamatergic excitatory components (implemented

through NMDA and AMPA receptors) and inhibitory compo-

nents (GABA) (Tagamets and Horwitz, 1998; Horwitz et al.,

1999; Rolls and Deco, 2002; Deco et al., 2004). As described in
Appendix A, in our simulations the external excitatory

contributions are produced through AMPA receptors

(IAMPA;ext), while the excitatory recurrent synaptic currents

are produced through AMPA and NMDA receptors (IAMPA;rec

and INMDA;rec). The GABA-inhibitory currents are denoted by

IGABA. Consequently, the simulated fMRI signal activity SfMRI

is calculated by the following convolution equation:

SfMRIðtÞ ¼
Z 1

0

hðt � t0ÞIsynðt0Þ dt0:
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