
Learning and neural plasticity in visual object recognition
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The capability of the adult primate visual system for rapid and

accurate recognition of targets in cluttered, natural scenes far

surpasses the abilities of state-of-the-art artificial vision

systems. Understanding this capability remains a fundamental

challenge in visual neuroscience. Recent experimental

evidence suggests that adaptive coding strategies facilitated

by underlying neural plasticity enable the adult brain to learn

from visual experience and shape its ability to integrate and

recognize coherent visual objects.
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Introduction
Detecting and recognizing meaningful objects in com-

plex environments is a crucial skill that underlies a range

of behaviours, from identifying predators and prey and

recognizing edible and poisonous foods, to diagnosing

tumours on medical images and finding familiar faces in a

crowd. In humans and other visual primates, these pro-

cesses operate quickly, automatically and effortlessly, and

are thus easily taken for granted. However, the computa-

tional challenges of visual recognition are far from trivial.

In particular, the recognition of coherent meaningful

objects entails integration at different levels of visual

complexity, from local contours to complex objects,

and representations that are highly tolerant of identity-

preserving image changes (e.g. changes in position, size,

pose or background clutter).

A wide range of methods provide converging evidence

that neuronal processes supporting object recognition are

coarsely localized in the ventral visual stream [1], which

has a rough hierarchy of cortical processing stages (V1

[primary visual cortex] ! V2 ! V4 ! PIT [posterior

inferior temporal cortex] ! AIT [anterior inferior
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temporal cortex]). The highest stages of this stream

(i.e. anterior inferior temporal cortex [AIT] in the mon-

key, and lateral occipital complex [LOC] in the human)

are thought to convey neuronal signals that are well suited

to support object recognition directly. In particular,

unlike earlier visual areas, patterns of neuronal activity

in these regions explicitly convey object identity, in that

object identity can be directly extracted from those

populations, even in the face of identity-preserving image

changes [2–5]. But how are such useful neuronal repre-

sentations constructed in the brain? How do neuronal

connections become wired up and modified so that neu-

rons respond to complex combinations of simple image

features and are sensitive to subtle changes in object

identity, yet are relatively insensitive to large, identity-

preserving image changes? How does the brain even know

what an ‘object’ is in the first place? Do these neuronal

representations code for all possible objects, or do they just

represent objects that are behaviourally relevant or often

encountered in the environment? At the core of these

issues are fundamental questions about the role of visual

experience and learning in the establishment and main-

tenance of the neuronal representations that support com-

plex object recognition (see [6] for an earlier review).

At a theoretical level, there is growing appreciation of the

potentially powerful role of learning in establishing robust

representations crucial for object recognition [7–12].

Experimentally, the role of learning in object representa-

tion can be approached by studying developing visual

systems [13], visual systems that have been deprived of

experience during early life [14,15] and the role of visual

experience in adults [16–18]. All of these approaches have

been used to gain new insight into the role of learning in

feature and object representation. For the purposes of this

review, we focus on experience-based plasticity in the

adult visual system. In particular, many psychophysical

studies in adults have shown learning-dependent changes

in discrimination and recognition using stimuli ranging

from simple features, such as oriented lines and gratings

[19], to complex objects [20]. Recent neurophysiological

[21–25,26�,27–30,31��,32–34] and functional magnetic

resonance imaging (fMRI) [35–39,40�,41�] studies have

focused on elucidating the loci of brain plasticity and

changes in neuronal responses that underlie this visual

learning. Here, we briefly review these advances and

propose that experience-based plasticity across multiple

stages of visual analysis bolsters selective, robust repre-

sentations of visual objects, and thus directly underlies

the perceptual integration of local features into coherent

meaningful objects and their recognition in the complex

environments we inhabit.
www.sciencedirect.com
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Learning to put an object together
The ability to build neuronal representations that are

highly selective for visual pixel combinations (‘features’)

and feature combinations (‘objects’) in addition to being

highly tolerant to identity-preserving image changes is

the computational crux of object recognition [42–44], and

the hallmark of primate vision. At the most basic level,

object recognition requires the visual system to discrimi-

nate among different patterns of visual input (e.g. the

letter ‘A’ among all other possible letters and objects). As

this discrimination cannot be solved simply by monitoring

the output of any one photoreceptor (or even one lateral

geniculate nucleus [LGN] or V1 neuron), a solution to

this problem requires some ‘binding’ of responses from

neurons at early visual stages. Standard computational

approaches propose that ‘binding’ is achieved by synap-

tically combining inputs from neurons at early visual

stages (e.g. through a thresholded weighted sum of such

inputs). As a result, neurons at higher stages of the visual

system are tuned to patterns of increasing complexity

until the required pattern discrimination can be sup-

ported [45]. Because pattern discrimination must be

performed in the real world, this selectivity for combina-

tions of visual features should have robust tolerance for

image changes that produce profound transformations in

the visual input without modifying object identity (e.g.

position, size, pose or background clutter) [42,44]. Com-

putational models [11,43,46] have shown that such expli-

cit object representations can be built using neuronal

connections that group together similar features regard-

less of image changes. In this view, the process of con-

structing neurons that are both tuned for complex

configurations of simpler visual features (e.g. pixels,

edges) and relatively insensitive to some types of image
Figure 1

Key neuronal response properties required for robust object recognition mig

(a) Image arrangements that are well represented by the visual system are

with the lower images in the left panel). (b) Similarly, image transformations

often experienced across short time intervals. For example, the upper imag

changes in object identity. The lower image sequences show changes in ob

encountered, but can alter the tolerance of object recognition [54,58�]. (c) It

recognition more difficult (clutter), but if those items are often seen with the

items themselves might be sufficient for object representation and perceptio
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changes is equivalent to the process of defining what an

‘object’ is in the first place. The experimental challenge is

to understand how this is done in the brain.

Learning selectivity

How does the brain figure out how to appropriately

connect neurons together and weight their inputs so that

selective neuronal representations are ultimately

obtained? Plasticity of neuronal connections along with

appropriate learning ‘rules’ is one obvious potential

mechanism. For example, learning to respond selectively

to an object might amount to learning which simpler

image features tend to often co-occur in the world

[47,48] (Figure 1a). At a mechanistic level, this could

result if inputs conveying simpler image features are

brought together at downstream neurons that respond

non-linearly to those inputs (e.g. respond only if feature A

and feature B are both present). An iteration of this

strategy at each level of the visual system would result

in progressively more complex preferred stimulus con-

figurations. Competitive mechanisms could ensure effi-

cient coverage of the subspace of possible images that is

spanned by natural images [49]. Recent neurophysiolo-

gical studies provide evidence for such learning. In par-

ticular, neurons in monkey IT cortex show enhanced

selectivity after training for novel objects [23,25,32],

holistic multiple-part configurations [29] and even phy-

sically unrelated pairs of shapes [24,50�]. The time-course

of changes in some of these neurons parallel that of

learning [51], suggesting a strong link between under-

lying neuronal plasticity and behavioural improvement.

Furthermore, learning can shape the assignment of novel

objects into classes [52] by modulating the selectivity of

neurons in the inferior temporal and frontal cortex for
ht ultimately be acquired and maintained through visual experience.

those that are commonly encountered in the world (compare the upper

that the visual system is able to tolerate robustly are those that are

e sequences show translation and pose change respectively without

ject identity across short time intervals, a situation that is rarely

ems in a scene that are not part of an object can make object

object (e.g. hat, shirt and jacket are often seen with a face), the

n [68].

Current Opinion in Neurobiology 2006, 16:152–158



154 Cognitive neuroscience
features crucial for these categorization processes

[27,30,53�].

Learning tolerance

To date, most studies of visual learning have focused on

changes in neuronal or behavioural selectivity. However,

as described above, simply learning selectivity is not

enough to create useful object representations — that

is, selective object representations must be tolerant to

image changes (e.g. object position, size and pose). But

how does the visual system know which neurons to

connect (or, equivalently, how to weight those connec-

tions) to enable this tolerance? Again, learning from the

statistical regularities of the natural world has been pro-

posed as a potential solution [8–11,54]. One central idea is

that features and objects in the world do not tend to jump

in and out of existence, but they have temporal conti-

nuity, in that an object seen at one instant in time will

probably be seen in the next instant, but perhaps in a

different position, size or pose (Figure 1b). Another

related idea is that once semi-tolerant representations

are established, the later appearance of a feature or object

that is similar to that representation, but differs slightly in

(e.g.) position, scale, or view, can re-activate the initial

representation and enable tolerance learning without

temporal continuity [55]. Although ‘tolerance learning’

is of great computational importance, and there is some

behavioural [19] and circumstantial neuronal evidence

[32,53�,56] suggesting that tolerance is not automatic, its

neural basis remains largely unknown.

Recently, however, psychophysical studies have directly

demonstrated that targeted disruptions of the temporal

continuity of an object result in disruptions in object

perception consistent with tolerance learning

[54,57,58�]. For example, Cox et al. [58�] recently found

that even the most fundamental type of recognition

tolerance — the ability to recognize an object despite

its position on the retina — can be predictably modified

by visual experience. In particular, changes to object

identity during normal eye movements that bring the

‘object’ from one retinal position to another over short

time intervals disrupt later recognition of the object across

those same retinal positions. But there is also evidence

that view tolerance can be learned without temporal

continuity [59]. An important goal of ongoing and future

work is to elucidate neuronal changes in the ventral

stream in the context of tolerance learning.

Learning objects in clutter

Beyond learning selectivity and tolerance for object iden-

tity, the visual system must learn to detect objects in the

real world, in which they are seen in clutter and context

[60,61]. During a course of training, observers can learn

distinctive target features by using information (image

regularities) crucial for target detection more efficiently

and by suppressing background noise [62–65,66�]. In
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particular, learning has been suggested to enhance corre-

lations among neurons responding to the features of target

patterns while de-correlating neural responses to target

and background patterns. As a result, input (stimulus)

redundancy is reduced and target salience is enhanced

[33], supporting the efficient detection and identification

of objects in cluttered scenes [67].

It should be noted however, that the background ‘stuff’ in

which an object is embedded in a scene should not always

be viewed as ‘clutter’ that must be ignored. Indeed, that

‘clutter’ can include features that, although not perfectly

correlated with the object, are more often than not seen

with the object (i.e. context), and thus might aid the

detection and recognition of the object (Figure 1c). Thus,

the visual system might learn to incorporate these clues in

its object representations [68,69]. In addition, the ‘clutter’

will typically include other objects that might also need to

be detected and recognized. Understanding how the visual

system represents multiple objects simultaneously [70,71]

is crucial for unravelling the mechanisms that mediate

successful interactions in complex, dynamic environments.

Neuronal plasticity underlying visual object
learning
Studies demonstrating experience-dependent changes in

the selectivity and tolerance of high-level neuronal repre-

sentations (e.g. IT) beg the question of the locus and

nature of these changes, as improvement at higher stages

of visual analysis might be inherited from changes at one

or more earlier stages.

It has often been suggested [19,72,73] that the key

plasticity locus in simple feature ‘perceptual learning’

is likely to be in early visual stages, as this learning is

somewhat confined to the trained retinal position. That is,

changes in the receptive field tuning properties of neu-

rons in V1 might account for the specificity of learning

effects to the trained visual field position and trained

stimulus attribute. Indeed, recent imaging studies

[37,40�,74] provide evidence for the involvement of V1

in object feature learning. However, neurophysiological

evidence for the contribution of V1 in behavioural

improvement after training on visual discrimination

remains controversial [21,22]. There is some evidence

for sharpening of orientation tuning after training [22],

but no evidence for changes in the size of the cortical

representation or the receptive field properties of neurons

in V1 [21,75]. One possibility is that V1 learning effects

can be detected in the average response of large numbers

of neurons, as measured by fMRI, but are very small at the

level of the individual neurons. Another possibility is that

they reflect task-dependent changes in intra- and inter-

area connectivity.

Recently, two studies combining psychophysics and

fMRI [41�,76�] examined the relationship between shape
www.sciencedirect.com
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learning and experience-dependent reorganization across

stages of visual processing. The results of Sigman et al.
[76�] suggest that shape representation might shift from

higher to early visual areas, which support rapid and

automatic search and detection in visual cluttered scenes

independently of attentional control. These findings are

consistent with the suggestion that learning moulds

object representations not only by enhancing the proces-

sing of feature detectors with increasing complexity in a

bottom-up manner but also in a top-down manner taking

into account the relevant task dimensions and demands.

In particular, it has been suggested that learning begins at

higher visual areas for easy tasks and proceeds to early

retinotopic areas that have higher resolution for finer

and more difficult discriminations [77��]. Kourtzi et al.
[41�] provide evidence that these distributed plasticity

mechanisms are adaptable to natural image regularities

that determine the salience of targets in cluttered scenes.

In particular, their results suggest that opportunistic

learning [63] of salient targets in natural scenes is

mediated by sparser feature coding at higher stages of

visual analysis, whereas learning of camouflaged targets is

implemented by mechanisms that enhance the segmen-

tation and recognition of ambiguous targets in both early

and higher visual areas.

One of the main advantages of fMRI is that it provides

global brain coverage and, thus, it is a highly suitable

method for studying learning-dependent changes across

stages of analysis in the visual system. However, experi-

ence-dependent activation changes in fMRI studies

could be the result of changes in the numbers or the

gain of neurons recruited for processing of a stimulus in

the context of a task. As imaging studies measure activa-

tion at the large scale of neural populations rather than at

the scale of single neurons, they cannot discern these

different neural plasticity mechanisms. Recent neurophy-

siological studies [26�,28] have shed light on to cortical

reorganization mechanisms at the level of the single

neuron when monkeys learn to discriminate images of

natural scenes presented in noise. These studies show

that learning enhances the selective processing of crucial

features for the detection of object targets in early occi-

pito-temporal areas. By contrast, learning appears to

facilitate efficient object processing independent of back-

ground noise in the prefrontal cortex. These findings

suggest that learning in different cortical areas bolsters

functions that are important for different tasks, ranging

from the bottom-up detection and integration of target

features in cluttered scenes across visual occipitotemporal

areas to the top-down selection of familiar objects in the

prefrontal cortex. Consistent with top-down approaches

to visual processing, recent neuroimaging studies suggest

that learning might enhance the functional interactions

between occipitotemporal areas that encode physical

stimulus experiences and parieto-frontal circuits that

represent our perceptual interpretations of the world
www.sciencedirect.com
[38,78,79]. Future studies combining fMRI and simulta-

neous chronic recordings from these areas will provide

novel insights for understanding both bottom-up and top-

down mechanisms for experience-dependent reorganiza-

tion at the level of inter- and intra- area networks.

In summary, the current experimental evidence suggests

that there is no single locus of brain plasticity underlying

visual learning. These findings are consistent with com-

putational approaches proposing that associations

between features that mediate the recognition of familiar

objects might occur across stages of visual analysis, from

orientation detectors in the primary visual cortex to

occipitotemporal neurons tuned to object parts and views

[7,8,43]. At the neuronal level, learning could be imple-

mented by changes in core feedforward neuronal pro-

cessing, especially at higher visual stages [31��], or by

changes in the interactions between object analysis cen-

tres in temporal and frontal cortical areas and local con-

nections in the primary visual cortex based on top-down

feedback mechanisms. For example, learning has been

suggested to modulate neuronal sensitivity in the early

visual areas by modulating networks of lateral interactions

and through feedback connections from higher visual

areas [17,74,75,80–82]. Such changes in the connectivity

of visual analysis circuits might be adaptive and efficient

compared with changes in core feedforward visual pro-

cessing (e.g. receptive fields) that might have deleterious

consequences for the visual processing of the trained

stimuli in another context or task. Current research direc-

tions focus on further understanding the effects of sti-

mulus and task demands on learning across stages of

visual analysis, the relative time courses of learning-

dependent changes, and the underlying neuronal

responses and network interactions that change to enable

learning to occur while not disrupting general visual

processing.

Conclusions
Visual object perception and recognition in cluttered,

natural scenes poses a series of computational challenges

to the adult visual system, from the detection of image

regularities to binding contours, parts and features into

coherent objects, recognizing them independent of image

changes (e.g. position, scale, pose, clutter) and assigning

them to abstract categories. This review highlights the

potentially fundamental role of learning in solving some

of these challenges. What general conclusions are we to

take from the experimental evidence available so far?

First, the adult visual system is clearly plastic, in terms of

both behavioural improvements and changes in neuronal

responses. Second, there is no single locus of plasticity in

the visual system that is the exclusive site underlying

object learning. On the contrary, in most cases learning

modifies visual representations for features and objects by

modulating processing across multiple cortical levels.

Third, learning does not always result in simple, static
Current Opinion in Neurobiology 2006, 16:152–158
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changes to core feedforward visual processing — instead,

changes can be dynamic and task dependent. Thus,

understanding object learning cannot be divorced from

the context of the computational problems faced by the

visual system in complex environments; that is, learning

robust object representations depends on the stimulus

conditions and the task demands. An important goal for

future work is to understand the effects of these factors on

optimal computations and the neuronal correlates of

visual learning. Finally, the relationship between the

neural mechanisms that mediate adult, experience-

dependent plasticity and developmental plasticity is intri-

guing and remains largely unknown. Although the adult

visual system is remarkably powerful at representing and

distinguishing among objects even the very first time they

are seen, this cannot rule out a potentially crucial role of

visual experience in the establishment of such represen-

tations. On the contrary, it is surprising that small

amounts of adult visual experience, as reviewed here,

produce measurable changes in both behaviour and neu-

ronal representations, even when superimposed on a

lifetime of natural experience. To the extent that adult

visual learning shares computational and perhaps even

some mechanistic commonalities with the developing

visual system, understanding experience-based plasticity

could reveal the key principles that underlie our remark-

able ability for robust object recognition.
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