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Many cognitive tasks are serial in that they require

several steps that have to be carried out in a sequence.

Here, I outline a new theory of how these processing

steps are implemented in vision by networks of neurons

that span several areas of the cerebral cortex. The theory

explains how individual neurons can contribute to the

elementary processing steps, and also how several

processing steps can be arranged in a sequence to

form more complex visual routines, just as computer

programs can be composed of sequences of instruc-

tions. Evidence in support of the theory comes from

recent neurophysiological findings in monkeys engaged

in complex visual tasks. It is likely that future work will

allow these ideas to be generalized to other sensory

modalities and cognitive functions.
Box 1. System levels

Alan Newell suggested that the flexibility required for cognition does

not occur at the level of individual neurons, but that it emerges only

at higher levels of description [2]. A computer analogy illustrates the

argument. If we ask how an individual neuron contributes to a

cognitive routine, this question is akin to asking how a single

connection of a computer processor contributes to the execution of a

high-level computer program. We can define several system levels

intermediate between the wiring of the processor and the program.

The first level above the hardware level is that of the processor’s

machine instructions. A next higher level is the syntax of the

programming language. The commands provided by the program-

ming language finally give rise to functions and routines, which in

turn give rise to programs. At these higher levels new concepts

emerge, such as variables and control loops. An important feature

gained at the level of the programming language is what Newell

called ‘distal access’. Distal access means that it is possible for a

process to retrieve information that is not locally available. In

modern programming languages, distal access comes for free, as it

is always possible to retrieve the value of relevant variables.

However, this information is not always available at the processor

level, as variables are only loaded if required, but the shifts of

information taking place between processor and memory to store

and retrieve variables are not visible at the level of the program. This
Introduction

When we think about a problem we often spend several
seconds introspectively going through a number of
processing steps. In the past few years neuroscientists
have started to investigate what happens in the cerebral
cortex during such a ‘step of thought’. This has revealed
several important insights, including that networks of
neurons spanning several areas of cortex jointly up- or
downregulate their activity as they converge on a solution
for that processing step. A number of recent studies have
also started to investigate how multiple steps are executed
in series to solve complex tasks. Thus, neuroscience is
starting to shed light on the implementation of serial
cognitive tasks, an issue that used to belong primarily to
the domains of cognitive science, psychology and artificial
intelligence research [1,2]. In this article, I will outline a
theory in vision that (i) explains how networks of neurons
cooperate in elementary processing steps, and (ii) provides
insight in how these processing steps are joined to form
longer visual routines. In my view, the description of
cognitive processes as sequences of elementary processing
steps provides a common language that is useful for
neuroscientists, psychologists, and workers in artificial
intelligence.

There is a wealth of information about how individual
neurons in the various areas of the cerebral cortex and
subcortical nuclei are tuned to sensory stimuli, motor
responses, associations between stimuli and responses,
and how this tuning depends on the input and output
connections of these structures. Too often, this infor-
mation seems disconnected from cognition. At first sight,
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it seems difficult to understand how a neuron with its fixed
pattern of connections could contribute to something as
flexible as cognition. Alan Newell was aware of the large
gap between the single neuron and cognition [2], and he
argued that a meaningful connection can only be made by
describing the nervous system at levels above the single
neuron. He proposed new system levels that are inter-
mediate between the individual neuron and cognition
(Box 1). In my opinion, sufficient scientific progress has
now been made to make a start on the neurophysiological
definition of these new system levels.

The proposed levels describe the activity of networks of
neurons. Fortunately, the exploration of the interactions
between networks of neurons situated in different brain
areas is beginning to be a fruitful area of research [3,4]. To
define the new levels, I will turn to the work of Ullman in
vision [5]. In Ullman’s theory, the first level above the
single neuron is that of ‘elemental operators’, which can be
arranged into sequences to form ‘visual routines’ at the
next higher level. This theory did not have an implemen-
tation when it was proposed, but here I will describe how
elemental operations and visual routines can indeed be
reliably observed as the evolution of neural activity across
time in the visual cortex [6–8]. In the following, I will focus
on visual tasks but it is likely that future work will allow
the generalization of the present ideas to other sensory
Opinion TRENDS in Cognitive Sciences Vol.9 No.5 May 2005
implies that a single step of the program typically corresponds many

more steps at the level of the processor.
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Table 1. List of elemental operators that can be used to build

visual routines

Operator Type Implementation

Visual search Binding Label spreading

Cuing Binding Label spreading

Trace Binding Label spreading

Region fillinga Binding Label spreading

Associationb Binding Label spreading

Working memory Maintenance Persistent firing

Suppressionc Maintenance Active/passive inhibition

Matchingd Other Unknown

Motor acte Output Body movement
aThe region-filling operator labels regions occupied by a single perceptual object,

generalizing the curve-tracing operator to 2 dimensions.
bLinkage of arbitrary features that co-occur repeatedly.
cRemoval of the neuronal response enhancement from features that were relevant

at some point in time but lost their relevance later.
dDetects similarities and differences between stimuli [52].
eThe target of an upcoming eye or limb movement is specified by the focus of

response enhancement in areas tuned to locations [53]. Other elemental operators

can supply the information that instructs such a movement.
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modalities and higher cognitive functions, such as naviga-
tion, language and reasoning in specific domains [1].

The base representation

The first cortical process that occurs when we present a
visual image to a subject is that many visual features in
the image are extracted in parallel by specialized areas of
the visual cortex. Early visual areas extract contours;
higher visual areas extract more complex features, like
form-features, patterns of motion, and so on. This initial
phase is mainly determined by the selectivity of the
feedforward connections that propagate activity from
lower to higher cortical areas [9]. The ‘feedforward
sweep’ proceeds very rapidly so that most of the basic
features are available within 100 or 120 ms after stimulus
appearance. It is convenient to call this initial pattern of
neuronal activity distributed across the many visual areas
the ‘base representation’ [5,10,11].

The base representation is a good start, but it does not
solve all problems in vision. Some of these unsolved
problems are caused by the distributed nature of the
neuronal representations, implying that features of a
single object, like its location and shape, are represented
in different visual areas [12]. This poses ‘binding problems’
when there is more than one visual object in view [13,14].
If the image contains e.g. a dog on the left and a cat on the
right, then the base representation encodes the features
LEFT, RIGHT, DOG and CAT, but it may not distinguish
the image from another one that contains a cat on the left
and a dog on the right. The binding problem can be solved
by the inclusion of conjunction detectors in the base
representation, such as DOG_LEFT neurons that respond
only to dogs on the left. These hardwired conjunctions
have been called ‘base-groupings’ [10]. Although useful,
base-grouping fails as the single strategy for binding, as
there are many more conjunctions possible than neurons
available to encode them [14]. Additional conjunctions
have to be computed ‘on the fly’ if required by the task, and
this is one of the tasks of elemental operators.

Elemental operators

In Ullman’s theory, elemental operations are the first
system level above the level of the single neuron. Table 1
lists several operations useful for vision. There are two
gross categories. ‘Binding operators’ establish groupings
that are not computed in the base representation, and
‘maintenance operators’ store intermediate results for use
at a later point in time. In addition, there are a few
operators that are not so easily classified. The list of
Table 1 is probably not exhaustive, and future research
might well add some elemental operators and remove
others.

Binding operators

Tracing. Figure 1a illustrates a task that requires one of
the binding operators – tracing. The observer’s task is to
identify all squares that are connected to the yellow
square. The computation of connectedness in the base
representation is difficult, if not impossible, because the
visual cortex cannot reserve a neuron for every possible
configuration of connected squares. The tracing operator’s
www.sciencedirect.com
job is to compute connectedness [5,15]. It can be
implemented within a single retinotopic area of the visual
cortex (Figure 1b; implementations that use lower as well
as higher visual areas are discussed in [10,16]). When the
image appears, feedforward connections from the retina
activate a subset of the neurons (circles coloured brown)
that form the base representation.

The tracing operator uses horizontal connections,
which exist between neurons that respond to neighboring
squares, to spread an increase in activity. It requires that
the enhanced activity only spreads between neurons of the
base representation (i.e. only neurons with a square in
their receptive field). According to this rule, horizontal
connections between active neurons can spread the
activity enhancement, and they are therefore enabled
(thick lines joining dots in Figure 1b,c), and the other
connections are disabled (thin lines). We refer to the set of
enabled connections as ‘interaction skeleton’, which links
neurons that respond to connected squares. Small changes
in the image cause small changes in the set of enabled
connections, but fundamentally change the set of neurons
that are linked (compare Image 1 and Image 2 in
Figure 1b). Linkage by the interaction skeleton is implicit
and cannot influence processing because other neurons
cannot ‘see’ the pattern of enabled connections. It is the
task of the tracing operator to make this grouping explicit.
At step 1, an activity enhancement begins to spread from
the yellow square to all neurons that respond to squares
connected to it (black neurons in Figure 1c), thereby
labeling all neurons that respond to a single perceptual
group. Making groupings explicit by the spread of activity
has been called incremental grouping [10].

We trained macaque monkeys to carry out such a curve-
tracing task and obtained evidence that this operator is
indeed implemented in the visual cortex. Neurons in the
primary visual cortex responding to the traced curve had
stronger activity than neurons responding to other, task-
irrelevant contours [17]. This response-enhancement was
not observed during the initial visual response, 40 ms
after the presentation of the array, but it evolved across
time, beginning at about 150 ms at the initial contour
segments, with more distant segments evidencing this
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Figure 1. Implementation of the tracing operator. (a) Tracing task. The aim is to find all squares that are connected to the yellow one. (b) Tracing operator. Retinotopic area that

contains a neuron for every square. Bottom-up input from the image activates some of the neurons (brown circles), and these cells form the base representation. Horizontal

connections between activated neurons are enabled (thick lines), whereas the other connections are disabled (thin lines). The network of enabled connections is called

interaction skeleton. A comparison of image 1 and 2 illustrates that different images enable different sets of horizontal connections. (c) If an enhancement of the neuronal

responses (black circles) is injected at the representation of the yellow square, then it can spread through the network of enabled connections until all the squares that belong

to a single object have been labelled.
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response-enhancement at even later times, especially
when the traced curve coursed near irrelevant curves
[18]. Put another way, this response enhancement gradu-
ally spreads among the neurons that respond to connected
squares until the whole object is eventually ‘labelled’ by an
enhanced firing rate. When tracing is ready, the enhanced
activity identifies all image elements that are connected to
each other, and it thereby ‘binds’ them into a coherent
object representation.

Visual search and cuing. Visual search and spatial cuing
can also be viewed as binding operators. In search, the
observer’s task is to determine the location of a pre-
defined shape (Figure 2a). Conversely, in cuing, a location
is given and the task is to report the features of the object
at that location. Figure 2 illustrates the key ideas behind
neural network models of search and cuing [19–21], here
implemented as an interaction between three visual
areas. The first area contains neurons with large receptive
fields (RFs) encoding colours irrespective of their location
(Figure 2b: TI, or translational invariant). The second
consists of neurons that encode the location of relevant
objects irrespective of their features as a saliency map
(SaM) [22], and the third area is an early visual area (EV)
where neurons are tuned to conjunctions between colours
and locations (a form of base-grouping).

The model assumes that neurons in EV tuned to a
particular colour and retinotopic location are reciprocally
connected to TI units that encode the same colour, and to
SaM units that encode the same location. In Figure 2b,
two objects are presented, and feedforward connections
www.sciencedirect.com
activate cells in TI tuned to two colours, neurons in SaM
tuned to two locations, and cells in EV tuned to the
respective colour–location conjunctions (grey circles in
Figure 2b are neurons activated by feedforward connec-
tions). In this base representation, the internal skeleton of
connections between the activated neurons is enabled
(thick lines). A different input pattern activates different
neurons in the base representation and thereby enables a
different pattern of connections. Note that for both images,
only neurons that encode features of the same object are
linked. The pattern of enabled connections is implicit; that
is, not visible to neurons in other areas. To make the
groupings explicit, elemental operators have to spread a
response enhancement through the network. If the task is
to search for the yellow item, for example, then the activity
of TI units tuned to yellow is facilitated (Figure 2c). The
enhanced activity will spread through EV to neurons in
SaM that encode the location of the yellow object.
Conversely, if the task is to identify the colour at a given
location, as in a spatial cuing task, then the activity
enhancement is injected in SaM and spreads to neurons in
TI encoding the appropriate colour (Figure 2d).

In this simple example little may seem to be gained by
the incremental grouping process, as conjunctions
between colours and locations are also available as base
groupings in EV. Modeling studies demonstrated, how-
ever, that the scheme can be generalized to encode
conjunctions between complex shapes and locations not
encoded as base groupings (i.e. not repeated at every
retinotopic location) [19,23]. Importantly, the proposed
implementation is supported by neurophysiological data
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Figure 2. Implementation of search and cuing. (a) Search task. Where is the yellow object? (b) Models of visual search include multiple visual areas. TI is a colour-selective

area with neurons that have a translationally invariant representation (large RFs). EV is an early visual area with colour selective neurons that have a small RF. SaM is a

saliency map; an area with neurons tuned to spatial locations, but not selective for other visual features. Neurons in EV are reciprocally connected with neurons in TI with a

similar colour tuning, and with neurons in SaM with a similar spatial tuning. Bottom-up input from the image activates a subset of the neurons (grey circles are the active

neurons), and it thereby enables a subset of the connections (thick lines). Several disabled connections are shown as dashed lines. A comparison of image 3 and 4 illustrates

that different images enable different sets of interareal connections. (c) During search for yellow, neurons tuned to yellow in TI increase their response. The enhanced activity

spreads through EV to the neurons in SaM that encode the location where the yellow item can be found. (d) In a cuing task, neurons in SaM with a RF at the cued location

enhance their response. This response enhancement spreads through EV to neurons in TI that encode the colour present at the cued location.
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as neurons in early visual areas [24–27], areas that encode
shapes [28] as well as in areas with saliency maps [29,30]
enhance their response if they encode features of the
target object during search and cuing.

Distal access. Binding operators provide access to all
features of an object (distal access; see Box 1), in spite its
distributed representation across many areas of visual
cortex. The operators ensure that it does not matter
whether an object is cued by location, shape, or one of its
contours. Studies on the time required by binding
operators consistently provide estimates between 100
and 300 ms [17,25,31]. Thus, as predicted by Newell [2],
the time required to realize distal access is one order of
magnitude longer than the time required for an inter-
action between neighboring cells (w10ms) [32], and two
orders of magnitude longer than an action potential
(w1 ms). These neurophysiological findings also have
clear-cut descriptions in psychology. Visual search,
cuing, and also tracing involve shifts of visual attention
[33–36]. Taken together then, descriptions from psychol-
ogy (visual attention), neurophysiology (rate
www.sciencedirect.com
enhancement), and artificial intelligence (distal access)
have started to converge.
Maintenance operators

It is not enough to select an object, but the observer must
be able to maintain the object in memory for future
cognitive manipulations. Working memory is the key
process that permits the temporary storage of information
[37]. Features that are attended, that is, labelled by an
enhanced response, have a higher probability of being
remembered. In many areas of the visual and frontal
cortex, the neuronal response enhancement for a to-be-
remembered item persists when the visual target is
removed from sight [8,38,39]. Thus, many of the areas
that implement elemental operations can maintain the
results of these computations during memory delays. It is
also possible to execute an eye- or limb movement to
maintain information across memory delays (see Box 2 for
an example). Having listed several the elemental oper-
ations, I will now turn to the question of how they can be
arranged in a sequence to solve more complex tasks.
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Box 2. Reading a map

Imagine driving with your partner en route to a camping site. You have

just passed a church and now you approach an unexpected fork in the

road. You therefore ask your partner whether you should turn to the

left or to the right. After a few seconds of looking at his or her map,

your partner replies ‘left’. To answer this question, he or she must find

the road along which you are traveling, the final destination, and then

determine which road will bring you to the destination.

When she directs her gaze to the map, feedforward connections

rapidly extract various visual features (base representation in Fig. Ia).

Thereafter, several elemental operators must be executed. Because

your partner does not know where you are, she begins by conducting

two visual searches, one for the camping-site to which you are headed

and one for the church that you just passed. These searches can be

conducted in either order; however, lets assume that she looks for the

camping-site first. As a result, the location of the camping site is

labelled with an enhanced neuronal response in areas with a map of

the visual field (Fig. Ib). This location must be stored for future use, as

your partner executes the second search for the church. She may put

her finger on themap where the camping site was found (‘2’ in Fig. Ib),

while looking for the church [45]. The second search produces the

location of the church and labels it with an enhanced response (Fig. Ic).

The location of response enhancement can be used as the starting

point for the subsequent trace operation. The trace operator labels the

first part of the route, but it then encounters the junction. Some

evidence suggests that participants only trace one curve at a time [51],

I will therefore assume that your partner follows the right turn and

eventually finds that this road is blocked (Fig. Id). She identifies the

cause of this blockade as a village near a river (the response

enhancement at the road’s end provides a spatial cue). She

suppresses this part of the road to ensure that she will not take the

erroneous turn twice (maintenance operator, Fig. Ie). After another

tracing operation, she finds the correct route (Fig. If).

This example illustrates how a small set of operations can be used to

solve a relatively complex task. At present, the explanatory power of

this theory is limited because I did not specify how the appropriate

operators get selected at each step of the routine. In cognitive theories,

such as ACT [1] and SOAR [2], the order of these operators is

controlled as items that are added or removed from working memory

to bias the selection of subsequent operations. At the start of this task,

for example, the content of working memory would bias the selection

of search operators. The exploration of these control processes

constitutes an important avenue for future research.
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Figure I. A sequence of elemental operations in map reading (see text for details).
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Visual routines

Visual routines represent a system level higher than that
of the elemental operators [5] (e.g. see Box 2). There are
only a limited number of elemental operations; none-
theless, it is possible to construct a virtually unlimited set
of visual routines as the operations can form many
different sequences [5,10]. As each operation typically
requires on the order of 100–300 ms to be executed, a
routine can take a second or several seconds. This section
addresses two issues regarding the organization and
execution of routines: (1) how information is transferred
from one elemental operator to the next, and (2) what
mechanisms determine the order of operations.

To gain insight in these issues, we recently
investigated a simple routine in the visual cortex of
www.sciencedirect.com
macaque monkeys [7]. The task, illustrated in Figure 3a,
required the monkey to fixate on a central grey marker
(fixation point) that changed its colour (to either yellow or
blue). The colour of the fixation point instructed the
monkeys to search for a marker with the same colour.
Thus, in the trial illustrated in Figure 3a, the monkey had
to search for a blue marker. This marker represented the
beginning of a target curve (T in Figure 3a) that the
monkey had to trace to locate a larger circle at the other
end that was the target for an eye movement.

This task can be solved by a routine composed of two
operators, first search, then tracing. We measured
neuronal activity in area V1 as the monkeys performed
this task. The initial registration of the stimuli occurred at
a latency of 39 ms (grey in Figure 3b); this corresponds to
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Figure 3.Neuronal responses in monkey area V1 during a visual routine. (a) The animal’s ask was to locate a marker that had the same colour as the fixation point (here blue)

and to trace the curve (target curve, T) connected to that marker. The animal had to locate a larger circle at the other end of this curve, which was the target for an eye

movement. The other curve (D) was a distractor. (b) Time course of neuronal activity in area V1. Thirty-nine ms after stimulus onset, all the neurons with RFs that fall on the

curves are activated (grey rectangles). After 159 ms, neuronal responses to the blue colour are enhanced (green rectangle). This response enhancement can provide the

starting point for the tracing operator that enhances responses evoked by the target curve at a latency of 229 ms (orange). Shown below are the average time course of

the initial visual response (grey), the response enhancement due to search (green), and tracing (orange). (c) Simple task where themonkey does not have to search, as he can

start to trace at the fixation point. The latency of visual response does not change (grey), but the response enhancement due to tracing nowoccurs after 130 ms, 100 ms earlier

than in the more complex task.
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what we called base representation. One hundred and
twenty milliseconds later (159 ms after display onset), the
neurons representing the cued colour in their receptive
field enhanced their response (green in Figure 3b). This
response enhancement was presumably caused by a
colour-selective feedback signal from higher visual areas
(see Figure 2c) that labelled the colour at the beginning of
the target curve. After an additional 70 ms (229 ms after
stimulus appearance), neuronal activity in V1 differen-
tiated the target curve from the distractor curve, because
neuronal responses evoked by the target curve were
enhanced (orange in Figure 3b).

The monkeys also performed a simpler task that could
be solved by just tracing (Figure 3c). The onset of the
initial volley of activity in V1 was the same as in the
complex task, but now the response enhancement caused
by tracing occurred at 130 ms; that is, 100 ms earlier. Thus
in the complex task, the search operator delayed the
subsequent tracing operator, suggesting that these oper-
ators are executed serially.
Information transfer

In such a routine it is essential that information from one
elemental operation is transferred to the next. The data of
Figure 3 provide insight into how the visual cortex
transfers information between elemental operators. The
result of the search operator is a response enhancement of
neurons in retinotopic areas (Figure 3, green RFs; see also
www.sciencedirect.com
[25,40]), which can be used as starting point for the tracing
operator. Thus, the enhanced response in retinotopic areas
transfers the position information from the search
operator to the tracing operator – this transfer is called
‘call-by-focus’. Call-by-focus is a very general mechanism,
as other variables, like shapes, colours, or motion direc-
tions can be transferred similarly, as a maintained
response enhancement in areas tuned to these features
[7]. The persistence of this response enhancement corre-
sponds to the temporary storage of features in working
memory [41–44] (Table 1).
Sequencing of operators

In the task of Figure 3a, the monkey first searched and
then traced, in a fixed sequence. The order of operators
may be more variable in other tasks, and subjects may
even switch between strategies from trial to trial
(e.g. [45]). Moreover, when the task is new, the participant
may use trial and error to find the most efficient sequence
of operations (Box 2). This raises the issue of control: what
controls the sequencing of operators?

This question has, to my knowledge, not been answered
satisfactorily at the neurophysiological level. By contrast,
artificial intelligence models, such as ACT-R [1] and SOAR
[2] are specifically designed to deal with issues of control.
They make two assumptions: (i) the operations compete
for control over behavior, and (ii) only one operation can be
executed at one point in time. In the models, the operators’
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competitive fitness depends on several factors. One factor
is the current contents of working memory. Selected
operators place their results in working memory, and
they thereby influence the selection of subsequent oper-
ators. A second factor is the success of an operator’s
previous applications – the fitness of successful operators
is increased, so that they are more likely to be selected
when a similar problem reoccurs. This can eventually lead
to the formation of fixed sequences called chunks [1,2],
which is beneficial when sequences work well in particular
situations.
Conclusions and future directions

A better understanding of control and chunking at the
neurophysiological level would be of great value for our
understanding of cognition generally. Some insight into
issues of control comes from recent work on perceptual
decisions and how they give rise to eye-movement
commands (for reviews see [46,47]). This raises an
important question for future research: do the processes
that select elemental operators resemble those that select
limb and eye-movements? If so, then insight into the
formation of chunks might also have been gained, from
experiments where monkeys were trained to carry out
arm movements in fixed sequences. These studies
revealed neurons in regions of motor cortex that are
selective for entire movement sequences [48,49]. If this
generalizes to visual routines, then the sequences of
elemental operations might originate from areas outside
the visual cortices; for instance, a recent study in the
prefrontal cortex of monkeys has described neurons that
encode abstract rules of how the monkey should process
visual information [50]. An exciting prospect is to
investigate how prefrontal neurons influence the selection
of operators implemented in visual areas.

In conclusion, I have proposed that it is necessary to
define new system levels that will bridge the gap between
the individual neurons and cognition. As an example, I
outlined an emerging theory of how networks of neurons
spanning several areas of the cortex interact with each
other to implement elementary operators in vision. I
indicated how successive operators in vision are arranged
in a sequence so that routines can be built that solve more
complex tasks. Importantly, the elemental operators have
correlates in psychology (shifts of attention), neurophy-
siology (firing rate enhancement), as well as in artificial
intelligence (distal access), and the present theoretical
framework could therefore foster direct communications
between these fields. Indeed, the neurophysiological
results reviewed here demonstrate that it is in fact
possible to monitor routines in the visual cortex, and
they testify that cognitive neurophysiology is entering an
exciting era where it can start to test theories in artificial
intelligence [5,45].
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