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Evidence from neurophysiological and psychological studies is coming together to shed
light on how we represent and recognize objects. This review describes evidence

supporting two major hypotheses: the first is that objects are represented in a mosaic-

like form in which objects are encoded by combinations of complex, reusable features,

rather than two-dimensional templates, or three-dimensional models. The second

hypothesis is that transform-invariant representations of objects are learnt through

experience, and that this learning is affected by the temporal sequence in which

different views of the objects are seen, as well as by their physical appearance.

In the late 1950s Gregory and Wallace had the rare op-
portunity to investigate the case of a man who, thanks to an
operation, was able to see for the first time in over fifty
years'. Three months after the operation rthey made the

following observation:

Quite recently [S.B.] had been struck by how objects
changed their shape when he walked round them. He
would look at a lamp post, walk around it, stand studying
it from a different aspect, and wonder why it looked
different and yet the same.

Richard Gregory and Jean Wallace (in Ref. 1)

As the result of his postponed exposure to the visual world,
S.B. may be one of the very few adults to have appreciated
how strange and difficult a problem it is to recognize objects
from different viewpoints. We are continually required to
recognize objects in the process of our everyday life, but the
apparent speed and ease with which we are able to solve the
task makes it difficult to appreciate how remarkable this
ability is. The image cast on our retina by an object changes
markedly as a function of viewpoint, lighting, size or location,
but we are nevertheless able to interpret these images cor-
rectly as indicating the presence of one or other object. Con-
sider, for example, the scene depicted in Fig. 1, in which the
many different views of a chair are all recognizable as such.

This review describes theories of how humans solve the
recognition problem. One of the major issues that we con-
sider is how the very perception of objects changes with ex-
perience. The role of experience in human perception has
yet to be fully understood but there is now good evidence
that much of our perceprual apparatus is affected by learn-
ing. In this article we describe both neurophysiological and
human psychophysical evidence for an experience-based in-
fluence on object representation. The evidence from learn-
ing studies is then used to support the proposal that objects
are stored as collections of views each represented by small
collections of neurons — countering the many alternative

approaches summarized in Box 1. In the final section we
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describe how disparate views of objects can be associated
on the basis of the temporal as well as spaial regularities
governing their appearance.

Neurophysiology

From lesion studies and cellular recording it has been
proposed that the sequence of primate visual areas
(V4—PIT—CIT—AIT) — often referred to as the ventral
stream — solve the problem of what we are looking at. In
contrast, a second stream leading dorsally and into the pari-
etal lobe (V1—V2—V3—intraparietal areas), has been im-
plicated in the role of deciding where that object is located”*
(Fig. 2). In particular, cells in the latter part of the ventral
stream in the inferior temporal areas (IT) have been impli-
cated in the task of object recognition, ostensibly because
of their transformation-tolerant selectvity for views of
faces® . Transformations that can be tolerated by IT cells
include changes in the position, viewing angle, image con-
trast, size and spatial frequency content®”!" — indeed all of
the types of transformation invariance required for view-
invariant object recognition. Although there are concen-
trations of face cells in IT, this area is not simply a face cell
area, since clusters of face cells are interspersed with clusters
of cells not selective to faces'*". In fact, although face cells
account for as much as 20% of neurons in some regions of
IT and STS, they only account for around 5% of all cells
present in inferior temporal cortex'’. In the early 1990s,
Tanaka and his colleagues'' showed that many of the
remaining neurons are selective for complex combinations
of features, including a basic shape with bounded light,
dark or colored regions etc. and that these neurons also
demonstrated useful invariance properties.

Apart from their tolerance to stimulus transformations,
inferotemporal neurons are of interest in that they provide a
source of evidence of learning in the recognition system.
Rolls et @, for example, were able to demonstrate rapid
adaptation of a neuron’s selectivity for faces. In addition, both
Miyashita'® and Kobatake ez al'” found cells responsive to
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Fig. 1. The problems inherent in analysing complex scenes. A complex scene comprising many chairs seen with different sizes, viewpoints, lighting conditions,
etc., demonstrating the range of problems faced in recognizing and categorizing objects. For example, we appear to find it trivial to distinguish cast shadows or wall
paintings of chairs from the genuine article. It also seems self-evident that the chair on the desk is small enough to hold in the hand, whereas the chair in the adja-
cent office is large enough to sit on. We happily conclude this despite the fact that the images formed by the two chairs on our retinas are actually identical.

familiar, non-face stimuli used in previous training. In par-
ticular, Kobatake ez 2/ demonstrated that the number of
cells selecrive for the trained stimuli was significantly higher
than in the cortex of naive monkeys. More recently,
Logothetis and Pauls'® trained monkeys to recognize par-
ticular aspects of the novel object class of paper clips which
had been used in earlier recognition studies'. After train-
ing, many I'T neurons were shown to have learned represen-
tations of particular paper clips — including some neurons
that were selective to specific views,

Learning in I'T cells can be built up over many months,
but can also be almost instantancous, reflecting behavioral
changes measured in human responses to stimuli. Tovee er al,
for example, presented two-tone images of strongly lit faces
to monkeys? (see Fig. 3a). Some IT neurons which did not
respond to any of the two-tone faces did so if once exposed
to the standard grey-level version of the face (Fig. 3b). This
accords with findings in humans, who often struggle to in-
terpret two-tone images for the first time, but then have no
difficulty interpreting the same image, even weeks later’.

Psychophysical studies

Apart from the accumulating evidence for the experience-
dependent modification of neural responses, there are also
ample examples in the field of human object recognition.
One of the important recent developments has been the use
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of stimuli chosen from novel object classes. What emerged
from this work was thar if two views of a novel object were
learned, recognition was better for new views oriented be-
tween the two training views, than for views lying outside
them!'”?* (see Fig. 4). These view-dependent effects were at
odds with most of the then current theories of object recog-
nition and helped establish the view-based approach to

object recognition'”*

. This theory proposes that objects are
represented as collections of views rather than explicitly re-
lated parts or 3-D models. For discussion of this and other
approaches to the problem of object recognition see Box 1.
One important aspect of view-dependent recognition is
that it is most noticeable for unfamiliar objects, or for objects
usually seen from a particular viewpoint® — for which the
familiar view is referred to as ‘canonical’. For other familiar
objects it has long been known that recognition is view-

invariant**%

. This is, however, still consistent with a view-
based model if one assumes that for familiar objects, enough
views are stored to remove any view-specific effects. To
demonstrate that view-dependence is purely a function of
familiarity, Edelman and Biilthoff investigated the effects
of extensive training, and showed that it can indeed counter
initial view specificity”’ (Fig. 5).

The effect of training has again been raised by several
recent articles investigating how continued exposure to an
object class may affect the manner in which the objects
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Box 1. Object recognition paradigms

Object recognition, shape constancy or shape perception — call it what you will
— the question of how we identify and classify objects, has provided fruitful labor
for philosophers, psychologists, engineers and scientists for many years. Here,

we briefly review some of the more current and popular recognition theories.

Extracting 3-D information

The idea that we can extract 3-D information from a scene which we then use
to access 3-D models of objects, is referred to as an ‘object-based’ represen-
tation. One approach for extracting 3-D information from 2-D projections is to
use depth cues. Natural images usually conrtain depth information in properties
such as texture gradients, shading, hue, binocular disparity and motion. Most of
these cues have been used in shape extraction including shape from shading
(Refs a,b) and shape from motion (Ref. ¢). These cues are certainly useful, but
appear unnecessary for recognition because of the fact that we are able to infer
shape from line drawings. Of course, even line drawings provide some depth in-
formation if only because of our predisposition to infer depth information from
oblique lines (e.g. in a Necker Cube), or to make assumptions about object
symmetry (Ref. d).

However one extracts the 3-D form, one needs ro find some means of
martching the viewed object to stored representations of familiar objects. Many
authors proposed that matching occurred ac different scales depending on the
difﬁ(ult_\-‘ of the discrimination (Refs e—g). All of these theories center around
the idea that objects are represented as specific configurations of basic parts, or
building blocks. One could think of it as a LEGO-land representation. There
have been numerous suggestions for the choice of LEGO bricks, including poly-

hedra, spheres, cylinders (Ref. f), superquadrics (Ref. a) and ‘geons’ (Ref. h).

Projective invariants

A quite different means of identifying objects to have received considerable at-
tention is the notion of projective invariants, that is, the characterization of in-
trinsic elements of shape that are unaffected by the act of projection onto a 2-D
surface such as the retina. Approaches include both projective invariants (Ref. i)
and affine invariants (Ref. j), the latter being an approximation to the effects of
projection in which foreshortening is characterized but the effects of line con-
vergence are ignored. Affine invariance immediately suffers from its approxi-
marion: any associated models cannort distinguish simple shapes like recrangles
because they are all linear (affine) transforms of

each other. It is also possible to impose projective A
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problem has a free parameter, namely rotation in depth, which withour depth
information must be inferred via some constraint. One could, for example,
assume that the true shape corresponds to the form in which the ratio of an
object’s area to the square of its perimeter is maximized (Ref. |) or that the true

form has bilateral symmetry (Ref. m).

Geon structural description

One development of the part-based approach to recognition is the ‘Geon
Structural Description’ of Biederman (Ref. h). The geon theory once again pro-
poses that objects are represented by explicit relationships of a small set of
LEGO-like blocks, which Biederman calls ‘geons’ (see Fig. IA). For example, a
house might be represented as the base of a pyramid on top of a cube, and a US
mail box as a cube on top of a narrow cylinder. In this manner a few volumert-
ric primitives (36 in Biederman’s opinion) can be used to describe any objects.
This representation would then support invariant recognition so long as the
parts remain in the same relative cofiguration, and are all visible.

Despite the similarity to other structural descriptions, geon theory also owes
something to the idea of projective invariants. Biederman’s approach specifi-
cally excludes any textural or similar depth cues, concentrating instcad on the
mapping of 2-D space relations o inferences about 3-D shape. Biederman de-
scribes a list of non-accidental 2-D properties in his discussion of how 2-D cues,
such as collinearity, skew symmetry and coincident line termination, can be
used to infer 3-D shape, and how they are critically important cues to recogni-
tion. The fact thar features such as co-linearity and skew-symmetry can be ex-
tracted directly from a 2-D image without any recourse to 3-D modeling sets
Biederman’s approach apart from the fully 3-D approaches described earlier.
The main weaknesses of this theory are that there remains lictle or no neuro-
physiological evidence for the explicit encoding of spatial relation or the repre-
sentation of geon primitives, and that several psychophysical studies have re-

vealed view-dependent recognition, even using basic geon shapes (Refs n—p).

Active shape matching
Another alternative to have received consideration is shape or template match-
ing. The precise details of how to implement such a system vary considerably,

but in practice all matching approaches fall into one of two conceprually im-

portant types. The first type argues that stored models should contain explicit

B

transforms on objects that leave them unrecog-
nizable — suggesting that we do not use projective
invariances for object recognition. In their stead,
a number of authors have proposed that we make
use of perspective invariance (Ref. k).

The types of projective invariances that au-
thors refer to include: the fact that a triangle re-
mains a triangle from all but the most pathologi-

cal viewing directions; that parallel lines remain

<
Z
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parallel; or that a circle always transforms to an
ellipse. In order to recover true shape from a
projected image one must decide how much

foreshortening has raken place. Obviously, the

Fig. I. Volumetric primitives or views? Objects used in recognition paradigms. (A) 'Geons’: volumetric build-
ing blocks used to describe everyday objects. (B) Aerials, Paperclips, and Amoebas: novel object categories used
to test recognition performance for novel views.

within that class are represented. Indeed, Schyns argues that
sufficient exposure to a particular stimulus type causes the
representation of these stimuli to alter and be enhanced?*%.
This, in turn, relates to the findings of researchers men-
tioned earlier, who were studying learning in I'T neurons.
Their work showed that extensive experience of a class of
images or objects, causes an increase in the number of cells

16

selective for those images or objects'® . By devoting more

neural hardware to the representation of the features present
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in an object class, one would presumably be better able to
discriminate subtleties in their form, of relevance to the
types of visual expertise raised by Schyns in his articles?® .
Indeed, in another recent article, Gauthier and Tarr have
also made this point and shown that experience of an origi-
nally novel object-class heightens the subjects’ awareness of
small changes to objects within the same class™.

Gauthier and Tarr go on to argue that this type of

specialization underlies our highly sophisticated ability to

January 1999



3-D shape information, whereas the second uses groups of 2-D
views. One example of the 2-D approach is elastic pattern match-
ing in which a non-linear image transformation is made of the
stimulus in the image plane (or equivalently of the stored object
views). A measure of how well the model martches the stimulus is
derived by attributing a cost to how far points in one image have
to be moved to find a similar looking feature in the other.
Features include Gabor-like patches or Sjets” (Ref. q) and edge-
based facial features like ovals for eyes and a triangle for a nose
(Ref. r).

The 3-D approach assumes that it is possible to extract the
location of three (or more) anchor points in 3-D space, which are
matched to those in the stored models. Matching the anchor
points requires a 3-D rotation and scaling of the stored model
until the anchor points are most closely aligned. Recognition
then proceeds by measuring the amount of overlap in the two

views (Ref. s).

Recognition based on 2-D image features

Although the recognition of familiar, everyday objects proceeds
almost effortlessly, some views are generally easier to recognize
than others, both in terms of reaction times and accuracy. Such
views are referred to as ‘canonical” in the recognition literature
(Ref. 1).

Many researchers have since studied view specificity using
novel objects trained in particular views (Fig. IB). They all point
to a decrease in recognition performance as a function of view-
point’s disparity from a previously learned view (Refs u—x).
Similar drops in recognition performance with viewing angle,
have also been reported for unfamiliar objects (Ref. y) and faces
(Ref. z).

These results have led to a new alternative for how objects are
represented and recognized, namely the feature-based, multiple-
view approach (Ref. w). It bears some relation to earlier 2-DD
marching theories and similarly benefits from the result of
Ullman and Basri (Ref. aa) that any 2-D projection of a 3-D
object can be written as a linear combination of 2-D views.
However, the multiple-views model differs from that of the clas-
sical 2-D models, in two important respects. Firstly, the views are
not deformed to match each incoming image and, secondly, each
view is represented as a collection of small picture elements, each
tolerant to small view changes. The approach also represents a
significant departure from object based models, as it requires
neither the extraction of depth informarion, nor the exhaustive

matching of 3-D models.
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that of face cells in monkeys®®, made a strong case for the
suggestion that prosopagnosia was caused by damage to face
cells®. Psychological studies have revealed a dissociation be-
tween face and object recognition in the past’%, but the
latest neurophysiological evidence is not as clean as some
theorists had first hoped. Direct attempts to find the elusive
area responsible for face recognition in monkeys has been
controversial and until now unfruitful™*. This in turn

lends more weight to Tarr and Gauthier’s proposal that
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Coronal section

Lateral view

Region in which neurons responding to faces
have been recorded in the Temporal Lobe

STS
5 Fig. 2. The important subdivisions of visual cortex. The so called

‘what stream’ lies along a line from V1 to AIT and then doubles back
into the STP areas. Although originally known for its face cells, IT cortex
has been shown to represent many other types of objects as well.
Abbreviations of cortical areas: AIT, anterior inferotemporal; CIT, central
inferotemporal; (d, dorsal; v, ventral); LIP, |lateral intraparietal; MT, middle
temporal; PIP, posterior intraparietal; PIT, posterior inferotemporal; PO,
parieto-occipital; STPa/p, superior temporal polysensory areas; STS, supe-
rior temporal sulcus; VIP, ventral intraparietal; VP, ventral posterior, V1-V4,

visual areas 1-4; 7a, Brodmann'’s area 7a. (Adapted from Refs 6 and 7.)

prosopagnosia might reveal a general deficit in the area
dedicated rto fine-level discriminations of objects to which

we are highly trained™.

Representation through image features

The view-based approach to object recognition accords well
with a large portion of the available neurophysiological data
on face cells. However, the precise nature of this represen-
tation remains as yet unclear. Although there is good evidence
that neurons represent faces through some form of distrib-
uted representation, there is neurophysiological evidence
that this is sometimes art the level of complete views”*” and
sometimes at the level of facial features™ *°. Representation
in the form of complete views is very similar to classical 2-D
template models, whereas a feature-based system would be

quite distinct. Different types of object encoding are sum-

‘
4

Fig. 3. A Mooney face. (A) If subjects or face-selective neurons are exposed to the two-
tone image, they often fail to see a face. (B) Upon seeing the veridical image, both neurons
and subjects now identify the face and will continue to do so in the future, providing evi-
dence for rapid and lasting learning.

marized in Box 2, along with a description of what is meant
by a ‘feature’ in this case.

The results of Biilthoff and Edelman are actually best
explained in terms of a feature-based neural code. For ex-
ample, one can argue that through training, neurons become
tuned to the features present in certain views of an object,
and that in turn this pattern of firing becomes associated
with the identity of that object. The interpolation result
then follows if one assumes that two views have been
learned, and that both are identified with the same object.
Identification will clearly be easiest for views of the object
nearest those trained, since this view is most likely to con-
tain one or more of the features supporting the representation
of the learnt views. It also follows that any view falling
within the range of the two trained views is more likely to
have features in common with either or both of the trained
views than a view of the object falling outside that range, and
is therefore more likely to activate one or more of the stored
object features than a view outside this range. The rise in re-
action times away from trained views follows the same logic.

It turns out that a view-based, distributed represen-
tation can also explain several other well known phenomena
in object recognition. For example, evidence from neuro-
physiology suggests that populations of neurons are trained
to recognize extreme views of faces’ (e.g. frontal and pro-
file), which seems to conflict with the good recognition per-
formance reported for faces in 3/4 view''*>. However, using
a distributed representation, recognition of the 3/4 view
would be mediated by partial excitation of both frontal and
profile neurons, thereby preventing any drop in reaction
time or recognition accuracy'’.

Use of a view-based representation might also be able to
explain one important ability of human subjects, which

Trends in Cognitive Sciences - Vol. 3, No. 1, January 1999
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Fig. 4. Generalization to novel views. If two views of a novel object are learned, recognition is better for new orientations located
between the two training views (Inter-polation) than outside them (Extra-). Recognition of the latter is better than for orientations away
from the axis linking the trained views (Orthogonal) (see Refs 19 and 22).

until now was held as proof for some internal 3-D model.
This is our ability to mentally rotate objects, i.e. to imagine
how they would appear from a different viewpoint. Shepard
and Cooper showed that the time required to recognize an
object from a new viewpoint correlates with the view’s dis-
parity from a previously learned view®. Many interpreted
this as evidence for the presence of a rotatable, internal 3-D
model. However, it turns out that even here a distributed,
view-based representation can provide an explanation for
the results. Perrett er @/ discuss how the number of
features supporting recognition drops with the difference in
viewing angle between the two views. Since a disparate view
will only activate a few neurons it will take time for this ac-
tivity to raise following neurons to their threshold of firing.
Response times would hence be correlated to the difference
in angle between the trained and test views*.

Despite the advantages of a feature-based system, there
is some psychophysical evidence that we represent faces

holistically®>

which supports those neurophysiological
findings that report neurons responsive to complete views.
On the other hand, there is also evidence that the feature-
based approach can better explain the results of other recog-
nition tasks. For example, Solso and McCarthy conducted
an experiment in which subjects were presented with
photo-fit pictures of people and then tested on a familiaricy
task?”. The test set of faces contained either familiar faces,
wholly novel faces, or novel faces containing combinations
of features present in the familiar ones. The most intriguing
result was the salience of the latter group not only relative to
the rortally novel faces, bur ro the familiar faces as well. In
other words, completely unfamiliar faces were regarded as
very familiar, simply because features within these faces had
been seen before.

Itis possible that the mixed type of holistic and feature-
based representations are common to all objects and not
just faces. It may be the case, for example, that familiar ob-
jects are afforded larger neural reserves in the manner de-
scribed in the previous section, and thar the level to which
an object is represented as features or as a more integrated
representation closer to a holistic template, is governed by
the level of exposure to that object class.

Trends in Cognitive Sciences — Vol. 3, No. 1,

Temporal continuity as a cue to invariance learning

A broadly tuned feature-based system of the type under
consideration in this review, would be sufficient to perform
recognition over small transformations®. However, associ-
ating images over larger shape transformations either requires
separate pre-normalization for size and translation of the
image, or the use of separate view-specific feature detectors
that would then feed into a view-invariant detector. The use
of pre-normalization is at odds with the available neuro-
physiological evidence, which instead points to a gradual devel-
opment of invariance over many processing stages, culmi-
nating in the types of cell responses found in inferior temporal

cortex®®

. The feed-forward model also fits with the results of
Perrett et al’ that response latencies for view-dependent
cells are shorter than for view-invariant cells, which also ac-
cords with the earlier suggestion that view-invariant cells in

STPa might pool the outputs of view-selective AI'T cells*.
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Fig. 5. Loss of canonical view effects. After subjects train on large numbers of views of
novel objects, the shape of their recognition curves changes. Not only do reaction times de-
crease and accuracy increase, but view-specific effects, such as canonicality, gradually disap-
pear. In this figure, the effect is quantified in terms of the coefficient of variation (CV), a
measure that relates the amount of variability or range of a particular variable (be it reac-
tion time or hit rate) to that recorded across all views. (A) CV of reaction times for paper
clips seen from many viewpoints. The decrease in variation from one session to the next
indicates a drop in view-specific effects with increased exposure to the object, providing
evidence of object-specific learning. (B) CV of error rate (misses) for the same paper clips.
The slight decrease in variation from one session to the next indicates that the decrease in
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Box 2. The neural representation of objects

Early theories of object recognition built on the assumption that the goal
of the visual system was to represent a single object with the response of a
single neuron. Such cells were given names such as 'Gnostic units’ (Ref. a) or
‘cardinal cells’ (Ref. b) but are more often referred to as ‘grandmother neur-
ons’, on the basis of a fundamental criticism of such encoding schemes.
Simply pur, the scheme in practice would be highly susceprible to cell
damage. If you lose your grandmother-recognizing cell, then she will appear
unfamiliar the next time you see her. The scheme is also highly inefficient,
requiring impractically large numbers of uniquely siimulated neurons to rep-
resent the torality of real world objects. Alternative distributed codes have
therefore been proposed, although a fully distributed encoding is wasteful in
energy terms (Ref. ¢) and even more disastrous sensitivity to cell damage
(Ref. d) (see Fig. I).

There is a common misconception that the discovery of face-selective cells
in the cortex is linked to the earlier single cell theories of object represen-
tation. However, the truth is that in general, face cells respond not o one
specific face, but to a subser of all faces (Ref. €). It is also not suggested
that the cortex is full of face-selective neurons. There are perhaps 20 times as
many neurons in temporal lobe cortex that do not respond to faces. These

neurons appear to be selective for more abstract, complex visual stimuli

A  Sparse B  Distributed

2 4

Fig. I. What you can count on the fingers of one hand. Two means of en-
coding information. (A) Sparse coding: each finger represents an object yield-
ing five in total. (B) Distributed coding: using combinations of fingers a binary
code can represent up to 31 objects. Two hands could represent 1023. In prac-
tice, both forms of encoding are susceptible to cell damage and the brain ap-
pears to compromise between the two.

Fig. Il. Recognition at first sight. The figure on the left is probably novel to
all readers; despite this fact we have no difficulty in deciding which of the two
other images show the same object from a second viewpoint. Hence, some gen-
eralization to novel views is immediate, even for novel objects. This type of im-
mediate generalization is possible using a view-based representation, if each
view comprises a collection of many subfeatures.
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(Ref. ) or for elements of other familiar objects (Refs g.h). As a consequence,
it has been suggested that object encoding is achieved via ensembles of simul-
rancously firing cells, which both efficiently and robustly represent all objects
(Refs i-1).

Under this scheme, many hundreds or thousands of neurons — each selec-
tive for its specific feature — would act together to represent an object. In this
instance, the term ‘feature’ is intended to mean any diagnostic combination
of light and shade, colour, form, etc., such as those described by Tanaka ez al
(Ref. ). Although many of these features appear to represent only small re-
gions of an object, it is also conceivable that they respond to the object’s out-
ling, or some other global but general property. In addition, the neural repre-
sentarion of these features is more sophisticated than a simple remplate, as
they can exhibit invariance to scale or size, etc., as is typical of neurons in IT
cortex.

New combinations of these features could then be recruited to uniquely
represent a completely new object. In so doing, each neuron would bring
knowledge of how its feature changes in appearance with changes in view-
point. For example: Although a face may be new, experience with that type of
nose or configuration of mouth and eyes, would provide some level of gener-
alization for the face across view change. Indeed, the numerous beneficial,
emergent properties of a distributed representation have long been realized by
neural network theorists (Refs m,n).

This type of representation also provides a counter to the criticism of
theorists to the view-based approach to object recognition. For example, Pizlo
dismisses the idea of a multiple view representation on the grounds that novel
shapes could not be correctly associated together, without prior exposure to
multiple views of that shape (Ref. o). This he refutes with examples of the
type shown in Fig. L If views are represented as many features rather than

single images, then this criticism no longer applies.
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The only problem with such an approach is how disparate
views can be associated by a neuron seeking to build an
invariant representation of an objecr feature.

One possible solution to this problem is that in the real
world, we tend to see discrete sequences of images of an ob-
ject, often undergoing transformations. This regularity in
time might act as an important cue for predicting the iden-
tity of an object as it undergoes transformations due to
change of viewing-position relative to the object. This
change in viewing-position can be the result of our ap-
proaching the object, watching it move, rotating it in our
hand, and so on. The prediction that temporal correlations
in image appearance affect the representation of objects, is
clearly testable. For example, one should expect to see quite
different views of an object being associated to the same
neuron in preference to other very similar images, simply on
the basis of the sequence in which they are presented. This
last section discusses evidence that temporal relations in the
appearance of object views do indeed affect learning.

The temporal association hypothesis has been discussed

6,36,49

in the past and has been successfully used in various

neural network models of recognition®-

- In particular,
Wallis and Baddeley demonstrated how the temporal startis-
tics of the real world can be used optimally, to establish
transform-invariant representations of objects, using a bio-
logically realizable learning rule®.

The influence of image order presentation has also
found support from neurophysiological studies™**. Miyashita
tested monkeys on a sequential match to sample task, in
which he repeatedly displayed a set sequence of random
fractal images'®. He later found that if an IT cell responded
to one stimulus in the series very strongly, it also responded
to neighboring patterns in the sequence as well. Hence he
was able to show that the efficacy of a stimulus dropped
purely as a function of temporal and not spatial disparity
between the stimuli. Of course, the match ro sample rask
is somewhat removed from normal object viewing, but a
link to normal object invariance learning has since been
established®’.

Until recently, there was little or no psychophysical
evidence to support the theorerical and neurophysiological
findings. However, Sinha and Poggio recently described the
use of sequences to establish the perception of the form of
ambiguous wire-frame objects’, and Wallis addressed the
question directly, by considering the effect of temporal se-
quences for natural objects such as faces®”. Wallis hypoth-
esized that by exposing observers to sequences of different
faces, they could confuse the identity of faces since the views
would be falsely associated to form a new composite face.
The results did indeed reveal poorer discrimination for faces
associated in sequences, and that this effect increased with
each session of training”.

In another recent article, Stone presented temporal
sequences of amoeba-like shapes®™, similar to those of
Edelman and Biilthoff””. The experiment was divided into
two phases. In the first phase subjects had to distinguish ob-
jects shown rotating anti-clockwise. In the second phase
some of the familiar objects were presented rotating clock-
wise, which reduced the subjects’ discrimination perfor-
mance for these objects. This is similar to the earlier two
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Outstanding questions

* Assumptions (i.e. priors) are known to play an important role in
perception® But what specific role do they play in object recognition?
The temporal-association hypothesis is one example, but there might be
others. To what extent are these priors learnt, and to what extent
innate?

This review has drawn much of its evidence from work on neurons
responsive to faces. But to what extent are faces and objects related?
Why do some cells represent faces holistically***, and others as
features®®%°? Does this underlie a process in recognition by which very
familiar objects are stored in a more holistic manner in later parts of IT
cortex?3%? Or have we evolved a special processing systems for faces
because they are difficult to discriminate and are socially important®.

If temporal associations affect object recognition, what element of the
temporal nature is encoded? Is there a temporal signature stored, as
Stone®® suggests. Or is the temporal signal merely used to help establish
spatial representations®®5’? Indeed, if both spatial and temporal cues are
used in setting up representations of objects, under what circumstances
would one prefer to use one than the other? How might these cues be

used in combination?

Although there is some evidence that neurons in IT cortex associate
images on the basis of temporal continuity, the time period over which
this association takes place is too long to be of relevance to normal
recognition learning'®**. Do neurons in IT cortex associate views of
objects when they appear in short smooth sequences, as the temporal
association hypothesis would predict?

Most of the work done on recognition has been restricted to isolated
shapes displayed before a blank background. How does the

representation of a scene differ from that of an object, if at all? To what

extent can the view-based approach be extended to the representation
of places, for use in tasks like navigation®'.

results, but also distinct, in that it suggests that temporal in-
formation forms part of the representation of the object.
This may have bearing on the results from the biological
motion literature, that the motion of abstract dots can
evoke recognition of a moving creature®?”.

Whichever approach to object recognition one prefers,
the dara discussed here require that they be modified to in-
clude the use of temporal sequences either in setting up the
representations, or as an integral part of the representation.
It is also important to realise that the ability of a time-based
association mechanism to correctly associate arbitrary views
of objects without an explicit external training signal, means
that it could overcome justly criticised alternatives, such as
supervised training or associating views simply on the basis
of physical appearance. For this reason, the three experi-
ments described above, may well represent a significant new
step in understanding object recognition learning within
the scope of a view-based representation.

Conclusion

Our intention in this paper has been to draw together much
of the research currently underway in the field of object
recognition, and to highlight the encouraging parallels be-
tween neurophysiological and psychophysical evidence in
this field. In the main body of the article we have concen-
trated on the questions of whether and how representations
of objects are learnt, reviewing studies ranging from adap-
tation to Mooney faces, to the fall in canonical view effects with
experience. We have also sought to describe how a feature-
based approach to recognition would work and the manner in
which the choice of stored features develops with experience.
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The final section described how we may draw on the
temporal structure of our environment to learn more diffi-
cult object transformations. The simple but effective heuris-
tic makes use of the fact that potentially very different im-
ages appearing in close temporal succession are likely to be
views of the same object. This piece of information about
environmental structure then takes the form of a tendency
(a ‘prior’ in the sense used in Bayesian statistics) of the
human visual system to associate images of objects together
over short periods of time. Evidence for this hypothesis
stems both from neurophysiological and human psycho-
physical studies.

Taken as a whole, the results described in this paper
strongly support the empiricist view that object recognition
and categorization is largely an ongoing process, affected by
experience of our environment. By using novel stimuli it
has been possible for researchers to describe how object rep-
resentation and recognition develops with experience in
normal subjects. In this manner the results serve to support
the proposal that much of perception is mediated via a dy-
namic learning system, the modification of which continues
throughour our lives.
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