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Abstract

Numerous theories of neural processing, often motivated by experimental observations, have explored the computational

properties of neural codes based on the absolute or relative timing of spikes in spike trains. Spiking neuron models and theories

however, as well as their experimental counterparts, have generally been limited to the simulation or observation of isolated neu-

rons, isolated spike trains, or reduced neural populations. Such theories would therefore seem inappropriate to capture the prop-

erties of a neural code relying on temporal spike patterns distributed across large neuronal populations. Here we report a range of

computer simulations and theoretical considerations that were designed to explore the possibilities of one such code and its relevance

for visual processing. In a unified framework where the relation between stimulus saliency and spike relative timing plays the central

role, we describe how the ventral stream of the visual system could process natural input scenes and extract meaningful information,

both rapidly and reliably. The first wave of spikes generated in the retina in response to a visual stimulation carries information

explicitly in its spatio-temporal structure: the most salient information is represented by the first spikes over the population. This

spike wave, propagating through a hierarchy of visual areas, is regenerated at each processing stage, where its temporal structure can

be modified by (i) the selectivity of the cortical neurons, (ii) lateral interactions and (iii) top-down attentional influences from higher

order cortical areas. The resulting model could account for the remarkable efficiency and rapidity of processing observed in the

primate visual system.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Over 30 years ago (Perkel & Bullock, 1968; Perkel,

Gerstein, & Moore, 1967a,b), it was suggested that rel-

evant aspects of the neural code may be carried by single

spikes or temporal patterns of spikes across populations

of neurons, rather than by a simple mean spike firing

rate (Adrian, 1926). Although codes based on firing rate

have dominated both theoretical and experimental

neuroscience, in recent years, this alternative conception
of neural processing has gained more and more ground

(Bialek & Rieke, 1992; Bialek, Rieke, de Ruyter van

Steveninck, & Warland, 1991; Rieke, Warland, de

Ruyter van Steveninck, & Bialek, 1997), and a number

of ideas have been proposed as to how information

carried by unitary firing events could be generated, ex-

tracted, and used. Among other options, it has been
proposed that information could be carried by the

neurons� precise firing latencies relative to a given ref-

erence event (Celebrini, Thorpe, Trotter, & Imbert,

1993; Hopfield, 1995; Maass, 1997; McClurkin, Gawne,

Optican, & Richmond, 1991; Richmond, Optican, Po-

dell, & Spitzer, 1987, 1990; Thorpe, 1990); by the oc-

currence or repetition of specific firing sequences such as

triplets (Lestienne, 1996) or more complex patterns
(Abeles, Bergman, Margalit, & Vaadia, 1993; Diesmann,

Gewaltig, &Aertsen, 1999; Prut et al., 1998; Vaadia et al.,

1995); by synchronous firing events among different

neurons or populations (Singer, 1993; Singer & Gray,

1995), or by phase differences during periods of oscilla-

tory firing (K€oonig, Engel, Roelfsema, & Singer, 1995a).

One justification for the growing interest in codes that

use temporal information comes from the realization
that visual processing in primates is extremely fast

(Keysers, Xiao, Foldiak, & Perrett, 2001; Oram & Per-

rett, 1992; Perrett, Rolls, & Caan, 1982; Potter & Levy,
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1969; Thorpe, Fize, & Marlot, 1996; VanRullen &

Thorpe, 2001a). It has been argued that classical neural

codes based on the neurons� mean firing rates would

have difficulty operating at such high speeds––hence the

need for new alternatives (Bair, 1999; Gautrais &

Thorpe, 1998; Maass, 1997; Rieke et al., 1997; Thorpe &

Imbert, 1989; VanRullen & Thorpe, 2001b).

Interestingly, most hypotheses that have been made
for potential neural codes based on spiking neurons

have found at least some experimental support. Tem-

poral precision in response to fluctuating inputs is much

higher than might be predicted by the response to con-

tinuous inputs (Bryant & Segundo, 1976; Mainen &

Sejnowski, 1995), and the temporal structure of neural

responses is often reported to show millisecond preci-

sion in the retina (Meister & Berry, 1999), the LGN
(Reich, Victor, Knight, Ozaki, & Kaplan, 1997; Reina-

gel & Reid, 2000), or various areas of the visual cortex

(Bair & Koch, 1996; Buracas, Zador, DeWeese, & Al-

bright, 1998). Note, however, that most of the experi-

mental data concerns dynamic stimuli and it is still an

open question whether temporal aspects of the spike

train can code for spatial aspects of the stimulus (Singer,

1999; Stevens & Zador, 1995). So far, the most com-
pelling experimental evidence for a temporal code spa-

tially distributed across large neural populations has

been obtained for coding schemes based on firing syn-

chrony (Singer & Gray, 1995). This comes as no surprise

however, when most of the experimental research on

temporal neural codes in the past 10 years has focused

specifically on this hypothesis (Alonso, Usrey, & Reid,

1996; Eckhorn et al., 1988; Engel, K€oonig, & Singer,
1991a,b; Gray, Engel, K€oonig, & Singer, 1992; K€oonig &

Engel, 1995; Kreiter & Singer, 1996). The limitations

inherent to neural recording methods (in particular the

number of neurons that can be simultaneously recorded)

and data analysis methods make it difficult to explore

other possibilities in a systematic way (deCharms &

Zador, 2000). Information theory, which can describe

the information content of neural responses, requires
assumptions to be made a priori about the neural code

(Panzeri, Treves, Schultz, & Rolls, 1999; Victor, 2000).

Loosely speaking, this means that if one is not looking

specifically for a given neural code in the population

response, one is very unlikely to find it, even though this

code might constitute the only meaningful part of the

response. This limitation is further enhanced by the

limitation in the number of concurrently recorded cells:
if the neural code is indeed distributed among many

neurons, then important aspects of the neural response

could be missing because the relevant neurons are sim-

ply not being recorded. In short, even after 100 years of

experimental and theoretical research in neuroscience, it

is still not too late to formulate new hypotheses about

the neural code. Only then can these ideas be tested

experimentally, and validated or rejected.

Here we describe such a neural code in which infor-

mation is distributed across large populations of neu-

rons, and represented by relative spike firing times in a

single wave of action potentials. The present article is

meant to integrate in a unified framework the results of

various recent theoretical studies and simulations. In

addition, it presents a number of new observations and

unpublished material. We show how this code can be
applied to model information processing in the ventral

pathway of the primate visual system (e.g. object rec-

ognition, categorization), and how such a model could

account for the efficacy and rapidity of processing in

natural systems. Throughout the paper, we place our-

selves in a situation where an image is presented to our

model visual system at time zero, and only a limited

amount of time (e.g. 150 ms) is available to activate a
first high-level representation of the scene and its com-

ponent objects (Thorpe et al., 1996). The neural coding

scheme that we use here is a version of the Rank Order

Coding proposed by Thorpe (1990) and Thorpe and

Gautrais (1997, 1998).

In Section 2 we present one of the most remarkable

features of this code, a direct relationship linking visual

saliency (or more generally, input contrast) and spike
asynchrony, which will constitute the theoretical basis

for the following sections. In Section 3 we describe how

the properties of retinal ganglion cells can be used to

implement such a code, and demonstrate its efficiency in

the context of information transmission between the

retina and the visual cortex. We then illustrate in Sec-

tions 4 and 5 how this information embedded in the first

wave of spikes generated in the retina can be decoded by
post-synaptic neurons, and how it can propagate in a

feed-forward way through a simple hierarchical model

of the visual system, to implement fast and reliable ob-

ject recognition. In Sections 6 and 7, we show that the

asynchronous nature of this neural coding scheme al-

lows feed-forward processing to be refined by using both

lateral interactions and top-down attentional modula-

tion, without significant slowing down of the system,
and without involving any recurrent computational

loops. Specifically, we expand on previous work and

propose that the visual system can be thought of in

terms of a dynamic functional hierarchy. In addition, we

present a new illustration of the effects of attention and

spike timing from the point of view of the post-synaptic

neuron. All of these properties are summarized in Sec-

tion 8, where we attempt for the first time to sketch a
theory of rapid visual processing. Finally, we suggest in

Section 9 that such a system could be extended to work

under more generic conditions of visual stimulation, i.e.

with a continuous flow of visual information, rather

than a single visual scene appearing at a given reference

time.

At this point it is necessary to clarify the purpose of

the present article. Rank Order Coding, as well as the
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type of model used here, are still at this stage only a

working hypothesis. The work described here is in-

tended to demonstrate the possibilities of such a

framework, and how efficient it can prove when applied

to real-world problems such as high-level vision or ob-

ject recognition in natural images. Until supportive ex-

perimental evidence is obtained, we are not claiming

here that the human visual system necessarily uses such
a scheme. Therefore, and for reasons mentioned before,

we do not specifically focus here on the biological

plausibility of this hypothesis (until Section 10 which

will be entirely devoted to this question), although

relevant experimental work will be mentioned when

available. Instead, we hope that if we are able to dem-

onstrate here that such a coding scheme could be both

natural (in terms of its implementation) and efficient (in
terms of its performance and rapidity of processing) for

real-world visual systems, then we may stimulate interest

in experimental neuroscientists, and draw their attention

to specific questions that they would not address other-

wise.

2. Building the foundations––A general principle: saliency

translates into latency

A widely used simplification considers real neurons as

‘‘integrate-and-fire’’ devices. A neuron integrates its in-

puts over time until it reaches a threshold, and fires a
single action potential. The neuron is then reset and,

after a certain refractory period, starts integrating in-

formation again. This property has in general been used

to support the idea that the firing rate of a neuron is a

monotonous function of the strength of its input (i.e. the

more a neuron is activated, the more it fires). But this

property also has a strong implication in the tempo-

ral domain. The time at which a neuron reaches its
threshold is also a monotonous (decreasing) function of

its activation (i.e. the more a neuron is activated, the

sooner it fires). This means that the latency of firing of a

neuron, just as much as its firing rate, will reflect the

strength of its input.

Now consider a population of neurons which, at a

given time, is stimulated with a particular input stimulus

or intensity pattern (Fig. 1). In theory, if we know the
exact firing rate for each neuron of the population, we

can describe this input pattern with arbitrary precision.

However, as will be argued later, this would require a

certain amount of time before each neuron emits a

sufficient number of spikes to determine its firing rate

reliably. In contrast, simply knowing the time of emis-

sion of the first spike of each neuron (i.e. its latency of

firing) can provide the same information much faster.
Yet another option would be to rely on the specific order

in which these first spikes were generated over the whole

population. Indeed, the first spike of the population

corresponds to the most activated neuron, the second

spike to the next most activated neuron, etc. This idea is

the basis of the Rank Order Coding Scheme (Thorpe,

1990; Thorpe & Gautrais, 1997, 1998). The amount of

information that can be transmitted with such a code

grows with the factorial of the number of neurons in the

population. For relatively large neural populations, the

information transmission power of this code can meet
the requirements of virtually any visual task.

The reasons for using a relative timing code (i.e. order

of firing) rather than an absolute one (i.e. based on the

exact latency of firing) are twofold. On the one hand, the

implementation of an exact latency coding scheme re-

quires specific additional circuitry, such as delay lines

(Hopfield, 1995), that does not seem compatible with the

pattern of connectivity usually reported in visual cortical
neurons. On the other hand, the use of relative timing

information is very intuitive and natural. A system using

such a scheme would certainly be unable to make precise

judgments about exact input intensity values, but it is

actually a well-known fact that the human visual system

performs much better at directly comparing stimulus

features (e.g. luminance, hue, contrast, etc.) than at re-

porting their exact values. For example, it is almost
impossible to differentiate between two stimuli whose

luminances are separated by less than 10%, when viewed

in isolation; however, this difference becomes striking

when the stimuli are presented side by side. Further-

more, coding with ranks naturally provides the system

with an invariance to changes in mean stimulus intensity

or contrast that can only be achieved with a high com-

putational cost in most other artificial visual systems. It

Fig. 1. When a given input pattern is presented to a neural population,

the early part of the population response can be described as a spatio-

temporal wave of spikes. Within such a wave, a simple consequence of

the basic properties of integrate-and-fire neurons is that the most ac-

tivated cells will have the shortest latencies. Input contrast thus

translates into temporal asynchrony. The specific order in which dif-

ferent cells fire can also be used as a code. With 8 input neurons, 8!

(more than 40,000) different input patterns can be distinguished.
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will be demonstrated in Section 4 how a target neuron

can be made sensitive to the particular order of firing of

its inputs.

Under the conditions described above, the first spikes

in a wave of action potentials correspond to the most

activated neurons. Whereas these neurons could be

thought of as simply representing the highest intensity

values of the stimulus, it is better to think of them as
carrying the most salient information. In the retina for

example, the stimulus property that determines the ac-

tivation level, and thus the latency of firing of a neuron,

is not luminance per se, but rather luminance contrast. It

is well known to experimenters in psychophysics and

electrophysiology (Reynolds, Chelazzi, & Desimone,

1999) that the primate visual system interprets stimulus

contrast as a primary determinant of stimulus saliency,
and there is plenty of data showing that latency varies

with stimulus contrast (Gawne, Kjaer, & Richmond,

1996). Similarly, the hierarchical organization of the

visual system in different processing levels of increasing

complexity suggests that each level is responsible for

extracting more and more complex features of the

stimulus (Barlow, 1972). Yet another, more uniform

way to interpret this organization could be that each
level represents stimulus saliency in a comparable way

(in our case, the most salient information is always

carried by the first neurons to fire), but it is the concept

of saliency itself that is refined at each stage: roughly

equivalent to mere stimulus contrast in the retina or

LGN, gradually incorporating information about edges

and contours in V1 and V2, object identity or category

in the temporal cortex, and possibly the behavioral or
task relevance of the stimulus in higher-level areas such

as the parahippocampal complex (Miyashita & Hayashi,

2000; Suzuki, 1996) or the prefrontal cortex (Crick &

Koch, 1990; Freedman, Riesenhuber, Poggio, & Miller,

2001; Thorpe & Fabre-Thorpe, 2001).

At this stage this tentative distinction between a vi-

sual system specialized in feature extraction and one

where visual saliency would be the primary object of all
computations may be only a matter of terminology.

However this statement will play a central role in the

next sections, and the importance of such a distinction

will hopefully be made clearer by the end of this article.

It is worthwhile to stress here that this type of

framework does not apply equally well to different

coding schemes. While it is perfectly reasonable to argue

that the response of maximal amplitude in a firing-rate
based network could also represent the most salient in-

formation, one must keep in mind that this information

could only be available after all neurons in the popula-

tion have fired a sufficient number of spikes to determine

their firing rates reliably. By contrast, in our framework

this information is available as soon as the first neuron

fires (by definition, conveying the most salient infor-

mation).

Other authors have pointed out the possibility of

using variations in firing latency as a source of infor-

mation about the visual stimulus. For example, Na-

kamura (1998) illustrated how the visual system can

select the most salient information for object recogni-

tion, by using the first spikes of a given cortical level to

trigger lateral inhibition and ‘‘prune’’ irrelevant (i.e. less

salient) information. Another possibility, proposed by
W€oorg€ootter, Opara, Funke, and Eysel (1996) (see also

Opara & W€oorg€ootter, 1996) is to make use of the differ-

ences in firing latencies introduced by differences in

input contrast among distinct objects to facilitate

grouping and segmentation by neuronal synchronisation

mechanisms. The specificity of our framework is that

these latency differences directly constitute the neuronal

code, and are used as such by post-synaptic neurons.

3. Spike wave initiation: estimating information from

retinal ganglion cells

A classical argument to reconcile firing rate-based

codes with the astonishing speed of visual processing is

that multiple spikes from redundant neurons can be

used to encode a mean firing rate, averaged over large

neuronal populations rather than long time windows

(Gerstner, 2000; Shadlen & Newsome, 1994, 1998). By

using a few hundred neurons to encode a particular

value, it becomes possible to transmit information
within an acceptable level of precision in only a few

milliseconds (Gautrais & Thorpe, 1998). However, this

costly strategy cannot be used in the retina for example,

where the very limited number of ganglion cells avail-

able (on the order of 1 million in primates) precludes

any extensive use of neuronal redundancy. As our reti-

nas constitute the only source of visual input to our

brain, it is critical to be able to transmit retinal infor-
mation reliably and rapidly to the visual cortex.

We have briefly described in Section 2 the basic

mechanism by which an input pattern to a population of

neurons is converted into a spike wave representing vi-

sual information in its spatio-temporal structure. We

demonstrate here that this mechanism can be applied to

real-world situations where the neural population con-

stitutes a simple model of the retina (Fig. 2) and the
input pattern presented to this population is a grayscale

natural image. The model and results presented in this

section are reproduced from VanRullen and Thorpe

(2001b).

When a natural image is presented to our model

retina (Fig. 2A), each neuron integrates the luminance

information inside its receptive field to determine the

contrast in the input image at a particular position,
polarity (ON- or OFF-center) and spatial frequency

(Fig. 2B). The level of activation of the receptive field in

turn determines the time at which the neuron will fire.
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Over the whole population of ganglion cells, a spatio-

temporal wave of spikes is initiated gradually (Fig. 2C).

To evaluate the information transmission power of our

coding scheme, one can stop this spike wave initiation

process at any time (i.e when a given percentage of

ganglion cells have fired), and calculate how much in-

formation has been transmitted about the input image.

A simple way of doing so is to use the temporal structure
of this spike wave to reconstruct an estimate (Fig. 2D) of

the input image (Stanley, Li, & Dan, 1999). The mutual

information between the original image and its recon-

struction is a direct measure of the information trans-

mitted by the model retina.

Stimulus reconstruction is computed as follows. We

place ourselves as an imaginary observer at the output

of the retina, collecting the spikes as they are generated.
The first spike received, which represents the most sa-

lient (i.e. highest contrast) information, is given a max-

imal weight, and the following spikes progressively

lower weights, with a decreasing function that reflects

the average statistics of natural images (for further de-

tails see VanRullen & Thorpe, 2001b). Apart from this a

priori knowledge of the visual environment, the only

information used for this reconstruction is the specific
order in which ganglion cells have fired. Fig. 3 shows

three examples of stimulus reconstruction obtained at

different moments of the spike wave initiation process.

Less than 1% of discharges in the retina appears suf-

ficient to report most of the contents of the input

stimulus. In fact, more than 50% of the maximum in-

formation that can potentially be transmitted by this

model retina is carried by the first 1% of the spikes.
Further simulations (VanRullen & Thorpe, 2001b)

demonstrated that this form of rank-based coding out-

performs classical coding schemes relying on mean firing

rates over a Poisson spike train, even when 20% random

noise is applied to each neuron�s firing latency. The

impressive encoding power of rank order coding was

also stressed by an earlier theoretical analysis that ad-

dressed the same issue (Gautrais & Thorpe, 1998): a
‘‘count code’’ relying on how many spikes are generated

by each ganglion cell in a given time window performs

very poorly when each cell only has time to generate at

most one spike; even a rate code relying on the mean

inter-spike interval needs at least two spikes to give

a first estimate of the firing rate; in contrast, Rank

Order Coding only needs one spike per neuron, and can

transmit a lot of information even when only a small
percentage of neurons has actually fired.

To summarize, the first wave of action potentials

generated in the retina in response to a visual stimula-

tion can carry enough information in its spatio-temporal

structure to allow further processing. Inside this wave,

the most salient information is represented by the very

first spikes, so that only a very small proportion of them

(e.g. approximately 1%) are needed to transmit the most

Fig. 2. The approach taken by VanRullen and Thorpe (2001b) to

explore the relevance of temporal coding in the retina. An input image

(A) is presented to a simple model of the retina (B). The model gan-

glion cells respond to luminance contrast (with a receptive field de-

scribed by a difference of gaussians) at different polarities (ON- and

OFF-center cells) and spatial scales (for clarity, only four different

scales are represented here, whereas the model used eight different

scales). These ganglion cells are organized retinotopically (i.e. encode

stimulus contrast at different positions in the original image), and in-

formation is subsampled so that the number of neurons at each scale is

inversely proportional to the square of the spatial frequency. The

spiking output of the ganglion cells can be represented by retinotopic

maps as in (C), one map for each spatial scale. The different map sizes

reflect the subsampling at low spatial frequencies. Each pixel in these

maps corresponds to a pair of ON- and OFF-center ganglion cells

encoding input contrast at the same location and spatial scale. White

and black pixels represent ON- and OFF-center cells respectively that

have generated a single spike. This snapshot was taken after 5% of the

ganglion cells had fired. We evaluate the information transmitted by

these output spikes by using them to reconstruct an estimate of the

input image (D).
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useful information. A visual processing system receiving

this spike wave can perform most of its computations at

the very beginning of the information transmission

process. We will describe in Section 5 how a simple hi-
erarchical model of the ventral stream of the visual

cortex can rapidly extract visual information from this

first spike wave and make efficient use of this informa-

tion to implement reliable object recognition tasks. We

will focus on the example of face detection in natural

images, as it is a well-studied domain, with numerous

computational models and algorithms that can be used

as a benchmark. Before this however, we must address
one further question: how the relative times of spikes in

a spike wave can be decoded by a post-synaptic neuron.

4. Spike wave decoding: reading out relative spike times

The temporal structure of the first wave of spikes

generated in the retina carries virtually all the informa-

tion in the input image needed for recognition. To make

use of this information, neurons in the visual cortex that

receive this spike wave need to be sensitive to temporal

structure in the incoming spikes. Specifically, they

should respond selectively to a particular sequence of
activation of their afferents, and not to the activation of

the same afferents in a relatively different order.

Classical models of neural processing (e.g. Rolls &

Treves, 1998; Rumelhart & McClelland, 1986) consider

that the activation level of a target neuron reflects the

scalar product of its input matrix (the activities, or firing

rates of afferent neurons) by its weight matrix (the

strength of each afferent�s connection to the target
neuron). This product is maximal when the input matrix

matches the pattern of synaptic weights, and this de-

termines the neuron�s selectivity. In our case however,

this scheme would not be particularly efficient, because

if each input fires one spike, the resulting activity level

would be identical whatever the input firing order. In-

deed, the input pattern is represented in the temporal

domain, and it is in the temporal domain that it must be
decoded. One simple way of doing so is to desensitize the

Fig. 3. Examples of stimulus reconstructed from the first wave of spikes initiated in the retina. The percentage of ganglion cells that have generated a

single spike is indicated for each reconstruction. It appears that 1% or less is already sufficient to obtain a clear idea of the contents of the input

image.
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target neuron each time an input spike is received

(Thorpe & Gautrais, 1998). Just as we gradually de-

creased the contribution of later spikes to our stimulus

reconstruction from retinal activity (Section 3), a target

neuron should give maximal weight to the first inputs it

receives, and later spikes should have progressively less

and less influence on this neuron�s activity. Under these

conditions, the resulting activity level for a target neu-
ron will be the scalar product of its synaptic weight

matrix with the decreasing desensitization function dis-

tributed over the matrix of afferent spikes. With an

appropriate threshold, the neuron can then be made

selective to a particular order of firing of its inputs. In

fact, this approach is functionally equivalent to the

classical weight–intensity vectors product approach,

with an automatic normalization of inputs (imple-
mented by the desensitization function) in each receptive

field.

This desensitization could be achieved by using a

rapid form of shunting inhibition (Thorpe, Delorme, &

VanRullen, 2001), as illustrated in Fig. 4. A group of

input neurons projects to a target cell and to a popula-

tion of inhibitory interneurons, which are in turn con-

nected to the same target cell. When the input neurons
start to fire, they progressively activate the target neu-

ron, but at the same time trigger a form of fast inhibition

through the action of the inhibitory interneurons, es-

sentially implementing a desensitization process. Such

circuits have been observed for example at the entry

point of the visual cortex, in layer IV of the primary

visual area V1 of macaque monkeys, where inputs from

the LGN make excitatory connections with both target
pyramidal cells and fast-spiking inhibitory interneurons,

which in turn make contacts on the soma of the same

target pyramidal neurons (Callaway, 1998). Intracellular

recordings in cat V1 have shown that this type of

shunting inhibition can act during the first milliseconds

of the target neuron�s response (Borg-Graham, Monier,

& Fregnac, 1998), making it possible for the desensiti-

zation process to function within a single input spike

wave.
One interesting prediction of this hypothesis is that

interneurons in the inhibitory circuit would not need to

be particularly selective, since their principal role is just

to ‘‘count’’ how many inputs have already fired. There is

recent experimental evidence from the somatosensory

barrel cortex showing that fast-spiking inhibitory inter-

neurons receive strong convergent inputs from thalamic

afferents having very distinct selectivities, with the result
that these interneurons are considerably less tuned than

their inputs (Swadlow & Gusev, 2002). Similarly un-

structured receptive fields may be seen in at least some

fast-spiking interneurons in visual cortex (J. Hirsch,

personal communication). These interneurons are un-

usual in that they can fire very quickly in response to

thalamic inputs, and at rates of up to 600 spikes per

second, meaning that the effect of the inhibition can be
almost instantaneous. Furthermore, there is evidence

that these cells are electrically coupled via gap junctions

(within a radius of less than 200 lm), meaning that

entire populations of inhibitory interneurons will tend to

respond together (Amitai et al., 2002; Galarreta & He-

strin, 1999). Together, these properties mean that the

very first responses during a processing wave will be the

only ones not affected by intra-cortical inhibition and
that the responses to later arriving inputs will be pro-

gressively attenuated. This is precisely what would be

required for rank-order decoding.

Note however that shunting inhibition is not neces-

sarily the only way that rank order decoding could be

implemented at the neuronal level (although it is the

only one so far that has found experimental support).

Cortical neurons display such impressive complexity, of
which we know as yet so little (Koch, 1997), that it is

conceivable that other candidate desensitization mech-

anisms (e.g. rapid cross-synaptic adaptation) could be

unraveled in the near future, and we wish to leave this

question open for further investigation.

5. Spike wave propagation: feed-forward hierarchical

object recognition

At the level of neural populations, the neurons that

receive input spikes in an order that is closely matched

to their pattern of weights will have the strongest ac-
tivity levels and will thus tend to fire early. Even with

one output spike for each neuron, the temporal struc-

ture of the population response will therefore reflect the

Fig. 4. A circuit involving shunting inhibition can render a neuron

selective to the order of firing of its afferents. The neuron N receives

excitatory inputs from each of the inputs A–E. The strength of these

connections is represented by the width of the corresponding arrow. In

addition, the neuron receives shunting inhibition from a pool of in-

hibitory neurons (I) whose activity increases every time one of the

inputs fires. As a result, only the first input to fire will be unaffected by

the shunting inhibition, and the amount of inhibition will build up

progressively while the neuron receives a wave of spikes. The final

activation of this neuron will thus be maximal only when the inputs are

activated in the order of their weights. The neuron N is effectively

selective to the order of firing of the inputs A–E.
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pattern of activity over the whole population. In other

words, this encoding–decoding procedure is cascadable.

A neural population can read out the precise temporal

structure inside an incoming spike wave, and in turn

generate an output spike wave, reflecting the popula-

tion�s selectivity. Such a mechanism therefore seems

appropriate for large-scale implementation.

We designed a simple hierarchical model of the visual
system, and applied it to the specific task of detecting

faces in natural images (VanRullen, Gautrais, Delorme,

& Thorpe, 1998). The system is composed of four layers,

through which information flows in a purely feed-for-

ward mode. The first level implements a model retina,

similar to the one presented in Section 3, although with

only one spatial scale. ON- and OFF-center cells re-

spond, respectively, to positive and negative luminance
contrast in their receptive fields. The latency of firing of

each model ganglion cell reflects the input contrast

strength. The output of this first layer is therefore a

spatio-temporal spike wave, with all of the underlying

properties described earlier. This spike wave is received

at the second level by neural populations selective to

edges of different orientations inside their receptive field.

This layer thus corresponds to a simple model of the
primary visual cortex. The selectivity for edges is ob-

tained by using an oriented Gabor function as the

neurons� weight matrix, and the order desensitization

function ensures that the neurons will respond only

when the orientation inside their receptive field matches

their selectivity. At the next level, neurons were trained

(using a supervised learning procedure, not described

here) to respond selectively to the firing order charac-
teristic of the presence of a mouth, left or right eye

within the receptive field. Finally, this information is

combined at the last level, corresponding to a rough

model of the infero-temporal cortex, where neurons

would respond only to the simultaneous presence of a

mouth, left eye and right eye, with the correct spatial

layout, i.e. to the presence of a face.

As illustrated in Fig. 5, the model is able to reliably
detect and localize faces in natural images. Tests were

performed on large image databases. When compared to

the performance of other classical models of face pro-

cessing (Moghaddam & Pentland, 1995; Rowley, Baluja,

& Kanade, 1998; Sung & Poggio, 1994; Turk & Pent-

land, 1991; Valentin, Abdi, O�Toole, & Cottrell, 1994),

this model displays impressive computational power

(VanRullen et al., 1998). Detection rates were at least as
good as alternative systems described in the literature,

with false alarm rates that were much smaller. Fur-

thermore, processing speeds could be one or two orders

of magnitudes faster. The principal reason for this re-

markable rapidity is that all the computation in our

model is event driven: no calculation is required when a

neuron remains silent; neurons start computing as soon

as they receive inputs, and most of the time will respond

after only a small percentage of their afferents have fired.

As can be inferred from the analysis in Section 3, in

most circumstances between 1% and 5% of discharges in

the retina can be sufficient to detect a face in the input

image.

Fig. 5. Architecture and typical response of the face detection model

(VanRullen et al., 1998). The system is composed of four layers. Each

layer contains a number of retinotopic feature maps. Each pixel in

these maps represents a neuron. The position of the pixel in the map

corresponds to the position of the neuron�s receptive field center in the

input image. Gray pixels represent neurons which have fired a single

spike, with the gray level reflecting the order of firing of the neuron in

the corresponding layer (the first neuron to fire is represented by a

white pixel). The input image is decomposed in a model retina by ON-

and OFF-center ganglion cells. The spatio-temporal spike wave initi-

ated in the retina is propagated through the system in a feed-forward

mode. In the second layer, neurons respond to an edge of a particular

orientation (eight orientations separated by 45�; only four orientations

shown here). Neurons in the third layer were trained to respond to the

firing order pattern specific to the presence of a left eye, mouth or right

eye in their receptive field. Outputs from these maps are combined at

the last level, where the neurons respond selectively to the presence of a

face centered in their receptive field. The position of the firing neu-

ron(s) in this layer reflects the location of the face(s) in the input image.

Quantitative results reveal that this model outperforms most classical

computational approaches of face processing.
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The type of model described here is in essence very

simple. A single spike wave propagates in a purely feed-

forward way through a hierarchical arrangement of

neuronal layers of increasing complexity. This feed-

forward template-matching approach is similar to other

classical models of object processing (e.g. Fukushima &

Miyake, 1982; Riesenhuber & Poggio, 1999), and can be

extending to even more demanding processing tasks
including face identification (Delorme & Thorpe, 2001).

The question that we address however is not whether

this particular functional algorithm or architecture is

valid, but rather how the specific neural code used here

affects the rapidity and efficiency of processing. Provided

that the spatio-temporal structure of this spike wave is

taken into account, only one spike per neuron is suffi-

cient to perform all of the underlying computations. In
contradiction to most classical views of neural process-

ing, this demonstrates that mean firing rates integrated

over relatively large time windows, and computational

loops or iterative feed-back mechanisms, are not nec-

essary for implementing sophisticated visual processing.

Taken together, the model�s simplicity and performance

make it a very good candidate to explain how the pri-

mate visual system can achieve high-level visual pro-
cessing tasks in a very limited time (100–150 ms).

6. Feed-forward lateral interactions and the distinction

between anatomical and functional feed-back

We have seen that a pure feed-forward hierarchical

model of the visual system seems sufficient to perform at

least some ‘‘high-level’’ visual object recognition tasks.

However a range of visual mechanisms and algorithms,

such as contour integration, or perceptual filling-in, are

known to require lateral interactions among neurons

(Field, Hayes, & Hess, 1993; Gilbert, Das, Ito, Kapadia,
& Westheimer, 1996; Kapadia, Ito, Gilbert, & West-

heimer, 1995). Most models of contour integration make

extensive use of recurrent loops or feed-back iterative

mechanisms (Gove, Grossberg, & Mingolla, 1995;

Grossberg & Mingolla, 1985; Heitger & von der Heydt,

1993; Li, 1998; Shashua & Ullman, 1988), and it might

be thought that using such mechanisms would be in-

compatible with very rapid visual processing. It could be
that the kind of rapid visual processing that we are

modeling here does not involve much contour integra-

tion. However, in a recent study (VanRullen, Delorme,

& Thorpe, 2001), we presented a model based on relative

spike timing which was able to perform reliable contour

integration without the need for recurrent processing.

The model relies on the temporal structure in a spike

wave constituting the input to a population of orienta-
tion-selective cells, a crude model of the primary visual

cortex V1. The core principle is that the first firing cells

of the population, which represent the most salient

contours, will start to influence their neighbors through

lateral connections before those neighbors fire, i.e. while

they are still integrating incoming information. This is

compatible with electrophysiological recordings in cats

(Volgushev, Vidyasagar, & Pei, 1995) showing that the

delay between the onset of a post-synaptic potential in a

V1 cell and the emission of its first spike leaves enough

time for lateral feed-forward interactions to occur. The
response of these neurons will thus not only reflect the

specific orientation falling inside their receptive field, but

also the degree of alignment of this orientation with the

surrounding contours. By limiting the number of spikes

per neuron to zero or one, we effectively ensure that

there can be no recurrent loop in the system: a neuron

which fires and in doing so influences neighboring cells,

cannot be influenced in return.
The pattern of lateral connections that we used was

similar to the one described by Li (1998). Hence our

model had the same functionality as this clearly iterative

one, yet was able to display comparable performance

(Fig. 6) without the use of computational loops. As

noted previously, the present model does not aim to

demonstrate that the particular algorithm chosen for the

simulations (adapted from Li, 1998) is the most appro-
priate, but simply that our temporal coding scheme

provides important computational advantages. In short,

powerful image processing algorithms such as contour

integration, classically modeled with recurrent feedback

loops, can be obtained in one single pass through a

neural network. In the same way, perceptual filling-in or

border ownership coding (Zhou, Friedman, & von der

Heydt, 2000) could be obtained by the fast recruitment
of lateral interactions. The implementation of feed-for-

ward lateral interactions only requires that we take into

account the temporal asynchrony inherent in a wave of

spikes propagating through the system. Because it is the

first neurons to fire that initiate this lateral wave of ac-

tivity modulation, the most salient stimulus features will

determine the entire course of processing.

One might argue, on the other hand, that because
neurons in our model are locally mutually intercon-

nected, there is in fact some sort of recurrent processing

taking place. This cannot be true however when each

cell can only generate at most one spike. Thus deter-

mining whether or not a neural algorithm involves re-

current processing depends not only on the anatomical

direction of connections in the circuit (i.e. feed-forward,

lateral, feed-back), but also critically on the order in
which specific neurons or populations are activated. We

therefore propose to distinguish between a classical,

static anatomically-defined hierarchy and a more func-

tional hierarchy, dynamically defined by the relative

times at which neurons in the circuit are activated (see

also VanRullen et al., 2001). This dynamic functional

hierarchy centers on the following intuitive definition of

feed-back: there is feed-back in a neural circuit if the
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firing of a neuron A influences the firing of another

neuron B, which in turn (possibly through a set of in-

termediate connections) modulates the firing of neuron

A (Treves, Rolls, & Tovee, 1996). An ‘‘anatomically-

defined’’ feed-back (respectively, feed-forward) connec-

tion between two mutually interconnected neurons can

in fact act as a ‘‘functionally-defined’’ feed-forward

(respectively, feed-back) connection when, for a partic-

ular input stimulation, the neuron located higher up in

the anatomical hierarchy responds before the one lower

Fig. 6. Estimation of the time course of our feed-forward contour integration mechanism. The first column represents cortical activity in our model

of the primary visual cortex, without lateral interactions, the second shows cortical activity building up when feed-forward lateral interactions are

used. The number of firing cells is identical in the two conditions. The last column represents the difference between the two situations. Dark spots

(resp. bright) correspond to places where activity is decreased (resp. increased) by lateral modulation. Activity appears to leave the places with little

or no structure (e.g. feathers on the hat) and is recruited at the locations of well-aligned contours (e.g. hairline, contours of the face and hat). Because

all computations rely on the first spike of each cortical cell, the effects of contour integration can be observed in the first few milliseconds of pro-

cessing. This estimation is based on the assumption of a uniform distribution of discharges in the LGN, and a 40 ms delay between image pre-

sentation and the beginning of cortical activity.
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down (Fig. 7). Experimental studies indeed reveal that
the relative latencies of activation of neurons in different

visual cortical areas overlap enormously, with in many

cases activation occurring simultaneously across sepa-

rate, anatomically ‘‘successive’’ visual areas (Bullier &

Nowak, 1995; Nowak & Bullier, 1998; Schmolesky et al.,

1998). Under these conditions, the respective anatomical

locations of neuronal subpopulations constitute a poor

indicator of the type of communication (feed-forward,
feedback) taking place between them. The relevant issue

is in the temporal domain: which group of neurons acts

as an input to which.

The significance of this statement for neural pro-

cessing is worth underlining. When a spike wave prop-

agates through a hierarchical arrangement of neuronal

layers, part of the information can actually be trans-

mitted through anatomically feed-back connections to
modulate the activity of cells or populations that are still

integrating inputs, without any significant increase in

propagation time. This could explain why feed-back has

been found to affect the earliest part of neuronal re-

sponses (Hupe et al., 2001). In contrast, classical feed-

back loops and recurrent iterations would cost a great

deal of computational time, with virtually equivalent

functional properties. Specifically, the neuronal refrac-
tory periods will put a physical limit on the speed with

which processing can occur.

7. Top-down modulation and attention

The model of the visual system that we have de-

scribed so far is not realistic for at least two main rea-

sons. First, it is static, i.e. computation does not depend
on the task being performed. Two identical stimulations

will always yield the same sequence of firing in the sys-

tem, hence the same response. In contrast, real visual

systems are highly adaptive, so that the same neural

populations can perform a wide range of different

computations, depending not only on intrinsic proper-

ties of the visual input, but also on internal states of the

system, even when it operates in an ultra-rapid visual
processing mode (VanRullen & Thorpe, 2001c). Second,

our model is expensive in terms of the number of neu-

rons required: for example, to achieve position invari-

ance, we have so far used one neuron for each object or

feature at each possible location. In contrast, it is well

known that neurons in the primate visual system can

often respond to their preferred stimulus over a wide

range of locations in their receptive field. Neurons in the
monkey infero-temporal cortex have receptive fields that

can sometimes cover the majority of the visual field. This

type of organization however makes the system more

vulnerable to error, as two or more different objects

might fall inside the same receptive field, and cause

illusory conjunctions (Treisman & Schmidt, 1982).

Visual attention appears to represent biology�s re-

sponse to these limitations. Attention can modulate
neural responses in accordance to central, higher-level

goals, and in doing so allows the different component

features or objects of the visual scene to be parsed into

meaningful chunks, even when these features or objects

fall inside the same receptive fields (Desimone & Dun-

can, 1995; Mozer & Sitton, 1998). At the cellular level, a

range of experiments (see Reynolds & Desimone, 1999)

tend to show that the response of a neuron to two

Fig. 7. (A) Example of a neural circuit composed of seven neurons distributed in three different anatomical levels. In this static anatomically-defined

hierarchy, thin black arrows represent feed-forward (or lateral for double-headed arrows) connections, and the thick gray arrow depicts a feed-back

connection from level 3 to level 2. (B) After stimulus presentation, the propagation of a spike wave in this circuit has resulted in the firing sequence {a;

c; d; f–g; b; e}. In a dynamic, functional hierarchy where the first neurons to fire occupy the first ‘‘early’’ levels, the gray arrow actually represents a

feed-forward connection. At the time f fires, b is a potential target for neuron f, because it has not yet been activated: a spike flowing from f to b

constitutes a ‘‘forward’’ transmission of information. Conversely, at the time b fires, f is no longer a potential target to neuron b: a spike propagating

from b to f would constitute functional ‘‘feed-back’’ of information.
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stimuli falling inside its receptive field is indeed inter-

mediate between the responses to each stimulus alone,

a phenomenon that could be responsible for illusory

conjunctions. Directing attention to one of them draws

the neuron�s response to the response elicited by this

stimulus alone, thus resolving the ambiguity. Interest-

ingly, it appears that visual attention and saliency (here

defined as input contrast) draw on the same resources,
so that an increase in the relative saliency of one of the

two stimuli will have virtually the same effect as the

attentional modulation just described (Reynolds et al.,

1999, 2000).

In the context of a neuronal processing framework

relying on relative spike timing as a vector of visual

saliency, what could be the ideal substrate for visual

attention? In our model the early firing neurons have the
strongest influence on their target cells. As a conse-

quence, a simple and straightforward way to enhance

the significance of a particular feature, property or re-

gion of the visual scene is to let the neurons coding for

that feature, property or region be among the first to

fire. Their decreased onset latency will be interpreted by

the system as increased saliency. This modulation can be

achieved through a localized lowering of thresholds, or
equivalently, an increase in the neurons membrane po-

tentials (VanRullen & Thorpe, 1999).

To illustrate the properties of this mechanism, con-

sider a population of LGN cells transmitting local

contrast information to the visual cortex (Fig. 8). Under

‘‘normal’’ conditions of processing (i.e. without atten-

tion), just as in the retina (Section 3), the most activated

cells will reach their threshold early and thus be among

the first to fire. A target cell receiving the spikes from

this population will rapidly gather information about
the most salient features of the stimulus. Suppose now

that the resting state of cells in our population is bi-

ased towards a certain region of the visual field, so that

neurons in this attended region have an increased ten-

dency to fire earlier. The target cell will now interpret

stimulus features at this particular location as the most

salient ones. In addition, because of the desensitization

function (resulting in an automatic normalization of
inputs in each receptive field), it will attribute less im-

portance to the rest of its afferents, even though they

might fire at the same exact time as in the ‘‘non-

attended’’ condition. This decrease in relative saliency

for visual information outside the attended region, well

known to psychologists (Cave, 1999; Steinman, Stein-

man, & Lehmkuhle, 1995) and physiologists (Kastner,

DeWeerd,Desimone, &Ungerleider, 1998; Smith, Singh,
& Greenlee, 2000; Tootell et al., 1998; Vanduffel, Tootell,

& Orban, 2000), appears here as a simple consequence

Fig. 8. Simulated reconstructions of the information transmitted by a population of LGN cells after 1% have fired a single spike, under different

conditions of attentional modulation. Top, left, with no attentional bias, the first information transmitted corresponds to the most salient (i.e.

contrasted) regions. When attention is drawn to a particular location (as indicated by the bright circle in the other three reduced images), it biases

information flow, letting information propagate faster at this location. The first information received at the next processing level, interpreted as the

most relevant, will thus correspond to the most salient locations in the absence of a top-down attentional bias, and to the attended stimulus features

when attention is present. This attentional mechanism appears to increase the relative saliency of the attended stimulus (Reynolds et al., 1999). It

biases the population�s response towards the response that would be elicited by the attended stimulus presented in isolation (Reynolds & Desimone,

1999). As a result, a target neuron receiving this information at the next level would behave as if its receptive field had ‘‘shrunk’’ around the attended

location (Moran & Desimone, 1985). The algorithm used for these reconstructions is similar to the one described in Section 3, and in more detail in

VanRullen and Thorpe (2001b). The attentional focus is implemented as a localized lowering of firing thresholds, equivalent to an increase in

membrane potential, for neurons whose receptive fields center fall inside the attended region.
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of the increase in relative saliency for the attended re-

gion.

Although there is supportive evidence that spatial

attention can modulate neural activities at the level of

the LGN (Crick, 1984; Koch & Ullman, 1985; Vanduffel

et al., 2000), it is certainly not the only area where at-

tentional modulation is observed. At virtually every

stage in the ventral processing stream of the visual sys-
tem, neural responses have been found to depend on the

attentional state (although there has been some con-

troversy about the effects of attention in the primary

visual cortex; e.g. Luck, Chelazzi, Hillyard, & Desimone,

1997; Motter, 1993). This attentional mechanism, illus-

trated here in the case of the LGN, can act at every

processing level of the visual system. The temporal bias

towards the attended location increases gradually at
each stage, so that the first information to reach high-

level neurons, which will determine their response, rep-

resents specifically the attended object. This feature is

particularly important in systems where ‘‘biased com-

petition’’ (Desimone & Duncan, 1995) is needed to re-

solve the ambiguities induced by the simultaneous

presence of more than one object in a neuron�s receptive
field.

To demonstrate this property, we designed a hierar-

chical model of object recognition in the ventral path-

way of the visual system, in which the size of neuron�s
receptive fields increases at each level of the hierarchy

(VanRullen & Thorpe, 1999). Under these conditions, a

fair degree of position invariance could be achieved.

However, neurons at higher levels of the hierarchy were

likely to respond wrongly when more than one object
was present in their receptive field.

The system was designed so that neuronal selectivity

became increasingly complex across the different levels,

ranging from contrast or orientation in the retina and

V1 to more abstract features such as terminations, T or

L junctions in higher levels. Each neuron at the last

level, corresponding to the infero-temporal cortex, was

trained to respond specifically to a particular view of a
given object. Nine different objects were used for these

simulations (Fig. 9). Whenever an object was presented

in isolation, regardless of its retinotopic position, only

the neurons selective to this object were activated at

the last level. There was no need for attentional mod-

ulation in this case. However, when two different ob-

jects appeared in an object-selective neuron�s receptive

field, one of them being its ‘‘preferred’’ stimulus, the
probability of activation of the neuron was typically

less than 45% (i.e. intermediate between the responses

that would be elicited by each stimulus alone). In ad-

dition, each neuron at the last level had a 5% proba-

bility of responding to the simultaneous presentation of

any two objects to which it was not selective (i.e. an

illusory conjunction could occur between the two

stimuli).

Fig. 9. Result of the propagation of an artificial scene containing two

different stimuli through an object detection model equipped with our

attentional mechanism. The system is composed of a hierarchy of

neuronal layers with increasingly complex selectivities (from top to

bottom, Retina: contrast-sensitive cells with two polarities; Orientation

layer: selectivity to four different orientations with two different po-

larities; Complex orientation layer: four orientations, invariance to

polarity; Features layer: selectivity to T- or L-junctions and termina-

tions; Complex features layer: similar to the previous layer, with a

further degree of position invariance) and increasing receptive fields

sizes. At the last level, corresponding to a simplification of the infero-

temporal cortex, object-specific cells have receptive fields wide enough

to include both input stimuli. They respond specifically to their pre-

ferred stimulus when presented in isolation. Without attentional

modulation however, these cells have only less than a 50% chance of

responding when their preferred stimulus is presented simultaneously

with another stimulus. When attention is drawn to one of the two

stimuli (as indicated by the bright spot in the input image), the

thresholds of neurons with receptive field centers at the attended lo-

cation are lowered at different levels of the system (orientation, com-

plex orientation, features and complex features layer), so that the

corresponding neurons will have a tendency to respond earlier. This

information will thus be interpreted as the most salient by the next

level of processing. The first information to reach the object-selective

cells will represent the attended object, and these cells will respond as if

this object had been presented in isolation. Under these conditions, the

attended object is correctly recognized in 96% of cases. Adapted from

VanRullen and Thorpe (1999).
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When an attentional bias towards one of the stimuli

was applied to this system, in the form of a 5–20%

threshold decrease for neurons with receptive fields

falling in the attended region, at different levels of the

system (orientation, complex orientation, features and

complex features layers), the selectivity of the neurons

was restored. An object-selective neuron would respond

to its preferred stimulus with a probability of 96% when
it was the attended object, and with a probability of

around 2% when attention was drawn to the other ob-

ject of the pair. In addition, the probability of re-

sponding to a pair of non-preferred objects (illusory

conjunction) was less than 0.5%.

This attentional effect is achieved in a remarkably

straightforward way: when the pair of stimuli is pre-

sented, neurons at the early levels of the system start
integrating information at the same time; but because of

the attentional bias, the neurons coding for the attended

stimulus will have a tendency to respond before the ones

coding for the unattended object; this bias can increase

to a significant extent at each level, so that the first in-

formation to reach higher-level neurons will represent

the attended stimulus only. For an object-selective neu-

ron receiving this input, the effect would be virtually
identical to that seen by presenting the attended stimu-

lus in isolation. When the information corresponding to

the unattended object finally reaches the highest levels,

the system�s response has already been generated. In

addition, because of the progressive desensitization re-

sponsible for the order decoding process, this informa-

tion will have a fairly limited effect on the neuron�s
activity: the neuron behaves as if its receptive field had
shrunk around the attended location (Moran & Desi-

mone, 1985). Note however that in this system, there is

no change whatsoever in the way unattended inputs are

processed. The latency of firing of neurons coding for

unattended locations can be identical to the one that

would be observed without attentional modulation. It

is only when this unattended information enters a re-

ceptive field that has been touched by the attention
focus that a suppressive effect will be observed. In other

words, the suppression of unattended inputs in this

model is not a direct, explicit inhibitory mechanism (as

would be the case in a segmentation process), but arises

as a consequence of the intrinsic properties of asyn-

chronous propagation and temporal order selectivity

inside a single receptive field. This implies that under

conditions where the attentional focus is directed to an
object outside a neuron�s receptive field, the selectivity of
this neuron to an unattended stimulus will be unchanged

(Moran & Desimone, 1985): spatially separated recep-

tive fields act as independent processing channels. The

degree of independence might in fact be a function of the

degree of overlap between the receptive fields under

consideration, as well as the receptive fields of afferent

neurons at earlier levels. This could explain why some

authors have found that neuronal selectivity can some-

times be modified by attention directed outside their

receptive field, and that the extent of this modulation is

a function of the distance between the attention focus

and the receptive field center (Connor, Gallant, Preddie,

& Van Essen, 1996, 1997).

It should be noted that the model of attention de-

scribed here has one obvious limitation: we assume the
existence of some form of attentional control signal to

direct the focus of attention, but do not explicitly model

the process by which this focus is selected. This would

require additional mechanisms (e.g. saliency map, deci-

sion processes, etc.) that go beyond the scope of our

model.

There is in fact some recent experimental data that

strongly supports the idea that attention can shorten the
onset latency of visual neurons. EEG studies show that

the latencies of event-related potentials can be reliably

shortened by attention (Di Russo & Spinelli, 1999a,b),

in particular for early ERP components such as the N60

or P100. Such findings fit with data from experimen-

tal psychology (Pashler, 1998) showing that precue-

ing target location can decrease reaction times in rapid

discrimination or go/no-go tasks (Kingstone, 1992;
Neumann, Esselmann, & Klotz, 1993; Posner, Snyder,

& Davidson, 1980; Proverbio & Mangun, 1994). Shiu

and Pashler (1993) report for a ‘‘letter/digit’’ discrimi-

nation task a 30 ms decrease in response time, which

would be compatible with a 20% attention-induced

temporal bias under conditions where visual processing

is done in around 150 ms (Thorpe et al., 1996). Simi-

larly, the line-motion illusion (Hikosaka, Miyauchi, &
Shimojo, 1991, 1993a,b) can easily be explained by an

attention-related decrease of firing latencies. This illu-

sion occurs when a line is presented 50 ms after a brief

flash, and aligned with this flash. Under these condi-

tions, subjects perceive the line as appearing gradually,

away from the position of the flash. The interpretation

advanced by the authors is that the transient flash

captures attention, which in turn diminishes firing la-
tencies of neurons with receptive fields near the location

of the flash, generating a temporal firing order similar to

what would be obtained with an actual movement of

the line. This observation recently led Kirschfeld and

Kammer (2000) to propose a mechanism for attentional

selection similar to the one we had described in which

attention produces subthreshold modulations of neu-

ronal resting states that decrease firing latencies in
the attended region. Note however that many studies

have failed to demonstrate an effect of attention on

neuronal latencies, whether using single-cell recordings

(Reynolds, Pasternak, & Desimone, 2000) or event-

related potentials (e.g. Mangun, 1995). The reason for

this discrepancy in results is unknown at the time, and

could constitute a potential weakness for our hypo-

thesis.
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To conclude this section, it is worth insisting on the

main characteristic of the model that we described:

stimulus saliency is here the common basis for feature

based, bottom-up visual processing and top-down at-

tentional selection. This unified framework, compatible

with biological timing constraints, can account for a

wide range of experimental observations, while dis-

playing most of the computational advantages of vari-
ous other models of visual processing and attention.

In this framework, propagation of information

through the visual system is guided by the most salient

features and locations, implicitly and automatically

suppressing competing unattended information, result-

ing in a dynamic restructuring of receptive fields

(Ghazanfar & Nicolelis, 2001; W€oorg€ootter et al., 1998).

As pointed out by Salinas and Abbott (1997), this type
of saliency-based attentional mechanism is perfectly

suited to implement ‘‘shifter circuits’’ or ‘‘dynamic rout-

ing’’ processes: a realignment of high-level neurons

receptive fields with the attentional focus, proposed to

be responsible for position or size invariance (Ander-

son & Van Essen, 1987; Olshausen, Anderson, & Van

Essen, 1993). In our case however, this realignment can

be obtained on the basis of a single wave of action
potentials propagating in a feed-forward mode. No

feedback (Hamker, 2000), no routing-dedicated neu-

rons, and no saliency map (Itti & Koch, 2001) are

needed to control this rapid gating process. Similarly,

the active selection of the most salient information

(first inputs having the strongest impact) coupled with

the implicit suppression of unattended or non-salient

inputs in our model implements a center-surround or-
ganization of the attentional window, without the ex-

plicit inhibitory connections usually required for this

purpose (Itti & Koch, 2000; Koch & Ullman, 1985).

Alternatively, the result of such a scheme can be con-

sidered as roughly equivalent to a softer version of a

non-linear winner-take-all mechanism (Lee, Itti, Koch,

& Braun, 1999) or MAX-like operation (Riesenhuber

& Poggio, 1999), which has been recently shown to
provide a way of implementing routing of relevant

information in a feed-forward model of object recog-

nition. But here again, these computational properties

can be obtained as a simple consequence of the tem-

poral code proposed, and do not need to be imple-

mented explicitly.

8. A theory of rapid visual processing

At this point the results and propositions described in

the previous sections can be formalized in a tentative

theory of rapid visual processing.

• When a new image is presented to the retina, or when

a saccade occurs, leading to a new fixation, the early

part of the response of ganglion cells can be consid-

ered as a wave of action potentials, carrying visual in-

formation in its spatio-temporal structure.

• At the next level, neurons are selective to the spatio-

temporal structure of the pattern of spikes reaching

their receptive fields. Here again, the most activated

neurons fire earlier. The output of this next level is

therefore another spike wave, in which the first spikes
represent the most salient information.

• As soon as the first neuron in a given population

emits its first output spike, efferent neurons at the

next level will start computing. In many cases compu-

tation can thus be performed when only a few (1–5%)

input neurons have fired.

• At each stage, lateral (or backwards) interactions can

take place to clean up or enhance the signal selec-
tively. These interactions modify the spatio-temporal

structure of the wave, but do not question its feed-

forward propagation in a dynamic functional (rather

than anatomical) hierarchy.

• At the system level, this mechanism is reproduced in a

cascade: a wave of retinal spikes propagates through

the system, and is regenerated at each level, with the

most salient information always represented by the
first spikes of the wave. But as this wave propagates

through the visual system, the definition of saliency

itself is refined at each level.

• Top-down mechanisms can act as a temporal bias on

such a spike wave. Attention gives a temporal prece-

dence to the neurons representing relevant informa-

tion, and in doing so increases their relative saliency

for the next processing stages.
• In the highest levels of the visual hierarchy (e.g. in-

fero-temporal cortex), a neuron or group of neurons

selective to a particular object will be rapidly acti-

vated, after a single pass through the system, if this

object is presented alone in the input image. If the ob-

ject is presented in a cluttered environment, competi-

tion will take place between the different stimuli. The

neuron�s selectivity will be preserved if this object or
its component features are particularly salient, or if

attention is drawn selectively to this object or its com-

ponent features.

In short, the scheme that we propose here relies on

the propagation of a single spike wave carrying infor-

mation in its spatio-temporal structure, which can be

modified at each stage by (i) the neurons feature selec-
tivities, (ii) lateral feed-forward interactions, and (iii)

top-down attentional influences. This powerful compu-

tational scheme, based on the tight relationship between

relative spike timing and visual saliency, is probably one

of the best candidate theories to explain how the human

visual system can access a high-level representation

of the objects constituting the visual scene in only

150 ms.
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9. Spike tide: a continuous flow of spike waves?

The previous sections present a theory of neural

coding and information transmission in the visual sys-

tem that can account for the speed of visual processing

observed in various experiments.

Biological vision however, is in general quite different

from laboratory situations where a stimulus can appear
for only a few milliseconds, followed by a dark screen.

The retinal image is in fact constantly changing, re-

placed after each saccade (roughly every 300 ms in hu-

mans) or micro-saccade (roughly an order of magnitude

more frequent) by a totally new image, or at best one

that is vaguely correlated with the previous one. How

could our framework cope with this continuous flow of

information? How can a neuron tell the trailing edge of
the input spike wave corresponding to one stimulation

from the leading edge of the spike wave representing the

next one?

One option might be to implement some form of

reset mechanism to separate processing of successive

inputs. It might be that saccades and micro-saccades

themselves might constitute the trigger for such a reset

process (Martinez-Conde, Macknik, & Hubel, 2000).
For example, the transmission of visual information

by LGN neurons in cats has been found to be facili-

tated immediately after passive eye movements, and

inhibited during fixation (Lal & Friedlander, 1989,

1990a,b). The resetting of temporal integration mech-

anisms would thus be obtained as a result of visual

transients, either externally generated (as part of the

stimulation) or internally initiated by eye movements.
Indeed it has long been known that a total absence of

change in the retinal stimulation results in the com-

plete disappearance of the visual scene (Coppola &

Purves, 1996; Ditchburn & Ginsborg, 1952; Riggs &

Ratcliff, 1952).

Yet another possibility might be that rhythmic os-

cillations, for example in the LGN, either intrinsically

generated or mediated by projections from the visual
cortex, could serve as a basis for this reset mechanism.

Cortico-thalamic influences have been found to modify

LGN oscillatory rhythms in cats both in the alpha

(Contreras, Destexhe, Sejnowski, & Steriade, 1996) and

gamma range (Castelo-Branco, Neuenschwander, &

Singer, 1998). In the same way, cortical subthreshold

oscillations, for example in the gamma range (Engel

et al., 1991b; Frien, Eckhorn, Bauer, Woelbern, & Kehr,
1994; Gray, K€oonig, Engel, & Singer, 1989; K€oonig, Engel,
& Singer, 1995b) could be used to mediate temporal

coding mechanisms (Fries, Neuenschwander, Engel,

Goebel, & Singer, 2001; Lampl & Yarom, 1993; Nowak,

Sanchez-Vives, & McCormick, 1997; Salinas & Sej-

nowski, 2001; Volgushev, Chistiakova, & Singer, 1998).

In fact, this active reshaping of temporal response pro-

files could take place simultaneously in or among dif-

ferent subcortical and cortical areas or neuronal

subpopulations.

One interesting issue in this context is the notion of

a temporal perceptual frame: the maximum interval

between two successive stimuli for which they are still

perceived as one single event (Lichtenstein, 1961). This

time window appears just large enough (given the range

of latencies in the retina) to allow the propagation of a
single spike wave: approximately 40 ms or less. Some-

how the visual system seems to know that two spike

patterns temporally separated by more than one average

spike wave duration can potentially refer to two distinct

events in the outside world, whereas two spike patterns

separated by less than one spike wave duration are more

likely to carry information about different properties of

the same perceptual event. Although this could be in-
terpreted as a simple limitation of perceptual temporal

resolution due to neuronal integration time constants,

this explanation is unlikely, in particular because in

many situations neurons can show much higher preci-

sion, on the order of a few milliseconds or less (Reinagel

& Reid, 2000).

Interestingly, the size of this temporal perceptual

window has been found to be closely related to cortical
rhythms (Callaway & Layne, 1964; Gho & Varela, 1988;

Varela, Toro, John, & Schwartz, 1981). For a given

delay between two flashes of light, the probability of

perceived simultaneity depends on the phase of the on-

going alpha rhythm at which the stimuli are presented.

In other words, these rhythmic oscillations are able to

separate perceptual events, and could therefore differ-

entiate between the spike wave corresponding to one
visual stimulation and the spike wave representing the

next one.

The hypothesis that we put forward here is reminis-

cent of an idea that attracted considerable interest more

than 30 years ago (Harter, 1967). Based on the obser-

vation that visual perception is ‘‘discrete’’ in nature, a

number of authors have suggested that cortical oscilla-

tory rhythms might act as cortical ‘‘excitability cycles’’
(Callaway & Alexander, 1960) or perceptual ‘‘scanning

moments’’ (Pitts & McCulloch, 1947; Shallice, 1964;

Stroud, 1949), implementing a sort of ‘‘neuronic shut-

ter’’ (Lindsley, 1952), rather like the shutter of a camera,

or the aperture of a movie projector. These theories

however were unclear regarding the type of neural

coding that might take place inside such a cycle or

moment (Harter, 1967). A code relying on the temporal
structure of a single spike wave fits naturally in this

context. Temporal differences in such a wave, because

they do not participate in the perceptual sequencing of

visual events, can indeed be used for representing spatial

information and other visual properties such as stimulus

saliency. Accordingly, temporal differences on the order

of 10 ms or less have been found to significantly affect

such perceptual spatial judgments as texture (Leonards,
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Singer, & Fahle, 1996) or figure ground (Fahle, 1993;

Kandil & Fahle, 2001) segmentation and grouping

(Usher & Donnelly, 1998), although these effects might

depend on the order of onset of the figure and ground

stimuli (Beaudot, 2002). On the other hand, numerous

studies have demonstrated that temporal differences of

40 ms or less are generally not experienced in the tem-

poral domain (i.e. are not perceived as successive;
Allport, 1968; Anstis, 1979; Gho & Varela, 1988; Lich-

tenstein, 1961).

Note that the idea of a perceptual frame should not

be understood as an absolute process. The duration of

the perceptual integration window can depend critically

on various factors intrinsic to the type of stimulus, the

task in which the system is engaged or the cortical area

involved in this task. Motion perception, for example,
can involve longer time constants than form or color

perception (e.g. Moutoussis & Zeki, 1997a,b). Different

types of oscillatory rhythms, in different frequency

bands, might serve to underly these different aspects of

visual processing. We focus here on those mechanisms

that could constitute a general basis for these more

specific processes.

Under continuous conditions of stimulation, propa-
gating spike waves could be actively reshaped at each

level by the action of oscillatory rhythms. This internal

regulation of the spatio-temporal structure of popula-

tion responses might for example be used to facilitate

response generation at a given time, or prevent it for

another period, keeping spike waves reasonably sepa-

rated to avoid ‘‘temporal jamming’’. Fig. 10 illustrates

this ‘‘spike tide’’ hypothesis with a simple example of a
population constituted by 20 neurons. The input stim-

ulation, either static or in movement, is continuous.

However the spike wave initiation process, coupled with

this active temporal framing mechanism, convert this

continuous input into a discrete succession of spike

waves: in other words, a spike tide (Fig. 10A). Each of

these spike waves contains in their spatio-temporal

structure all the relevant information gathered about
the stimulation applied during a certain time window.

However, the temporal structure alone does not convey

much information by itself, and an experimenter re-

cording spike trains from this population without any

knowledge of the spatial arrangement of these neurons

would find no systematic temporal structure in individ-

ual responses (Fig. 10B). In contrast, the temporal sep-

aration between successive spike waves would result in
observed periodic oscillations of the population firing

rate (Multi-unit activity, Fig. 10C). Finally, two neurons

participating in such a succession of spike waves would

also display a very strong temporal correlation (Fig.

10D), because spikes of both neurons are actively dis-

tributed in separated spike waves of a temporally limited

extent. In this context, subthreshold oscillations serve as

a mechanism for temporal regulation, while oscillations

Fig. 10. (A) The hypothesis of neural information coding by spike

temporal asynchrony over a neural population suggests that, under

normal conditions of stimulation, a spatially organized population

(here 20 neurons) responds by a succession of spike waves: a ‘‘spike

tide’’. (B) When this same population is organized randomly, no sys-

tematic spatio-temporal structure is apparent. This corresponds to

what an experimenter would record using a multi-electrode array. (C)

Multi-unit activity (MUA), calculated here with a time bin of 2.5 ms

(gray window in A and B). With the parameters used here (on average

25 ms between two successive spike waves), this activity oscillates at a

40 Hz frequency. (D) Cross-correlogram between two model neurons

participating in the same spike waves. Each neuron�s response is here

obtained by concatenating the spike trains from odd vs. even neurons

in A (an approximation of a situation where the same stimulation

would be presented repeatedly, slowly drifting in space). A strong

correlation with zero phase lag is observed in this example.
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of the average firing rate, or firing coincidences, arise as

a consequence of the temporal succession of spike

waves. This proposition is at odds with many current

views of neuronal temporal coding, assuming that the

neural code is embedded in periodic firing oscillations or

synchronous firings, rather than the opposite (Engel &

Singer, 2001; Singer & Gray, 1995). In fact, the idea that

the required reset mechanism for a temporal coding
scheme might be the origin of gamma-band cortical

oscillations has already been suggested by Parodi,

Combe, and Ducom (1996). A recent experimental study

of neuronal responses in the visual cortex of cats and

monkeys provides strong support for this view (Fries

et al., 2001). These authors found that firing latencies of

visual neurons coding for similar stimulus properties

(position, orientation) tend to vary together on a trial by
trial basis, independent of the fluctuations of the mean

firing rates, and that this variation in latency is primarily

determined by the phase of the ongoing gamma oscil-

lations of the local field potentials. If one assumes that

such shifts in latencies with cortical oscillations do not

perturb but generally preserve the relative timing (or the

order) of spikes within a population of interest, this

experimental observation is exactly what one would
predict on the basis of the present hypothesis.

It should be underlined that this hypothesis of corti-

cal and subcortical oscillatory rhythms acting as a

temporal framing mechanism, actively reshaping popu-

lation responses, even if very attractive in the context of

rapid visual processing based on the propagation of

spatio-temporal spike waves, is only one amongst many

other possibilities. For example, it could be that this
spike wave propagation is only initiated with global

visual transients, and that the system would switch into

a more classic firing-rate-based code for later processing.

Only further experimental investigations could provide

the necessary evidence supporting one or the other

suggestions. But in any case, the generic framework

presented here, stressing the relationship between visual

saliency and relative spike timing, and the advantages of
taking into account the precise spatio-temporal struc-

ture of the first spike wave induced by a visual stimu-

lation, should be considered as one of the first serious

attempts to propose computational strategies compati-

ble with the severe temporal constraints imposed by the

speed of visual processing in primates. The model makes

a number of clear experimental predictions which will

hopefully be tested in the near future, opening the way
to an increased understanding of visual function.

10. Biological plausibility

Although to date there has been no experimental

observation to directly confirm our theory, there is also

no direct experimental evidence of the contrary. A quick

overview of the literature shows that many experimental

results tend to favor our hypothesis. First, it is on the

grounds of experimental observations that this theory

has emerged: the speed of processing in biological visual

systems indeed calls for new, non rate-based neural

codes (Keysers et al., 2001; Perrett et al., 1982; Thorpe

et al., 1996). The precise temporal structure of neuronal

spike trains is consistently reported to carry more in-
formation than the mean firing rate alone (Bialek et al.,

1991; Borst & Theunissen, 1999; McClurkin et al., 1991;

Richmond et al., 1987, 1990). The temporal precision of

spike trains in response to transient stimuli has been

shown to be on the order of 1 ms or smaller in various

preparations in vitro (Bryant & Segundo, 1976; Mainen

& Sejnowski, 1995) and in vivo in the retina (Meister &

Berry, 1999), the LGN (Reich et al., 1997; Reinagel &
Reid, 2000) and various areas of the visual cortex (Bair

& Koch, 1996; Buracas et al., 1998). Moreover, this

remarkable precision is not only found in response to

purely dynamic stimuli. In particular, the latency of the

first spike emitted in response to a given stimulation can

depend largely on stimulus contrast (e.g. Gawne et al.,

1996), but also on other stimulus parameters such as

orientation (Celebrini et al., 1993). Even when firing
latency does not appear to be directly correlated to the

time of external stimulation, recent evidence (Fries et al.,

2001) suggests that it could in fact vary in reference to

other intrinsic rhythms of the visual system such as

gamma oscillations. If these results were consistently

reproduced, and more observations of temporal spike

patterns and first-spike latency (or spike order) coding

for non-temporal aspects of the stimulus were collected
in the visual system as they seem to be found in other

modalities (Carr, 1993; Panzeri, Petersen, Schultz, Le-

bedev, & Diamond, 2001; Petersen, Panzeri, & Dia-

mond, 2001), a consensus might finally emerge as to

whether or not the absolute or relative latency of neu-

ronal first spikes can constitute a viable carrier of visual

information. All that it would really require is that few

visionary or simply open-minded electrophysiologists
start to systematically consider neuronal latencies or

spike times as another relevant variable, either in ref-

erence to external events (stimulation), to firing events in

other neurons (when multi-electrode recordings are

available) or to the oscillatory phase of local field po-

tentials. We hope that this article, our theory and its

specific predictions will help stimulate such an experi-

mental effort.
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