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Determining the approach of a moving object is a vital survival skill
that depends on the brain combining information about lateral
translation and motion-in-depth. Given the importance of sensing
motion for obstacle avoidance, it is surprising that humans make
errors, reporting an object will miss them when it is on a collision
course with their head. Here we provide evidence that biases
observed when participants estimate movement in depth result
from the brain’s use of a ‘‘prior’’ favoring slow velocity. We
formulate a Bayesian model for computing 3D motion using
independently estimated parameters for the shape of the visual
system’s slow velocity prior. We demonstrate the success of this
model in accounting for human behavior in separate experiments
that assess both sensitivity and bias in 3D motion estimation. Our
results show that a surprising perceptual error in 3D motion
perception reflects the importance of prior probabilities when
estimating environmental properties.

Bayes � binocular disparity � motion perception � stereopsis

Humans use visual information to respond to dangers and
opportunities from a distance. This allows time to prepare

motor responses before critical events occur. Expert sportsmen, for
instance, make fine judgments about the flight of small, fast-moving
balls before they impact with their bodies (1–3). More mundanely,
adults rarely allow themselves to be hit unintentionally on the head
by objects moving in 3D space. How does the brain ensure this
successful behavior?

To understand the mechanisms supporting motion estimation,
we exploit a surprising bias: when viewing 3D motion, observers
overestimate angular trajectories to report that an object will miss
them when it is actually on a collision course with their head (4).
This bias has been reported independently under different exper-
imental settings involving both computer presentation (5–10) and
real-world object motion (5, 11). However, given the importance of
3D motion estimation, this bias remains controversial as the general
expectation is that experience-driven calibration should remove
systematic errors.

Much less controversial are reports that perceived motion in the
fronto-parallel plane is biased under some circumstances. Specifi-
cally, low-contrast stimuli are reported to move slower than higher-
contrast stimuli when speeds are equivalent (12, 13). This has been
accounted for by Bayesian estimation, whereby sensory evidence is
combined with prior knowledge of the probability of encountering
motion in the environment. In particular, it has been proposed that
the visual system expects near zero net motion of the environment,
and the influence of this prior expectation depends on the reliability
of the available sensory evidence (14, 15): low-contrast stimuli
provide less reliable information, so the brain relies more heavily on
its expectation that motion will not be encountered. Here we
develop a Bayesian model for the more complicated case of 3D
motion estimation using independently estimated parameters of the
‘‘velocity prior’’ used by the brain (15). Our starting point is a
consideration of the geometry of binocular vision that provides
good reasons to expect differences in the reliability with which the
brain can estimate sideways (lateral) movement as opposed to
approaching motion (motion-in-depth). This differential reliability

tempers the influence of the slow velocity prior, with the result that
motion-in-depth is estimated to be slower than equivalent lateral
motion, explaining biased estimates of trajectory when these signals
are contrasted. Using a series of experiments, we show that this
model accounts for both observers’ sensitivity and bias when
estimating movement. Further, we verify an expectation of the
model that degrading an observer’s ability to see lateral motion
leads to an increased influence of the prior and thus less biased
behavior.

Our results explain a seemingly counterintuitive bias when mak-
ing judgments about the dynamic environment. Motion signals
about motion-in-depth and lateral motion are differentially reliable,
and thus influenced to greater and lesser extents by internalized
knowledge about the probability of encountering motion. Our
results also point to the importance of signal reliability in modifying
the influence of the prior. Previous work has shown the differential
influence of the prior through large changes in luminance contrast
(14, 15). However, we find that the brain’s differential reliance on
sensory data corresponds to underlying differences in the reliability
of computations performed on the same highly visible input. This
suggests that the computation of signal reliability pertains directly
to the signals themselves rather than relying on ancillary markers.

Results
We first consider the geometry of binocular vision, and its conse-
quences for the reliability with which lateral motion and motion-
in-depth can be estimated. We then formulate a Bayesian model for
motion estimation that takes into account the higher reliability for
lateral motion. Finally, we show that this model accounts for bias
in 3D motion estimation, and moreover that bias is predictably
reduced when external noise decreases the reliability of lateral
motion estimation.

Geometrical Considerations. An approaching motion can be de-
scribed by two orthogonal components: one lateral (Vx) and one in
depth (Vz; Fig. 1A) whose ratio relates to the angle of approach (�).
Using the motion vectors at each eye (Fig. 1A: �̇L, �̇R), two basic
properties can be computed: the rate of change of azimuth (�̇) and
the rate of change of disparity (�̇):

�̇ �
�̇L � �̇R

2
[1]

�̇ � �̇L � �̇R [2]

Importantly, the reliability of these signals differs: independent
measurement noise in the two eyes would mean that the SD (�) of
the �̇ signal is twice that of the �̇ signal (Fig. 1B). This affects the
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reliability with which the visual system can estimate lateral motion
and motion-in-depth. Specifically, Vx is related to both �̇ and �̇,
whereas Vz relates only to the higher-variance �̇ signal:

Vx �
�̇id

i � �̇d
[3]

Vz �
�̇d2

i � �̇d
[4]

where i is the spacing between the observer’s eyes and d the viewing
distance. (Note, as is commonly done [16], these equations relate to
motions originating in the median plane of the head for their
mathematical simplicity.) These equations have the consequence
that estimates of lateral motion are, by definition, more reliable
than those of motion-in-depth. Empirically, it is well established
that observers are better at detecting lateral motion than motion-
in-depth (17–19).

Bayesian Model. We formulated a model in which estimated velocity
(V) corresponds to the maximum of the posterior distribution

formed by the product of the sensory likelihood distribution and the
prior probability of experiencing motion (Fig. 1C):

p�V�L, �̇R� �
1
�

p��̇L, �̇R�V�p�V� [5]

where � is a normalizing constant. The prior distribution p(V) was
formulated using Stocker and Simoncelli’s (15) measures. Similarly,
likelihood distributions for �̇L and �̇R were described by log-normal
distributions whose width is constant over a range of speeds (15).
The model calculates the likelihood of Vx and Vz using Eqs. 3 and
4, where the interocular spacing is assumed to be known, and
viewing distance is derived from eye vergence (vertical disparities
would provide limited information under our setup). Simple trig-
onometry shows that estimated angle can be calculated using the
estimates (denoted by a circumflex ˆ) of Vx and Vz:

�̂ � arctan� V̂x

V̂Z
� [6]

As illustrated in Fig. 1D, the important behavior of the model
comprises the following: (i) variability in the posterior distribution
for Vx is considerably lower than Vz; and (ii) for equal physical
speeds, estimated speed is lower for Vz than Vx, with the conse-
quence that (iii) motion-in-depth trajectories are considerably
overestimated (Fig. 1C). We conducted three experiments to test
this model’s account of 3D motion perception.

Differential Reliability when Estimating Lateral Motion and Motion-
in-Depth. First (experiment 1), we assessed how well observers
judged differences in movement when a target moved laterally or
in depth. We measured increment thresholds, presenting observers
with two sequential movements of a small target point (either both
lateral or both in depth) and asking them to decide which moved
further. Weber fractions (Fig. 2A) confirmed previous reports (17,
18) that observers are more sensitive to lateral motion than
motion-in-depth (t9 � 5.65, P � 0.01). The ratio of the Weber
fractions (Fig. 2B) suggests that observers can judge differences in
target movement between 1.5 and 3 times better for pure lateral
motion than for motion directly toward them. This is in line with the
ratio of thresholds obtained from simulations of the model (1.58).

Bias when Estimating Motion Extent and Trajectory Angle. Next we
asked observers to compare the speed of a small target point when
movement was lateral or toward the observer. Observers viewed
two movements (one lateral, one in depth) and decided whether the
first or second was faster (experiment 2). Using a staircase algo-
rithm to control one of the speeds, we obtained estimates of
perceived speed of lateral motion in terms of motion-in-depth, and
vice versa, for a range of speeds. Observers reduced the lateral
speed of a target to match the perceived speed of a target moving
toward them (Fig. 2C, circular markers) and increased the speed of
a motion-in-depth target to match the perceived speed of a laterally
moving target (Fig. 2C, square markers). Consistent with a previous
report (20), lateral motion was reported as 1.3–2.7 times faster than
motion-in-depth (Fig. 2D), with model simulations yielding a ratio
of 1.7.

In a third experiment (experiment 3) we measured observers’
reports of the approach angle of a small point. A range of motions
left and right of the head were presented, and observers used a
pointing device like a clock face with one hand (cf. refs. 4–6) to
indicate the perceived approach trajectory (this method is discussed
further later). Consistent with previous reports, observers showed
bias (i.e., deviation from x � y, 	2 � 142.87, df � 11, P � 0.01),
reporting that motion trajectories near the visual midline were more
eccentric than presented (Fig. 3A).

Observers’ bias in reports of 3D motion trajectories was de-
scribed very well by the bias produced by the Bayesian model (Fig.
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Fig. 1. Illustration of binocular viewing geometry and the Bayesian model.
(A) A movement at angle � can be described by a lateral component, Vx, and
a motion-in-depth component, Vz. The movement produces excursions at the
two eyes: �̇L, �̇R. For illustration, the vectors are shown as retinal motions;
however, eye rotation signals in combination with retinal motion are likely
used by the brain. (B) Hypothetical probability distributions for the retinal
motion vectors �̇L, �̇R. The distributions have equal, but independent, noise
(�). The SD of the difference signal is twice that of the mean signal. These
differential reliabilities influence the reliability with which Vx and Vz are
estimated. (C) A depiction of the Bayesian model shows the prior (depicted in
white/gray in the top left-hand corner), the likelihood distribution (green),
and the posterior distribution (purple). The variability of the likelihood is
greater in the Vz than Vx direction, meaning that the prior has a differential
influence. The angle estimated on the basis of the maximum of the posterior
distribution (dotted mauve line) is more eccentric than that specified by the
likelihood (solid mauve line). The square and circular markers represent the
peak of the posterior and likelihood distributions respectively. (D) An illus-
tration of the Bayesian model. The likelihood distribution is more variable in
the Vz dimension than the Vx dimension, meaning that the posterior is more
influenced by the prior in the Vz dimension. The differential biasing effect of
the prior results in biased estimates of trajectory (�) when Vx and Vz are
contrasted.
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3A, solid red line) with parameters formulated based on Stocker
and Simoncelli’s (15) data. This suggests that their estimates of both
the shape of the prior and the amount of variability in the likelihood
distribution provide a good account of the mean performance of
our subjects. However, it is expected that the likelihood distribution
depends on both the viewing situation (e.g., ref. 21) and the
individual observer. Our initial experiments (experiments 1 and 2)
provided evidence for between-subject differences in the ratio of
increment thresholds and speed matches (Figs. 2 B and D). Exam-
ining reports of angular trajectory (experiment 3) provided evi-
dence for a correspondence between an individual’s threshold or
speed match ratios and the extent of bias in trajectory estimates
(Fig. 3 B–E). Specifically, observers with a large difference between
their sensitivity to lateral motion and motion-in-depth displayed
more bias (e.g., Fig. 3 B and C) than did observers for whom the
sensitivities were more similar (e.g., Fig. 3 D and E).

To quantify this observation we fit each subject’s data using the
Bayesian model in which a single free parameter (the ratio of
variability of the likelihood distribution in the Vx and Vz dimensions)
controlled the extent of bias. Using regression analyses we con-
trasted the ratio of the best-fitting likelihood widths with the ratio
with increment thresholds or speed matches for individual subjects.
There was evidence of an association between the extent of bias in
trajectory estimates and threshold (R2 � 0.403, F1,8 � 5.407, P �
0.05) and speed match (R2 � 0.69, F1,8 � 17.818, P � 0.005) ratios.
This provides further support for the notion that biased estimates

of angular approach are a consequence of the differential influence
of a prior favoring slow velocities, in which the prior’s influence
depends on differences in lateral motion and motion-in-depth
estimation.

Changing Bias by Manipulating Sensitivity. To test further the notion
that the influence of the prior depends on the reliability of the
sensory input, we tested the prediction that degrading an observer’s
ability to see lateral motion would result in less biased behavior.
Specifically, we reasoned that if biased trajectory estimates result
from lateral motion estimates being less influenced by the prior,
degrading an observer’s ability to see lateral motion but not
motion-in-depth should cause both estimates to be similarly influ-
enced by the prior, resulting in less bias when the signals are
contrasted. We therefore designed a noise-masking paradigm to
disrupt lateral motion discrimination while leaving motion-in-depth
performance relatively unaffected.

As in previous experiments, observers viewed a small point
moving along trajectories defined by combinations of lateral motion
and motion-in-depth. The difference was the presence of a large
disk of randomly positioned dots that moved in the plane of the
screen providing relative motion signals between the target dot and
the surrounding mask dots. Measurements of increment thresholds
(experiment 4) under these conditions confirmed that the presence
of the mask affected observers’ abilities to judge differences in
movements (Fig. 4A; F1,3 � 92.87, P � 0.01). Although increment
thresholds were elevated for both lateral motion and motion-in-
depth conditions, there was an interaction (F1,3 � 16.13, P � 0.05)
as lateral motion discrimination was affected more than motion-
in-depth performance. This had the consequence that the ratio of
thresholds was closer to unity in the presence of the noise mask (Fig.
4B; mean ratio without noise � 1.84, mean ratio with noise � 1.15).
As predicted, reports of angular trajectory (experiment 5) were less
biased in the presence of the noise mask (deviation from x � y
model, 	2 � 25.68, df � 9, P � 0.01) than they were when the target
dot was presented alone (Fig. 4C; 	2 � 111.31, df � 9, P � 0.01).
This met our expectation that degrading lateral motion estimation
increases the influence of the prior favoring slow velocities, biasing
the lateral motion estimate by a comparable degree to the motion-
in-depth estimate. This has the consequence that the ratio of lateral
motion and motion-in-depth estimates is closer to the presented
motion signal, resulting in less biased behavior.

Controls for Report Bias. To examine the perception of 3D motion,
we have used a method reliant on observers providing a description
of their perception. The use of such a measure can be problematic
as we have no way of determining whether an observer’s perception
is biased, or whether their reports of their perception are biased.
Previous studies have looked for a correlation among a number of
different measures to provide evidence for a genuine perceptual
bias (4, 5) whereas others have used discrimination measures (10).
Here, we reasoned that if bias in trajectory estimates results from
differential sensitivity to lateral motion and motion-in-depth, bias
should not be observed under conditions in which an observer’s
sensitivity to the two components of motion that make up a
trajectory is the same. From a consideration of the brain’s process-
ing of information about elevation (y-position), there is no princi-
pled reason why motion sensitivity should differ from sensitivity to
lateral motion; the brain can average the retinal signals from the
two eyes in both cases. Measures of sensitivity to lateral and vertical
motion (increment thresholds) confirmed very similar performance
in the two cases (experiment 6). We therefore examined reports of
angular trajectories when movement was in the x–y plane rather
than the x–z plane (experiment 7). Observers viewed angular
trajectories composed of lateral and vertical motion and indicated
their perception by using the pointing device positioned in the x-y
plane (rather than the x-z plane as in previous experiment).

As expected, and in contrast to our previous results, very little
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Fig. 2. Perceptual assays of lateral motion and motion-in-depth. (A) Increment
thresholds, expressed as a Weber fraction, for motion in the plane of the com-
puter screen(Vx motion)andmotion inthemid-sagittalplane(Vz motion).Results
from10observersandmodel simulations (M)areshown.Errorbars showSEofthe
increment threshold estimate. (B) Ratio of Weber fractions (Wz/Wx) for each
observer and the Bayesian model. Error bars show SE estimates of the ratio. (C)
Speedmatchdatafromoneobserver. Squaremarkersdepictdataobtainedwhen
the observer adjusted motion-in-depth (Vz) to match lateral motion (Vx). Circular
markers show data obtained when observers adjusted Vx to Vz. The dotted
diagonal line represents perceived speed of Vx equals perceived speed of Vz. Error
bars (not all visible) depict the SE of the speed match. For each observer, the mean
speed match ratio (MSx/MSz) was calculated across the presented standard
speeds. (D) Ratio of speed matches for all 10 observers and the Bayesian model
(M). Error bars represent SEM.
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bias was observed under these conditions [supporting information
(SI) Fig. S1A; deviation from x � y model 	2 � 10.52, df � 9, P �
0.31]. This manipulation also allowed us to conduct a useful control
experiment. Our interpretation of judgments in the presence of the
noise mask (experiment 5) is that the noise mask reduced the
reliability of the Vx signal with the result that the prior influenced
Vx and Vz similarly to reduce bias. However, as we could not be sure

how the noise mask affects judgments per se, we measured estimates
of x-y trajectories in the presence of the noise mask. We found that
observers’ estimates were very similar to those obtained without the
noise mask (Fig. S1B; F1,2 � 13.59, P � 0.07). This result is expected,
as the noise mask should interfere equally with the processing of
lateral and vertical motion, but it bolsters our interpretation of
judgments in the x-z plane made in the presence of noise.

Interestingly, Poljac and colleagues (8) observed that bias for
movements in the y-z plane is lower than in the x-z plane. This might
suggest that the reliability of vertical motion signals is more similar
to that of motion-in-depth than lateral motion, as both would be
influenced by the prior to a similar degree, thereby accounting for
lower bias. However, we noted no such asymmetry in measures of
thresholds for lateral and vertical motion, nor in bias for judgments
in the x-y plane. The setup of Poljac et al. (8) was somewhat different
from our own (notably, a much smaller range of angles was used),
and subjects were required to make repeated pointing movements
to a small number of target impact locations, potentially leading to
error-driven correction (7).

Discussion
Our study provides evidence that biased reports of 3D motion are
caused by the brain’s use of prior probabilities that favor the
interpretation of retinal signals in terms of slow real-world velocity.
Specifically, our results suggest that this prior has a differential
influence on estimates of lateral motion and motion-in-depth as a
result of the underlying differences in the reliability with which the
brain can estimate these quantities. This results in bias when these
signals are contrasted to estimate approach angles. Independently
estimated parameters of the velocity prior provide a very good
account of our empirical data. Further, experimentally reducing the
reliability of the lateral motion signal leads to less biased behavior,
compatible with an increase in the width of the likelihood distri-
bution for lateral motion to a level similar to that for motion-in-
depth.

These results are consistent with work examining 2D motion
estimation (14, 15). However, the brain’s use of a velocity prior is
not universally accepted, and a recent study challenged the Bayes-
ian interpretation of speed perception. Specifically, Hammett et al.
(22) reported that the perceived speed of a sinusoidal grating is
faster when presented at low luminance than high luminance
(contrasting with the established result obtained for manipulations
of stimulus contrast). On the assumption that the reliability of
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sensory encoding is reduced with luminance, this challenges a
Bayesian account of motion perception, as the influence of the prior
should be greater for low-luminance stimuli, leading to a decrease
in perceived speed. Hammett and colleagues (22) suggested that
Stocker and Simoncelli’s (15) measures of the velocity prior pro-
vided a re-description of the empirical data with little predictive
power. In contrast, our results suggest that the prior formulated by
Stocker and Simoncelli (15) provides a very good account of motion
estimation under radically different conditions and thereby extends
beyond inferring the prior by data fitting (9). Further, our data
suggest that the influence of the prior depends on the reliability of
the sensory data per se, rather than some ancillary marker of signal
reliability (23). Specifically, our results suggest that the prior has a
differential influence on lateral motion and motion-in-depth esti-
mators when these signals depend on the same underlying retinal
input. Thus, the computation of stimulus reliability, rather than
gross changes in stimulus properties (e.g., an order of magnitude
change in luminance), appear to be responsible for tempering the
influence of the prior.

What are the implications of the Bayesian estimation model for
everyday behaviors involving objects moving in 3D space? It could
be argued that biased 3D motion estimation is confined to exper-
imental settings, rather than reflecting real-world behavior. How-
ever, there are empirical and theoretical reasons to believe that our
results are not a mere laboratory curiosity. First, to isolate individ-
ual sources of information, we have used computer presentation
and considered a restricted range of trajectories originating in the
median plane of the head. As a consequence, information from
retinal blur and accommodative signals was absent, potentially
reducing the reliability of the depth estimates (24). In addition,
observers’ previous experience with computer displays might have
established a prior for planar depth in this viewing situation. Even
so, we (5) and others (11) have found biased estimates of trajectories
when real objects move in the environment. Second, there are
sound theoretical reasons to believe that the reliability of signals
relating to approach motions will be lower than that of information
about lateral motion under most circumstances. Lateral motion
generally results in larger retinal excursions than motion-in-depth,
and for binocular observers there is an inherent noise reduction
advantage when registering changes in visual direction that is not
available for changes in binocular disparity. As such, we expect that
motion-in-depth signals will be routinely influenced by prior prob-
abilities to a greater extent than signals regarding lateral motion.

Biased motion-in-depth estimates relative to less biased lateral
motion estimates will have implications for decisions that rely on
contrasting lateral motion and motion-in-depth. It is possible
therefore that everyday motor responses rely on separate calibra-
tion functions depending on whether objects are approaching or
translating. Such differential mappings would bypass any perceptual
bias to allow unbiased motor output. However, to be effective, such
a scheme would depend on knowing the relative influence of the
prior on the two motion components. As we have demonstrated
here, this depends on the underlying reliability of the sensory data.
Such a moment-by-moment dependence on knowing the influence
of the prior would seem to defeat the purpose of different calibra-
tion functions for different types of motion. Alternatively, the visual
system may use control strategies based on changes in individual
signals over time, as monitoring the change in a biased estimator
does not necessitate that this change signal is itself biased. An
example of such a monitoring strategy has been known by mariners
for a long time: intercepting another ship can be achieved by taking
a collision bearing wherein the direction of the target ship is kept
constant while distance decreases.

The use of this simple heuristic of monitoring lateral position as
distance decreases has been suggested for visual navigation on foot
and by car (25, 26). Measurements of interceptive behavior of
observers viewing rapidly moving tennis balls (11) are consistent
with the use of a strategy based on monitoring lateral movement

rather than reconstructions of 3D movement trajectories. Certainly,
judgments of approach from changing disparity or size cues are
likely to be very unreliable for distances greater than a few meters,
so many everyday decisions are likely to be driven largely by
information about lateral translation (3). A recent study (6) ad-
vanced a similar argument, providing evidence that observers do
not use motion-in-depth when judging 3D motion and suggesting
that changing visual direction is used instead. Specifically, Harris
and Drga (6) found that observers’ estimates of approach trajectory
did not vary when a range of approach angles were presented in
which lateral motion was held constant and the motion-in-depth
displacement was varied. Conversely, observers’ judgments
changed when angular trajectories were presented in which the
magnitude of the lateral motion component was varied but motion-
in-depth remained fixed, implying that observers’ behavior de-
pended only on lateral motion signals.

To gain further insight into these findings, we conducted an
experiment (experiment 8) using Harris and Drga’s logic (6).
Consistent with our previous findings, judged angle varied in
conditions of both fixed lateral motion and fixed motion-in-depth
(Fig. S1 C and D), implying that behavior depended on both
components. Interestingly, one observer provided results that rep-
licated Harris and Drga’s findings (6) (Fig. S1 E and F). She had the
worst performance when discriminating depth displacements (Fig.
2A, subject 1), suggesting low reliability in estimating motion-in-
depth. We suggest that the reliability of observers’ motion-in-depth
estimates was low in Harris and Drga’s study (6), so observers were
heavily influenced by the slow velocity prior, thus providing results
that form a special case of the hypothesis advanced here. This
reduced motion-in-depth reliability could have arisen as a result of
the large disparities used in their study. Also, the viewing distance
was shorter in our study, and the weight given to disparity infor-
mation is reduced as viewing distance increases (27). The sugges-
tion that the bias in estimates of approach angles varies according
to the reliability of the motion-in-depth signals available in Harris
and Drga’s study (6) complements our evidence for the converse
finding that observers rely more on the motion-in-depth component
when the reliability of lateral motion is degraded by the presence of
a noise mask (experiment 5).

In summary, perceptual biases offer the potential to gain insight
into the mechanisms that mediate behavior in everyday life. Here,
we examine a bias when viewing 3D motion trajectories and provide
evidence that this bias reflects the contribution of a prior for slow
velocity. Inaccurate estimation of a rapidly approaching object
involves a high cost function, likely to make observers circumspect
and eager to initiate an avoidance response even when the possi-
bility of being hit is remote.

Materials and Methods
Stimulus and Apparatus. The stimulus consisted of a small square target (6.9�)
surrounded by a peripheral reference plane of squares (side length � 20�). To
isolate disparity (cf., refs. 4–6), the target’s retinal size was constant (no looming
cue available). [A control experiment confirmed that bias persists when changing
size information is included inFig.S2.]Afixationcross (55��69�)withnonius lines
was presented between each trial. Stimuli were presented on a two cathode ray
tube haploscope (viewing distance 50 cm; for details see ref. 5). Trajectory
estimates were measured using a pointing device (see ref. 5) containing a cali-
brated circular potentiometer. Experiments were conducted in the dark.

Procedures. Experiment 1. Increment thresholds for lateral motion and motion-
in-depth were measured using a two-interval, forced-choice protocol. Target
displacement was 5 cm plus an increment value (method of constant stimuli).
Lateral motion and motion-in-depth trials were randomly interleaved.
Experiment 2. Observers matched speed by deciding whether the first or second
of two motion samples was faster. One interval contained a standard stimulus
and the other contained a comparison whose speed was controlled using a
one-up/one-down staircase algorithm (maximum, 12 reversals). The speed match
was the mean of the last eight reversals. Runs contained two types of trial: (i)
standard lateral motion, comparison motion-in-depth and (ii) standard motion-
in-depth, comparison lateral motion. The duration of each motion exposure was
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randomly varied (
 � 500 ms, � � 70 ms). Different trial types (lateral, in depth)
and speeds (6, 7, 8, 9, or 10 cm/s) were randomly interleaved.
Experiment 3 (pointer task). The target moved out of the plane of the screen
toward the observer on one of six trajectories (2°, 4°, 8°, 16°, 32°, 64°). Target
displacement (
 � 8 cm, � � 1 cm) and speed (
 � 8 cm/s, � � 2 cm/s) were
randomized on each trial, so trials were of variable duration (500–2500 ms). After
viewing a trajectory, observers used their right hand to move the pointer to
match the approach angle, and the rotation was recorded by the computer. (An
additional experiment in which observers used their left hand suggested that a
slight left/right asymmetry in reports [e.g., Fig. 3] resulted from the physical
constraints of rotating the pointer [Fig. S3].) The experimenter then illuminated
a desk lamp to reset the pointer, allowing observers to view their hand and
reducing dark adaptation. An experimental run consisted of 48 trials. Observers
were free to move their eyes. Observers partook in testing sessions of 1–2 h and
completed at least three sessions to provide the data for experiments 1, 2, and 3
(blocks from each experiment pseudorandomly interleaved).
Experiment 5 (noise masking). Thenoisemaskconsistedof400dots (identical tothe
target) randomly positioned within a circular aperture (r � 10 cm). The mask was
moved around the display by generating a random displacement (x, y) from the
start position and translating to this position over 120 ms. After 120 ms a new
displacement was generated and the mask moved from its previous position.
Displacements were generated from uniform distributions (range: x � �0.36 cm,
y � �0.18 cm).
Experiments 6, 7 (y-motion). For trajectories in the x-y plane, the pointing device
was fronto-parallel with the pointer horizontal. Observers rotated the pointer
upward or downward to indicate their perception of the viewed trajectory.
Experiment 8 (fixed motion component). Trajectories were created by holding
constant either the lateral or motion-in-depth component across a range of
angles (5°,10°,15°,20°). Forfixedmotion-in-depth,Vz �5cm,andVx was{0.4,0.9,
1.4, 1.8} cm. For fixed lateral motion, Vx � 0.9 cm, and Vz was {10.1, 5, 3.3, 2.4} cm.
Target speed was randomized (
 � 8 cm/s, � � 2 cm/s).

Observers. Ten right-handed observers (three men) were paid for their partici-
pation. They were naı̈ve and gave informed consent. Subjects had normal/
corrected visual acuity and effective stereopsis (RandDot test). Age ranged from
22 to 26 years (mean, 23.5 y).

Implementation of the Bayesian Model. Speed was represented using a modified
logarithmthataccounts fordeviationfromtheWeber-Fechner lawat lowspeeds,
�̃ � ln(1 � �/�0), where v0 � 0.3°/s. The standard deviation of the log-normal
likelihood function for retinal motion was fixed at 0.22 log units [figure 4 in
Stocker and Simoncelli (15)]. The prior was defined to be spatially isotropic such
that:

p����� � exp�7.04�ẋ2	ż2��8.49 [7]

where the gradient and intercept parameters were obtained from Stocker and
Simoncelli [figure4, leftpanelfitusingMatlabpolyfit function(15)].TheBayesian
modelwas implementedinMatlabusingEqs.1 to6anddatasimulations (100,000
samples per estimate). First, retinal motion at the two eyes was calculated using:

�̇
L,R� � arctan� �sin� � i /2
d � �cos�

� � arctan� i
2d� [8]

Distributions of �̇ and �̇ were simulated based on the assumption that they are
Gaussian in the log domain with ��̇ and ��̇. A set of simulated measures of

disparity and azimuth changes were produced (�̇� and �̇�), and these were used to
provide a set of measures of Vx and Vz based on Eqs. 5 and 6. Specifically, V� x and
V� z were calculated by assuming that interpupillary spacing (i) is a known and
viewing distance (d�) is derived from eye vergence, where eye position estimates
are normally distributed (
 � 50 cm, � � 0.22). To ensure smooth likelihood
functions for V� x and V� z, we used a Gaussian in the log domain to provide a (good)
descriptor of the simulated data [Matlab normfit function; Vx � N (
x, �x

2), Vz �

N(
z, �z
2)]. The likelihood distribution was defined in Vx � Vz velocity space (Fig.

1C) as:

p��̇L, �̇R�Vx, Vz� �
1
�

exp��� �ẋ�
x�2

�x
2 �	� �ż�
z�2

�z
2 �� [9]

The likelihood was combined with the prior (Eq. 7) to obtain the posterior
distribution of velocity in Vx�Vz space. The maximum value of the posterior
provided estimators of velocity (V̂x, and V̂z). The assumption that real-world
motion maps to a Gaussian likelihood distribution that is then estimated by the
mode of the posterior distribution is an obvious simplification; issues of encoding
andreadingoutmotionsignals fromneuralpopulations isacurrentareaofactive
investigation (28).

To estimate increment thresholds, the posterior distributions produced by
lateralmotionormotion-in-depthwerecomparedwitharangeofstandards,and
the resultant psychometric functions were fit [psignifit toolbox (29)] to estimate
the 68% threshold. Speed matches were obtained by contrasting V̂x, and V̂z over
the range of speeds. Finally, estimates of angle (Eq. 6) were calculated using the
estimators V̂x, and V̂z. All calculations based on real-world geometry were carried
out in the linear domain.

Modeling relied on the data published by Stocker and Simoncelli (15) except
for fits to individual subject’s data. Here, the best fitting ratio of the likelihood
widths (�x/�z) was estimated using a user intervention–minimization procedure
in which the minimum squared deviation between the model and the data was
obtained by searching across a range of values (three iterations, range was
progressively reduced). This was necessary as the use of simulations meant that,
although the error function was globally smooth, local variations caused error-
minimization algorithms to fail.
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