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1.12.1 Introduction

It is well established that visual signals in the brain
are processed in parallel, with contours, color,
movement, stereopsis, and even more specific fea-
tures such as facial expressions being processed in
different brain areas (Casagrande, V. A. and Xu, X,
2004). The visual pathway from the eye to the brain
is also organized into parallel streams, and fiber
groups of the optic tract project to different subcor-
tical areas such as the suprachiasmatic nucleus, the
ventral and lateral geniculate complex, the pretec-
tum, the superior colliculus, and the accessory optic
nuclei. These brain areas have different roles in
visual function and accordingly receive inputs from
retinal ganglion cells (RGCs) which perfectly

subserve such specific roles. For example, the supra-
chiasmatic nucleus, which regulates circadian
rhythms, or the pretectum, which adjusts the pupil
size, receive inputs from the recently discovered
melanopsin-containing ganglion cells. They have
intrinsic light responses in their dendrites and trans-
mit a sustained light signal (Berson, D. M., 2003).
Parallel routes can also be distinguished in the visual
pathway that is commonly attributed to conscious
vision, namely the projection from the eye through
the lateral geniculate nucleus (LGN) to the visual
cortex. Here, in primates, the parvocellular and mag-
nocellular pathways are well established, and a third
parallel tract is relayed in the intralaminar regions,
the K-layers, of the geniculate (Hendry, S. H. and
Reid, C., 2000).
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Considerable processing and filtering of visual infor-
mation occurs at the earliest stage of the mammalian
visual system — the retina. In any mammalian retina
there may well exist as many as 15 different ganglion
cell types which cover the retina homogeneously with
their dendritic fields. They represent 15 specific filters
which encode in parallel different aspects of the image
projected onto the retina. Ganglion cells receive speci-
fic inputs from bipolar and amacrine cells in the inner
plexiform layer (IPL). The IPL is precisely stratified
and the different ganglion cell types have their den-
drites at specific levels within the IPL (Isayama, T. ez 4/,
2000, Sun, W. er al, 2002; Dacey, D. M. et 4l 2003;
Kong, J. H. ez al, 2005; Kim, T". J. and Jeon, C. J., 2006).
The axons of bipolar cells, which transfer the light
signals from the photoreceptors to the ganglion cells
also terminate at distinct levels within the IPL
(Ghosh, K. K. ez al, 2004). This suggests that the neu-
rally encoded retinal image is different at different
levels of the IPL, depending upon stratification of the
various bipolar, amacrine, and ganglion cells (Roska, B.
and Werblin, F., 2001). Bipolar cells provide the major
excitatory drive for ganglion cells and their physiolo-
gical signature, for instance OFF- or ON-light
responses, 1s transferred onto ganglion cells. The phy-
siological signature of bipolar cells in turn is defined by
the glutamate receptors (GluRs) they express at their
synaptic contacts with the cones. Parallel processing
within the retina, therefore, begins already at the first
synapse of the retina and here the molecular composi-
ton of GluRs represents the origin of the different
channels (Wissle, H., 2004).

1.12.2 The Photoreceptor Synapse
1.12.2.1 The Presynaptic Complex

Cones respond to a light stimulus with a graded
hyperpolarization and release their transmitter gluta-
mate at a specialized synaptic terminal named cone
pedicle. Transmitter release is high in darkness and is
reduced by illumination of the cone. The cone pedicle
is a giant synapse with multple release sites and
numerous postsynaptic partners (Figure 1). In the
primate retina the cone pedicle increases from a dia-
meter of approximately 4=5 pum close to the fovea to
8um diameter in peripheral retina. It contains
between 20 and 50 presynaptic ribbons (Figures 1(c)
and 1(e)), each of which is flanked by synaptic vesicles
(Haverkamp, S. er al, 2000; 2001). The synaptic term-
inal of rod photoreceptors, the rod spherule is smaller
than the cone pedicle (~3 um diameter) and contains

one or two synaptic ribbons and release sites. The
photoreceptor synaptic ribbon is a curved plate,
~30 nm thick, it extends ~200 nm into the cytoplasm
and varies in length from 200 to 1000nm. In rod
spherules it is bent like a horseshoe (Figure 1(e)) and
commonly cracks into two parts (Migdale, K. ez 4/,
2003). The ribbons are involved with the synaptic
machinery of transmitter release and appear to
represent a specialization of synapses, which have a
sustained release of glutamate such as photoreceptors,
bipolar cells, and auditory and vestibular hair cells
(von Gersdorff, H., 2001; Heidelberger, R. ez al, 2005;
Sterling, P. and Matthews, G., 2005). Proteins at the
ribbon are just beginning to be identified and represent
a specialization of the cytomatrix comparable and
complementary to proteins present at the active
zones of conventional synapses (tom Dieck, S. er al,
2005; Deguchi-Tawarada, M. er al, 2006). The pro-
teins segregate into two compartments at the ribbon: a
ribbon associated compartment including Piccolo,
RIBEYE, CtBP1, RIMI1, and the motor protein
KIF3A, and an active zone compartment including
RIM2, Munc 13-1, CAST1, and a calcium (Ca*")-
channel a1 subunit (Figure 1(b)). A direct interaction
between the ribbon specific protein RIBEYE and bas-
soon seems to link the two compartments and 1s
responsible for the integrity of the photoreceptor rib-
bon complex. In bassoon knockout mice the ribbons
are no longer linked to the active zone and transmitter
release 1s not possible (Dick, O. er al, 2003). Fish
deficient in RIBEYE lack an optokinetic response
and have shorter synaptic ribbons in photoreceptors
(Wan, L. er al, 2005). The ribbons tether numerous
synaptic vesicles (Usukura, J. and Yamada, E., 1987)
and it has been suggested that they represent a con-
veyor belt transporting continuously synaptic
vesicles toward the active zone (Gray, E. G. and
Pease, H. L., 1971; Muresan, V. et al, 1999).
However, this is an oversimplification, because
disruption of the actin cytoskeleton did not influence
transmitter release (Heidelberger, R. er 4/, 2002;
Holt, M. ez al, 2004; Heidelberger, R. ez al, 2005).
Ribbons, however, might serve as a platform along
which vesicles can be primed for sustained release.
Vesicles docked at the active zone probably represent
the fast releasable pool. It has been estimated that a
ribbon of a cone in the primate fovea has ~40
docking sites close to the active zone and 150 vesicles
are packed along the ribbon (Sterling, P. and
Matthews, G., 2005). The vesicles of all cones and
of rods are loaded with glutamate through the vesi-
cular glutamate transporter vGluT1 (Haverkamp, S.
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Figure 1 Structure of the cone pedicle, the synaptic terminal of cones. (a) Schematic vertical view of a cone pedicle. Four
presynaptic ribbons are apposed to the invaginating dendrites of horizontal cells (red) and ON-cone bipolar cells (green).
OFF-cone bipolar cell dendrites form contacts at the cone pedicle base (blue). (b) The presynaptic compartment is made up
of the ribbon, the vesicles, and the arciform density. Adapted from tom Dieck, S., Altrock, W. D., Kessels, M. M., Qualmann,
B., Regus, H., Brauner, D., Fejtova, A., Bracko, O., Gundelfinger, E. D., and Brandstatter, J. H. 2005. Molecular dissection of
the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon
complex. J. Cell Biol. 168, 825-836. The following proteins are associated with the ribbon: RIBEYE (Schmitz, F. et al., 2000);
CtBP1,2; KIF3A (Muresan, V. et al., 1999); Piccolo; RIM1. The following proteins are associated with the arciform density:
Bassoon; RIM2; Munc 13-1; CAST. The Ca®* channels are inserted into the presynaptic membrane (Morgans, C. W. et al.,
2005). (c) Schematic horizontal view of a macaque monkey (primate) cone pedicle base. Ribbons (black lines), horizontal cell
processes (red), and ON-cone bipolar cell dendrites (green) form a total of 40 triads. Numerous contacts of OFF-cone bipolar
cells (blue) are found throughout the pedicle base. (d) Electron micrograph of a horizontal section taken underneath a primate
cone pedicle (green outline). More than 500 individual processes contact this cone pedicle. (e—g) Fluorescence micrographs
of a primate cone pedicle (center) surrounded by rod spherules, double labeled for bassoon (e) and the Ca®" channel subunit
a1F (f). Bassoon immunolabeling decorates the ribbons of the cone pedicle and the rod spherules (horseshoe-shaped). The
superposition of (e) and (f) in (g) shows that the Ca®* channels are in close vicinity of the synaptic ribbons. Scale bar =5 um.

et al., 2003; Johnson, J. er al, 2003; Sherry, D. M. ez al,, Exocytosis of the vesicles is finally triggered by
2003). A subpopulation of approximately 10% of  voltage-gated Ca’* channels clustered at the active
cones expresses vGluT2 in addition to vGluT1 zone. Immunostaining for the 1D and a1F subunits

(Fyk-Kolodziej, B. er al, 2004; Wiissle, H. ez al, 2006).  of L-type Ca’" channels and Ca’" entry have
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been observed along the base of the ribbon
(Figures 1(e)-1(g); Morgans, C. W., 2001; Wissle,
H. er al, 2003; Zenisek, D. er al, 2003; 2004; tom
Dieck, S. ez al., 2005). Mutations in the Ca’" channel
alF result in impairment of the photoreceptor
synaptic transmission and cause congenitory station-
ary nightblindness (Morgans, C. W. er al, 2005).
Ca™" extrusion from the photoreceptor synaptic
complex is mediated through the plasma membrane
calcium ATPase (PMCA) localized along the sides of
cone pedicles and rod spherules (Morgans, C. W.
et al., 1998; Duncan, J. L. ez al,, 2006).

The potassium (K*-) and Ca’*-channels of cone
pedicles and rod spherules can be modulated by
several mechanisms which in turn also regulate the
transmitter release. The metabotropic glutamate
receptor 8 (mGluR8) at the photoreceptor synaptic
terminals, acts as autoreceptor and upon glutamate
binding the influx of Ca’" is reduced (Koulen, P.
et al., 1999; 2005). Modulation of the voltage depen-
dent Ca’*-channels at the active zone is also a
mechanism of horizontal cell feed back and will be
discussed later. Cannabinoid receptors at cone
pedicles regulate voltage-dependent K' currents
(Struik, M. L. ez 4, 2006). Finally, calcium extrusion
modulates the amplitude and timing of transmission
in cone pedicles and rod spherules (Duncan, J. L.
et al., 2006).

L- and M-cone pedicles are coupled to their
immediate neighbors and to rod spherules through
electrical synapses (gap junctions; Raviola, E. and
Gilula, N. B,, 1973) where connexin 36 is expressed.
S-cone pedicles are only sparsely coupled
(Tsukamoto, Y. er al, 2001; Feigenspan, A. et al., 2004;
Hornstein, E. P. er al, 2004; Li, W. and DeVries, H.,
2004, O'Brien, J. J. et al, 2004). This coupling allows
the network to average out the uncorrelated noise in
individual cones, and thereby to improve the response
to a light sumulus (Lamb, T'. D. and Simon, E. J., 1976).
It also provides a route for the signal transfer from rod
spherules to cone pedicles (see Mammalian Rod
Pathways and Circuit Functions of Gap Junctions in
the Mammalian Retina).

1.12.2.2 The Postsynaptic Partners

At the synaptic terminals of rods and cones, the light-
evoked signals are transferred onto bipolar and hor-
izontal cells (Figure 1(a)). Horizontal cells, of which
there are between one and three types in mammalian
retinas, provide lateral interactions in the outer
plexiform layer (OPL). In the primate retina they

are named H1 and H2 horizontal cells. Their den-
dritic ups are inserted into invaginations of the cone
pedicle base which are formed at the ribbons. Two
horizontal cell endings push up towards the ribbon
and along the ribbon the two horizontal cells form a
zone of contact between each other (Raviola, E. and
Gilula, N. B, 1975).

Two kinds of bipolar cell contacts have been
identified at cone pedicles: flat or basal contacts
and invaginating contacts (Dowling, J. E. and Boycortt,
B. B., 1966). The dendritic tips of invaginating bipolar
cells are inserted in between the two lateral horizontal
cell dendrites, and this postsynaptic unit has been
named a triad (Missotten, L., 1965). The dendritic tips
of flat bipolar cells make numerous contacts at the cone
pedicle base (Figures 1(a) and 1(c)).

Cone pedicles of the peripheral primate retina
contain ~40 synaptic ribbons and invaginations,
where they accommodate ~80 horizontal cell dendri-
tic terminals (Figure 1(c)). L (red)- and M (green)-
cones are connected to three or four H1 horizontal
cells and make multiple contacts with every one of
them. S (blue)-cones have only sparse, if any connec-
tions with H1 horizontal cells. L- and M-cones are
also connected to three or four H2 horizontal cells,
however, the number of contacts is smaller than with
H1 cells. In contrast, S-cones have multiple contacts
with H2 cells (Ahnelt, P. and Kolb, H., 1994). Cone
pedicles of the peripheral primate retina accommo-
date ~80 dendritic tips of invaginating bipolar cells
(Chun, M. H. er 4l, 1996) and they are engaged in
200-300 flat contacts. Taken together, 400-500
synaptic contacts are found at individual cone pedi-
cles (Figure 1(d)). Their details will be discussed later.

1.12.2.3 Feedback from Horizontal Cells

Horizontal cell dendrites are inserted as lateral ele-
ments into the invaginating contacts of cone pedicles
(Figure 1(a)), and horizontal cell axon terminals form
the lateral elements within rod spherules. Traditionally,
it is assumed that horizontal cells release the inhibitory
transmitter gamma-aminobutyric acid (GABA) and
provide feedback inhibition at the photoreceptor
synaptic terminal. As horizontal cells summate light
signals from several cones, such feedback would cause
lateral inhibition, through which a cone’s light response
1s reduced by the illumination of neighboring cones.
This mechanism is thought to enhance the response to
the edges of visual stimuli and to reduce the response to
areas of uniform brightness. However, the GABA-feed-
back model has recently been challenged because of the
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lack of classical synapses from horizontal cells onto
cones, the lack of GABA receptors on mammalian
cones and the lack of GABA uptake into horizontal
cells from the medium. T'wo alternative hypotheses of
horizontal cell function have been proposed. One
assumes that horizontal cell processes, which are
inserted into cone pedicles and rod spherules, express
connexins (hemigap junctions). Current that flows
through the channels formed by the connexins changes
the extracellular potential in the invaginations and thus
shifts the activation curves of the cone pedicle Ca®*
channels. By this mechanism of electrical feedback,
horizontal cells could modulate the glutamate release
from cones and rods (Kamermans, M. ¢z a/, 2001). The
second hypothesis also postulates modulation of the
Ca’" channels that regulate the release of glutamate
from cones; however, the mechanism responsible is a
change in pH within the invagination, caused by vol-
tage-dependent ion transport through the horizontal
cell membrane (Hirasawa, H. and Kaneko, A., 2003).
There is also evidence that light-dependent release of
GABA from horizontal cells provides feed-forward
inhibiton of bipolar cell dendrites (Haverkamp, S.
et al., 2000; Duebel, J. ez al., 2006). Irrespective of their
precise mode of action, horizontal cells sum light
responses across a broad region, and subtract it from
the local signal. Because horizontal cells are coupled
through gap junctions (see Circuit Functions of Gap
Junctions in the Mammalian Retina), their receptive
fields can be much wider than their dendritic fields
(Hombach, S. er al, 2004).

1.12.3 Morphological Types of
Bipolar Cells

Bipolar cells of the mammalian retina can be subdi-
vided according to their morphology into many
different types (Figure 2). Cajal S. R. Y. (1893) recog-
nized rod bipolar (RB) cells as a separate type
(Figure 2: RB). Their dendrites make invaginating
contacts with rod spherules and their axons terminate
in the innermost part of the IPL (see Mammalian
Rod Pathways). Several types of cone bipolar cells
have been recognized in different mammalian
species. In the rabbit retina 13 types have been
described from Golgi staining and single cell filling
(Famigliett, E. V. 1981; McGillem, G. S. and
Dacheux, R. F., 2001; MacNeil, M. A. ez 4., 2004). In
the cat retina 8-10 different types of cone bipolar
cells have been recognized (Famiglietti, E. V., 1981;
Kolb, H. er al, 1981; Cohen, E. D. and Sterling, P,

1990a; 1990b). In the ground squirrel seven different
types have been described (West, R. W, 1976).

The diagram in Figure 2 compares the bipolar cells
of the mouse and rat retinas with those of the
peripheral macaque monkey retina. The nine putative
cone bipolar cell types (labeled 1-9) and the RB cells
of the mouse and rat retina are arranged according to
the stratification level of their axon terminals in the
IPL. The cells were drawn from vertical sections
following intracellular injections (Euler, T. and
Wissle, H., 1995; Hartveit, E., 1996; Ghosh, K. K.
et al, 2004; Pignatelli, V. and Strettoi, E., 2004).
Immunocytochemical markers have been found for
five bipolar cell types of the mouse retina
(Haverkamp, S. er 4/, 2003; illustrated in Figure 3).
The type 7 and type 9 bipolar cells of the mouse retina
have also been labeled in transgenic mouse lines by
the expression of green fluorescent protein (GFP;
Huang, L. er al, 2003; Haverkamp, S. er al, 2005).
The cone contacts of the nine bipolar cell types of
mouse and rat have not yet been analyzed in detail,
however, they contact between five and 10 neighbor-
ing cone pedicles with one exception: type 9 has a
wide dendritic tree that appears to be cone selective
and it will be shown later that it contacts S-cones.

Rat and mouse retinas are considered to be rod
dominated because only 1% of their photoreceptors
are cones (Szél, A. eral,, 1993). However, the perspec-
tive changes if one examines the absolute number of
cones. The cone density is between 8000 and 10 000
conesmm 7, comparable to midperipheral cat,
rabbit, and monkey retina. Consequently the types
and retinal distributions of cone bipolar cells are
closely similar between mammalian species. The
bipolar cells of the monkey retina, shown schemati-
cally in Figure 2, where determined initially from
Golgi stained whole mounts (Boycott, B. B. and
Wissle, H.,, 1991). There 1s a striking similarity
between mouse, rat, and monkey bipolar cells with
respect to the shapes and stratification levels of their
axons, however, there is also a clear difference; mid-
get bipolar cells (flat midget bipolar, FMB;
invaginating midget bipolar, IMB) are only found in
the monkey retina. FMB and IMB cells have dendri-
tic trees which contact a single cone (Polyak, S. L,
1941; Figure 2 and Figure 4(a)). Following the
nomenclature of Polyak S. L. (1941), bipolar cells
contacting several neighboring cone pedicles were
named diffuse bipolar cells (DB1-DB6; Boycott,
B. B. and Wissle, H. 1991; Figures 2 and 4(c)).

In summary these studies suggest that there are
about 10 types of cone bipolar cells in the mammalian
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Figure 2 Schematic diagrams of bipolar cells of mouse, rat, and primate retina (Ghosh, K. K. et al., 2004). The retinal layers
are indicated (OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; it can be subdivided into five
sublaminas of equal width; GCL, ganglion cell layer). The bipolar cell types were named according to the level of stratification
of their axon terminals in the IPL. The dashed horizontal lines dividing the IPL represent the border between the OFF- (upper)
and the ON- (lower) sublayers. Bipolar cells with axons terminating above this line represent OFF bipolar cells, those with
axons terminating below this line represent ON bipolar cells (DB, diffuse bipolar cells; FMB, flat midget bipolar cells; IMB,
invaginating midget bipolar cells; BB, blue-cone bipolar cells; RB, rod bipolar cells).

retina and their major defining features are the
shape and stratification of their axons in the IPL and
in some instances their cone contacts in the OPL
(Hopkins, J. M. and Boycott, B. B,, 1996; 1997). The
major functional subdivision of bipolar cells is into
ON- and OFF-bipolar cells. ON-bipolar cells are
depolarized by a light stimulus, OFF-bipolar cells
are hyperpolarized by a light simulus (Werblin, R.
S. and Dowling, J. E, 1969; Kaneko, A, 1970).
Their axons terminate at different levels (strata)
within the IPL: OFF in the outer half, ON in the
inner half (Euler, T. ez al, 1996; Hartveit, E., 1996;

Euler, T. and Masland, R. H., 2000; Berntson, A. and
Taylor, W. R., 2000). Superimposed on this ON/OFF
dichotomy are four types of OFF and five types of
ON-cone bipolar cells. We are just beginning to
understand their functional roles (Freed, M. A., 2000).

1.12.3.1 Midget Bipolar Cells of
the Primate Retina

Before discussing the function of midget bipolar cells,
the distribution of cells across the retina (topography)
has to be considered (Wissle, H. and Boycott, B. B.,
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Figure 3 Immunocytochemical staining of mouse bipolar cells. Fluorescence micrograph of a vertical section through
mouse retina double immunostained for the calcium-binding protein 5 (CaB5, red) and the neurokinin receptor 3 (NK3R,
green). Three bipolar cell types (type 3, type 5 and RB express CaB5. Their axons terminate in the inner plexiform layer inner
plexiform layer in sublamina 2, sublamina 3, and sublamina 5, respectively. Type 1/2 bipolar cells express NK3R and their
axons are restricted to sublamina 1. GCL, ganglion cell layer; INL, inner nuclear layer; OPL, outer plexiform layer; RB, rod
bipolar. Scale bar =20 pm.

Figure 4 Bipolar cells and their cone contacts in the primate retina. Horizontal view of Golgi stained bipolar cells, with the
plane of focus at their dendritic tips in the outer plexiform layer. (a) Dendritic tips of a invaginating midget bipolar cell (IMB).
The micrograph in (d) shows the cone pattern (immunolabeled for the calcium-binding protein calbindin) at a comparable
eccentricity, and the dendritic tips of the IMB cell in (a) are restricted in size to a single cone. (b) Dendritic branches of a blue-
cone bipolar (RB) cell, which contact two widely spaced cones. Comparison with the cone pattern in (d) shows that this BB
cell is cone-selective. (c) Dendritic branches of a diffuse bipolar cell (DB3) that would contact altogether nine neighboring
cone pedicles. Scale bar =20 um.
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1991). In the peripheral retina, there is a low density of
cones, bipolar cells, and ganglion cells, whereas toward
the center of the retina (the central area of cats, the
visual streak of rabbits, or the fovea of primates) the
density of these cells increases steeply. This results in
greatly improved spatial resolution (visual acuity) at
the fovea or central area. Concomitant with the
increase in density, the cells’ dendritic fields become
smaller. During evolution, the spatial resolution of the
primate eye and retina has been optimized. To achieve
this, a high cone density and a low cone-to-RGC ratio
have converged in the acuity pathway. The anatomic
limits for this optimization are reached when each
cone is connected through a midget bipolar cell to a
midget ganglion cell, establishing a private line to the
brain (Figures 4(a) and 4(d)). It has been suggested that
only after this one-to-one connection in the central
retina had evolved, 35 million years ago, did a subse-
quent mutation in the L-cone pigment create L- and
M-cones of varying proportions at random spatial
locations (Mollon, J. D. and Jordan, G., 1988; Mollon,
J. D, 1989; Wissle, H. and Boycott, B. B, 1991;
Boycott, B. B. and Wissle, H. 1999; Nathans, J.,
1999). The midget system of the central retina was
able to transmit this chromatic information to the brain
where it could be used, for example to detect red fruit
among green leaves. Recently it became possible to
study the L-/M- and S-cone mosaics of the living
human retina by the application of adaptive optics
(Hofer, H. er al, 2005). This revealed the irregular
arrangement of L- and M-cones. Moreover it showed
that the relative proportions of L- and M-cones greatly
varied between human individuals (Roorda, A. and
Williams, D. R., 1999). The midget system is able to
transfer this irregular mosaic to the brain which appar-
ently can compensate such variability, and color vision
in human individuals is not affected by the different
ratios of M- and L-cones (Neitz, J. ez al, 2002).

This midget theory of the evolution of trichro-
macy in primates has its basis in the general pattern
of mammalian wiring. It is not necessary to postulate,
in addition, specific mutations to change the cone
selectivity of bipolar cells, the cone selectivity of
GluRs, or the selectivity of ganglion cells
(Calkins, D. J. and Sterling, P., 1999). It also explains
why mammals other than primates have not evolved
trichromacy: their cone bipolar cells sum the signals
of several cones, and their RGCs sum the signals of
many bipolar cells. A mutation that created M- and
L-cones would be lost in this convergent network,
which pools signals from many cones (Wissle, H.,
1999). A recent transgenic mouse expressing human

L- and M-opsins was not able to perform trichro-
matic color discrimination (Jacobs, G. H. ez al, 2004).
However, in a further transgenic mouse where large
patches of the cone mosaic expressed either L- or M-
opsins trichromatic color discrimination was possible
(Smallwood, P. M. er al, 2003; Jacobs, G. H. er al,
2007). The idea that trichromacy piggy-backs on the
high acuity system of primates also postulates that
the midget bipolar cells perform a double duty in
visual signaling, acuity and trichromacy, an idea that
has been promoted for some years (Ingling, C. R., Jr.
and Martinez-Uriegas, E., 1983a; 1983b).

1.12.3.2 Blue-Cone Bipolar Cells

Placental mammals other than primates have only two
types of cone: L-cones in which the visual pigment has
an absorption maximum of greater than 500 nm and S-
cones with an absorption maximum at less than
500 nm. They are, therefore, dichromats. In an evolu-
tionary comparison of color pigments it has been
estimated that the separation of the L- and S-cone
pigments occurred more than 500 million years ago
and thus represents the phylogenetically ancient, pri-
mordial color system (Mollon, J. D. 1989). The
morphological substrate for the dichromatic color
vision common to most placental mammals is the
S-cone pathway (Calkins, D. J., 2001). Mariani A. P.
(1983; 1984) described bipolar cells selective for
S-cones in the macaque monkey retina. They have
long, smoothly curved dendrites and contact between
one and three cone pedicles (Figures 4(b) and 4(d)).
Their axons terminate in rather large varicosities in the
innermost part of the IPL, close to the ganglion cell
layer (BB-cells in Figure 2). S-cone bipolar cells have
been quantified by selective labeling with anubodies
against cholecystokinin (CCK; Kouyama, N. and
Marshak, D. W., 1992; Wissle, H. et al, 1994). Their
selective innervation of S-cones has been shown in old
world and new world primates (Ghosh, K. K. er 4/,
1997, Calkins, D. J. er al, 1998), and it has been shown
that they provide input to the inner tier of the dendritic
tree of the small bistratified ganglion cells (Calkins, D.
J. eral, 1998). Small bistratified ganglion cells give blue-
ON, yellow-OFF responses (Dacey, D. M. and Lee, B.
B, 1994). In the retina of the ground squirrel light
responses of a S-cone selective bipolar cell have been
recorded and this bipolar cell was an ON-bipolar cell
(Li, W. and DeVries, H., 2000).

Immunostaining with antisera specific for S-opsin
has shown that S-cones constitute approximately 10%
of the cones in most mammalian retinas (Szél, A. e al,
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1988; 1993). However, in some species S-cones have a
very uneven topographical distribution across the
retina and many cones express both L- and S-opsin
(Glésmann, M. and Ahnelt, P. K., 1998; Applebury, M.
L. et al, 2000; Lukéts, A. er al, 2005). So far only
circumstantial evidence for the existence of S-cone
selective bipolar cells in mammals other than primates
has been presented (rabbit: Famigliett, E. V. 1981;
Jeon, C. J. and Masland, R. H., 1995; cat: Cohen, E. D.
and Sterling, P., 1990a; 1990b; ground squirrel; West, R.
W., 1976; rat: Euler, T. and Wissle, H., 1995; mouse:
Ghosh, K. K. ez al, 2004; Pignatelli, V. and Strettoi, E.,
2004). However, recently a transgenic mouse line
could be studied, where Clomeleon, a genetically
encoded fluorescence indicator, was expressed under
the byl promotor (Haverkamp, S. e al, 2005).
Clomeleon labeled ganglion cells, amacrine cells, and
bipolar cells. Among the bipolar cells the S-cone-selec-
tive (blue cone) type could be identified, and the cone-
selective contacts and the retinal distribution could be
studied. The morphological details of the blue-cone
bipolar cell match type 9 cells of rat and mice
(Figure 2) and they are closely similar to the blue-
cone bipolar cell of the primate retina (Figure 4(b)). It
is interesting that in the ventral mouse retina, where
most cones express both L- and S-opsin, blue-cone
bipolar cells contact only those cones, which express
S-opsin only, and they are the genuine blue cones of
the mouse retina (Haverkamp, S. ez 4/, 2005).

1.12.3.3 Diffuse Bipolar Cells

Most bipolar cell types of the mammalian retina con-
tact between five and seven neighboring cones
(Figures 4(c) and 4(d)). Diffuse bipolar cells of the
primate retina contact L- and M-cones in their den-
dritic field nonselectively (Boycott, B. B. and Wiissle,
H., 1991). They are, therefore, involved with the
transfer of a luminosity signal, which is based on the
combined sensitivity of L- and M-cones (Lee, B. B.
et al, 1990). Whether all diffuse bipolar cell types also
contact S-cones 1s still a matter of discussion and it has
been proposed that one type of diffuse bipolar cell
avoids S-cones (Calkins, D. J. er al, 1996). This type
would be a good candidate to transfer a yellow (L-
plus M-cone) signal into the IPL, where it could
contact the outer ter of the dendritic tree of the
small bistratified ganglion cells (Dacey, D. M. and
Lee, B. B, 1994). Recordings from diffuse bipolar
cells of the retina of the ground squirrel show that
there are two groups of diffuse bipolar cells: one
receives mixed input from S- and M-cones, while

the other one receives an almost pure M-cone signal
(Li, W. and DeVries, H., 2006).

1.12.3.4 Cone Contacts of Bipolar Cells

The cone pedicle has two kinds of synaptic specializa-
tions, which are occupied by bipolar cells: invaginating
and flat contacts (Figure 1(a)). Reconstructions of
Golgi-impregnated midget bipolar cells of the primate
retina by serial electron microscopy (EM; Figure 5)
showed a clear dichotomy: IMB cells made exclusively
invaginating contacts, whereas FMB cells made only
flat contacts (Kolb, H. 1970). Individual IMB cells
make up to 25 contacts with a cone pedicle
(Figure 5(a)), an FMB cell makes approximately 2.0—
3.5 tmes that number of basal synapses (Hopkins, J. M.
and Boycott, B. B., 1996; 1997). Most of the contacts of
FMB cells are in the vicinity of the ribbons
(Figure 5(b), triad associated, T'A). Reconstructions of
cone contacts of Golgi-impregnated diffuse bipolar
cells by EM revealed that DB1, DB2, and DB3,
which have their axon terminals in the outer IPL and
are putative OFF bipolar cells, make exclusively basal
junctions with the cone pedicle (Figure 5(c)). They
always have TA and nontriad associated (N'T'A) con-
tacts, the proportions varying according to the cell
type, as does the average number of contacts per
cone, which is between 10 and 20. Bipolar cells DB4,
DB5, and DB6 have their axon terminals in the inner
part of the IPL and are putative ON bipolar cells. They
have an average of between four and eight invaginating
synapses per cone pedicle. In addition they also form
basal junctions, in a predominantly TA position
(Hopkins, J. M. and Boycott, B. B., 1996; 1997). Thus,
while the dichotomy invaginating = ON, flat= OFF
holds for midget bipolar cells, it does not conform so
clearly for diffuse bipolar cells. As discussed later, the
type of synapse made by a bipolar cell at a cone
pedicle, flat versus invaginating, is not the decisive
feature; it is rather the GluR expressed there.

Recent results from the rodent and the rabbit retina
have shown that some OFF-cone bipolar cells make
also basal contacts with rod spherules and thus receive a
direct input from rods (Hack, L. ez 4/, 1999; T'sukamoto,
Y. et al., 2001; Li, W. ez al, 2004; Prott, D. A. ez al., 2005).
This represents a third route for the rod signal in
addition to the RB cell circuit and the gap junctions
between rods and cones (Volgyi, B. e al, 2004).

The number of contacts per cone pedicle of a
given diffuse bipolar cell varies across its dendritic
field (Figure 5(c)). More contacts are made with
cones in the center, and only few contacts are made

The Senses: A Comprehensive Reference, vol. 1, pp. 313-339



322 Decomposing a Cone’s Output (Parallel Processing)

() IMB

(b) FMB

DB2

Figure 5 Cone contacts of bipolar cells of the primate retina. The cells were Golgi-stained and afterwards serially sectioned
for electron microscopic analysis (Hopkins, J. M. and Boycott, B. B., 1996). (a) The 25 contacts of an invaginating midget
bipolar cell are all invaginating. (b) The 97 contacts of a flat midget bipolar cell are all flat (@, triad associated; O, nontriad
associated). (c) reconstruction of the cone contacts of a diffuse bipolar cell DB2. The dendritic tree, as revealed by the Golgi
staining, is inserted. This DB2 cell connects to nine cone pedicles, exclusively with flat contacts. Scale bar =20 pym. Adapted
from Boycott, B. B. and Wassle, H. 1999. Parallel processing in the mammalian retina: the Proctor Lecture. Invest.

Ophthalmol. Vis. Sci. 40, 1313-1327.

with more peripheral cones, which predicts a
Gaussian  sensitivity profile.  The dendrites of
neighboring bipolar cells of a given type show
different extents of overlap and their coverage factor
is between one and four. This means that a cone
pedicle may contact one to four bipolar cells of any
given type. This is illustrated in Figure 6 for type 7
bipolar cells of a transgenic mouse line which
expresses GFP under the control of the gustducin
promotor (Huang, L. ez 4/, 2003). They were immu-
nostained for GFP (Figure 6(a)) and their dendritic
network (Figures 6(b) and 6(d)), cell bodies, and axon
terminals (Figures 6(c) and 6(e)) are shown. The
positions of cone pedicles are marked by the expres-
sion of GluRS (Haverkamp, S. ez al., 2005). Analysis of
individual bipolar cells in this network shows that
bipolar cells contact approximately eight cone pedi-
cles (convergence) and cone pedicles are innervated
by approximately one bipolar cell (divergence). The
cone density in this area is 13000 mm 7, the density
of this bipolar cell type is 2000 mm 2. Type 7 bipolar
cells represent approximately 10% of the total cone
bipolar cell population of the mouse retina. Some of
the axon terminals are delineated by red circles
in Figure 6(e) and it is obvious that they are precisely
space filling, without any overlap. They are all
within the same focal plane and therefore confined
to a narrow stratum within the IPL (Figure 6(a)).
This example shows the dendritic and axonal

architecture of a defined bipolar cell type, and thus
represents one of the parallel routes from the outer to
the IPL.

1.12.4 Expression of Glutamate
Receptors at Cone Pedicles

1.12.4.1 Glutamate Receptor Subunits

Molecular cloning has revealed a muldplicity of
GluRs and receptor subunits. lonotropic receptors
are integral membrane proteins that form an ion chan-
nel. This channel, usually a nonselective cation
channel, 1s made up of four subunits and opens upon
glutamate binding. Three major groups of ionotropic
GluRs can be distinguished: a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA), kainate,
and  N-methyl-p-aspartate  (NMDA) receptors.
They comprise the following subunits: AMPA
(GluR1, GluR2, GluR3, GluR4); kainate (GluRS5,
GluR6, GluR7, KA-1, KA-2); NMDA (NRI, NR2A,
NR2B, NR2C, NR2D and NR3A); further subunits
are the orphan receptors 61 and 62. In addition multi-
ple splice variants of the different subunits, have been
identfied, for example, the 10 splice variants of NR1
(Hollmann, M. and Heinemann, S., 1994; Dingledine,
R. et al, 1999; Kew, J. N. C. and Kemp, J. A, 2005).
mGluRs belong to the family of receptors that have
seven membrane-spanning domains and, when they
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Figure 6 Array of type 7 bipolar cells of the mouse retina. The cells express green fluorescent protein (GFP) under the
control of the a-gustducin promotor (Huang, L. et al., 2003). (a) Fluorescence micrograph of a vertical section showing strong
expression of GFP in type 7 bipolar cells their axon terminals in sublamina 3/4 of the inner plexiform layer (IPL). Faint
expression can also be detected in some rod bipolar cell axon terminals in sublamina 5. (b, c) Horizontal view of the dendritic
field and the axon terminal of an isolated type 7 bipolar cell. The dendrites in (b) contact all 12 cone pedicles within the
dendritic field. They are labeled by the expression of the kainate receptor GIuR5 (clusters of red dots). The axon terminal in (b)
covers an area of ~500 um?2. (d, e) Horizontal view a patch of retina, where apparently all type 7 cells are labeled. Their
dendritic trees in (d) contact an average number of 8.1 + 1.3 (n =20) cone pedicles (convergence). Dendritic fields of
neighboring type 7 cells in this field show practically no overlap and, therefore, most cone pedicles are in contact with only
one type 7 bipolar cell (divergence). The axon terminals of the type 7 bipolar cells in the IPL are space filling without much
overlap (coverage of 1). This is indicated by the red outlines for three selected cells. GCL, ganglion cell layer; INL, inner
nuclear layer; OPL, outer plexiform layer. Scale bar =20 pm for (a), 17 um for (b) and (c), 16 um for (d) and (e).

bind glutamate, G protein, and second messenger
systems are activated. So far eight different mGluRs
have been identified (mGluR1-mGluR8). It is clear
that a simple retinal scheme: glutamate released from
photoreceptors acts on horizontal and bipolar cells and
then, in turn glutamate released from bipolar cells
activates amacrine and ganglion cells, can have any
degree of complexity depending on the GluRs that are
expressed.

1.12.4.2 ON-Bipolar Cell Glutamate
Receptors

In a series of seminal experiments, Nakanishi and
co-workers have cloned mGluR6, localized it with
specific antibodies, and studied the function by gene

directed (knockout) mutagenesis (Nomura, A. et al,
1994; Masu, M. ez al, 1995). These experiments have
shown that mGluR6 is expressed at the dendritic
terminals of RB cells inserted into the rod spherules.
In the mGluR6 knockout mouse, all ON-light
responses were blocked (Masu, M. er al, 1995;
Renteria, R. C. er al, 2003). Vardi N. e al. (1998)
have shown that mGluR6 also is expressed in ON-
cone bipolar cells at their invaginating, and occasion-
ally flat, contacts with cone pedicles. Previous
pharmacological studies had shown that light
responses of all ON-bipolar cells are blocked by
2-aminophosphonobutyric acid (LAP-4; Slaughter,
M. M. and Miller, R. F., 1981), a glutamate agonist at
mGluR (group III) receptors (Pin, J. P. and Duvoisin,
R, 1995). The signal cascade activated through
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mGluR6 in ON-bipolar cells involves the G protein G
alpha (o) (Dhingra, A. er al, 2002; 2004), however, the
membrane channel modulated by the cascade has not
yet been identified (Nawy, S., 1999; Snellman, J. and
Nawy, S., 2004). Recently a transgenic mouse was
created, where the mGluR6 promotor drives the
expression of GFP and all ON-bipolar cells were
found to be labeled (Morgan, J. L. er al, 2006). Taken
together this shows that mGluR6 is the predominant
GluR expressed in all ON-bipolar cells. However, it
has to be emphasized that additional GluRs have been
localized to them and their functions still need to be
elucidated (Koulen, P. ez al, 1997; Vardi, N. ez al., 1998;
Lo, W. et al., 1998; Calkins, D. J., 2005). It is possible
that they fulfill some modulatory roles in different ON
bipolar cell types.

1.12.4.3 OFF-Bipolar Cell Glutamate
Receptors

Immunocytochemical localization of GluR subunits
to flat contacts of bipolar cells at the cone pedicle

base has revealed a plethora of different GluRs. The
AMPA receptor subunit GluR1 has exclusively been
observed in flat contacts and has not been found in
horizontal cell processes (Brandstitter, J. H., 2002). In
retinas double labeled for the ribbon marker bassoon
and for GluR1, GluR1 hot spots are located in close
vicinity of the ribbons, suggesting a TA position
(Figures 7(d)-7(f); Haverkamp, S. ez 4/, 2001). In the
macaque monkey retina it was possible to compare
the GluR1 expression of M/L- and S-cones. The
same number of GluR1 hot spots was observed, how-
ever, they were more salient in S-cone pedicles
(Haverkamp, S. er al, 2001). Whether this represents
a higher density of GluR1 expression at S-cones, or
whether the hot spots are more closely packed at the
smaller S-cone pedicles cannot be answered at pre-
sent. Puller C. ez al. (2007) could show that FMB cells
of the primate retina express GluR1 at their contacts
with cone pedicles. FMB cells have been shown to
contact M/L- as well as S-cones in the macaque
monkey retina (Klug, K. ez 4/, 2003). GluR1-labeled
flat contacts have also been observed in the rodent

Figure 7 Horizontal confocal sections of cone pedicles of the primate retina that were double labeled for bassoon and
glutamate receptor subunits (GIuRs). (a) The ribbons of one cone pedicle and one rod spherule (arrow) are immunoreactive for
bassoon (green). (b) GluR4 immunoreactive hot spots of the same section as in (a) (red). (c) Superposition of (a) and (b) shows
that most of the GluR4 immunoreactive hot spots are in register with the ribbons. (d) Cone pedicle from the more central retina
immunolabeled for bassoon. (e) GIuR1 immunoreactive hot spots of the same section as in (d). (f) Superposition of (d) and (e)
shows that GIuR1 immunoreactive hot spots are associated, but not in perfect register, with the ribbons. (g) Cone pedicle
immunolabeled for bassoon. (h) Same pedicle, immunolabeled for GIuRS. (i) Superposition of (g) and (h) shows that GIuR5
immunoreactive hot spots are found in between the ribbons. (i) and (k) Section through a cone pedicle that was double labeled
for GIuR1 ((j), red) and GIuR5 ((k), green). (l) Superposition of (j) and (k) shows that GluR1 and GluR5 immunoreactive puncta

are expressed at different synaptic contacts. Scale bar =5 um.
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and cat retina (Qin, P. and Pourcho, R. G., 1999;
Hack, 1. er al, 2001), however, the corresponding
type of bipolar cell has not yet been identified.

The kainate receptor subunit GluR5 has also been
observed in flat contacts and has not been found in
horizontal cell processes. In retinas double labeled for
the ribbon marker bassoon and for GluR5, the GluR5
hot spots are always displaced from the ribbons,
suggesting a NTA position (Figures 7(g)-7(h)).
When cone pedicles were double labeled for the
AMPA receptor subunit GluR1 and the kainate
receptor subunit GluR5 (Figures 7(j)-7(1)), the
labeled hot spots did not coincide (Haverkamp, S.
et al, 2001). This suggests that they are expressed by
two different types of OFF-cone bipolar cells. In
retinas of primates, rodents, and ground squirrels
there was a significant reduction of GluR5 hot spots
at S-cone pedicles in comparison to M/L- and L-
cone pedicles (Haverkamp, S. er 4/, 2001; Li, W. and
DeVries, H., 2004; Haverkamp, S. ez 4l, 2005). The
OFF-cone bipolar cell expressing GluR5 makes,
therefore, only sparse connections with S-cones.
The kainate receptor subunit KA-2 has also been
observed at bipolar cell flat contacts and not in hor-
izontal cell processes (Brandstitter, J. H. ez al, 1997).

The GluR subunits GluR2, GluR2/3, GluR4, and
GluR6/7 have also been localized to flat contacts of
bipolar cells at the cone pedicle base, however, these
subunits also decorated the processes of horizontal
cells (Morigiwa, K. and Vardi, N., 1999). NMDA
receptor subunits have not been observed at the flat
contacts (Fletcher, E. L. ez al., 2000).

In conclusion: OFF-cone bipolar cells express at
their flat contacts with cone pedicles the AMPA
receptor subunits GluR1, GluR2, GluR2/3, and
GluR4, they also express the kainate receptor sub-
units GIuR5, GluR6/7, and KA-2. Therefore,
different OFF-cone bipolar cell types can be con-
nected to cone pedicles through AMPA receptors, or
through kainate receptors. Further diversity is to be
expected because AMPA and kainate receptors are
composed of four subunits each, and different sub-
units can be combined to form the tetrameric
receptor complex.

1.12.4.4 Horizontal Cell Glutamate
Receptors

Horizontal cell dendrites of the primate retina
express GluR hot spots at two postsynaptic locations:
at the invaginating processes opposed to the presy-
naptic ribbons and at desmosomelike junctions

between horizontal cell dendrites underneath the
cone pedicle (Haverkamp, S. er 4/, 2000). GluR2/3
and GluR4 clusters are found at the invaginating
processes and at the desmosomelike junctions of all
cone pedicles and these AMPA receptor subunits
appear to constitute the dominant GluR expressed
by horizontal cells (Figures 7(a)-7(c)). However, at
M/L-cones pedicles horizontal cell dendrites also
express the kainate receptor subunit GIluR6/7.
Since expression of GluR6/7 by horizontal cells
was not observed at S-cone pedicles, the preferred
target of H2 horizontal cells, it appears that only H1
horizontal cells express the GluR6/7 subunit
(Haverkamp, S. er al, 2001). The two horizontal
types of the primate retina, therefore, not only have
different shapes and cone contacts, but they express
also different GluRs: H1 cells receive signals from
cones through AMPA (GluR2/3, GluR4) and kainate
(GluR6/7) receptors, H2 cells only through AMPA
(GluR2/3, GluR4) receptors. Examination of GluR
currents in horizontal cells from cultures human
retina using whole-cell recordings showed that hor-
izontal cells possess both AMPA and kainate
receptors (Shen, W. ¢z al, 2004). Unfortunately the
cells were not classified into H1 and H2 horizontal
cells.

1.12.5 Light-Evoked Responses of
Bipolar Cells

1.12.5.1 Temporal Transfer Characteristics

In the retinas of cold-blooded animals, especially the
dogfish and the tiger salamander, the responses of
bipolar cells to light have been studied extensively,
contributing important results on the polarity
(ON/OFF) and the time course (sustained /transient)
of their responses, the currents involved, and the
receptive field organization (Werblin, F. S, 1973;
Kaneko, A. and Shimazaki, H., 1976; Saito, T. er al.,
1981; Saito, T. and Kujiraoka, T, 1982; Saito, T et al.,
1985; Lasansky, A., 1992, Wu, S. M. ez al,, 2000). Early
recordings from intact mammalian retinas confirmed
the ON/OFF dichotomy of cone bipolar cells
(Nelson, R. er al, 1981; Nelson, R. and Kolb, H,,
1983) and showed that RB cells are ON-bipolar
cells (Dacheux, R. F. and Raviola, E., 1986). Later,
in patch clamp recordings from dissociated bipolar
cells it was shown that RB cells express the metabo-
tropic L-AP4 sensitive GIuR, while cone bipolar cells
express both ionotropic and metabotropic GluRs
(Yamashita, M. and Wissle, H., 1991; de la Villa, P.
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et al, 1995). Recordings from bipolar cells in rat
retinal slices, together with a morphological identifi-
cation of the cells and the application of glutamate
agonists demonstrated that types 1, 2, 3, and 4 are
OFF bipolar cells, while types 5, 6, 7, 8, 9, and RB
cells are ON bipolar cells (Euler, T. er al, 1996;
Hartveit, E., 1996; 1997). In the retina of the ground
squirrel dual recordings from synaptically connected
cone pedicles and different bipolar cell types were

performed (DeVries, S. H. and Schwartz, E. A., 1999;
DeVries, S. H., 2000). The signal transfer between
cones and OFF-cone bipolar cells was based on two
different types of ionotropic GluRs: bipolar cell types
b3 and b7 expressed kainate receptors, type b2
AMPA receptors. The three cell types showed sub-
stantial differences in their temporal properties as
measured by their recovery from desensitization
(Figures 8(e)-8(g)). Type b2 cells showed fast, b7
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cells medium, and b3 cells show recovery. The
rapidly recovering b2 cell AMPA receptors are well
suited to signal transient components in the cone
light response, whereas the slowly recovering b3
cell kainate receptors attenuate the transient compo-
nents and consequently emphasize the steady
(sustained) components. Further studies of the cone
pedicle architecture of the retina of the ground squir-
rel showed that the b2 cells made TA contacts
(DeVries, S. H. ez al,, 2006) and consequently respond
fast and transiently. The b3 and b7 cells made basal
contacts further away from the triads (NTA) and
glutamate released at the ribbons had a long way of
diffusion, which resulted in smoothed and sustained
responses of b3 and b7 cells. This shows that the cone
to OFF bipolar synapse is an important locus in
temporal processing. So far it has not yet been
shown for the mammalian retina that the cone to
ON bipolar synapse is also involved in temporal
processing. However, Awatramani G. B. and
Slaughter M. M. (2000) have shown that the cone to
ON-bipolar synapse of the tiger salamander retina
transduces either a sustained or a transient response.

In the rodent retina a specific expression of voltage-
dependent sodium (Na®) and K" channels was
observed in retinal bipolar cells (Klumpp, D. J. ez 4,
1995a; 1995b; Pan, Z. H. and Hu, H. J., 2000; Ma, Y. P.
et al,) 2005). The presence of Na' channels in a sub-
group of ON-cone bipolar cells accelerated their
response kinetics and amplitudes. The results show
that the expression of different GluRs at the cone

pedicle base and the intrinsic, voltage-dependent
Na*- and K"-channel shape the temporal transfer
characteristic of the different bipolar cell types.
Further temporal specificity is contributed by
the expression of different voltage-dependent
Ca*"-channels at the bipolar cell output synapses
(Prott, D. A. and Llano, I, 1998; Pan, Z. H., 2000,
Prott, D. A. ez al, 2000). The transmitter release at the
bipolar cells axon terminal is also controlled by the
expression of hyperpolarization-activated and cyclic
nucleotide-gated (HCN) channels. Different classes of
bipolar cells have a different inventory of HCN chan-
nels, which are densely clustered at their axon terminals
(Miiller, F. ez al, 2003; Ivanova, E. and Miiller, F., 2006).

1.12.5.2 Spatial Transfer Characteristics

Midget bipolar cells of the primate retina contact, up to
an eccentricity of ~10 mm, as a rule, one cone pedicle,
diffuse bipolar cells between five and 10 cone pedicles.
Dacey D. M. er al. (2000) measured the receptve field
profiles of midget and diffuse bipolar cells at ~10 mm
eccentricity and observed for both cell types an antag-
onistic center/surround organization: ON center/OFF
surround and OFF center/ON surround. The mean
center diameter of midget bipolar cells was 42 pm,
which would encompass ~5-10 cones. The mean center
diameter of diffuse bipolar cells was 92 pm, which would
suggest input from 20 to 30 cones. The basis for the
apparently large receptive field center sizes is electrical
coupling of neighboring cone pedicles (Raviola, E. and

Figure 8 Electrophysiological recordings from bipolar cells of the mouse (a—d) and of the retina of the ground squirrel (e-g).
(a) Whole cell recordings of the light-evoked depolarizations of a rod bipolar (RB) cell in a slice preparation of the mouse retina
(light stimulus 50 ms, Vrest =43 mV, intensity stepwise increased from 0 cd m~2 at the bottom to 43.5 cd m 2 at the top trace).
The light-evoked potential is a depolarization followed by a hyperpolarization. (b) Sensitivity curves of four intact RB cells
sowing the normalized amplitude (V/V,,.x) of the light-evoked voltage responses as a function of the normalized (///50) stimulus
intensity (logarithmic axis). Each symbol represents one cell (filled symbols depolarization, open symbols hyperpolarization).
(c) Sensitivity curves of four axotomized RB cells. Comparison with (b) shows that they are steeper. Adapted from Euler, T.
and Masland, R. H. 2000. Light-evoked responses of bipolar cells in a mammalian retina. J. Neurophysiol. 83, 1817-1829. (d)
Dynamic range of the light responses of two RB, two ON-cone bipolar, and two OFF diffuse bipolar cells of the mouse retina.
The abscissa shows the normalized stimulus intensity (logarithmic units). The horizontal bars indicate for the light intensity
range from threshold (5%) to saturation (95% of the maximum response) of the light-evoked excitatory currents. Adapted
from Wu, S. M., Gao, F., and Pang, J. J. 2004. Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina.
Vision Res. 44, 3277-3288. (e—g) Whole-cell currents elicited in three types of OFF-bipolar cells (b2, b3, b7) of the retina of the
ground squirrel by the application of brief pulses (15 ms) of glutamate (2 mM) separated by variable intervals. (e) The average
first response (thick line) and subsequent responses (thin lines) are shown for a b3 cell. The interpulse interval is given above
each trace. (f) Recordings of glutamate responses of a b2 cell. The recovery from desensitization of this b2 cell is much faster
than that of the b3 cell shown in (e). (g) Normalized peak response is plotted against interpulse interval (b2, n =5; b3, n =9; b7,
n=5). Type b2 bipolar cells show the fastest recovery (r = 18 ms), followed by b7 and b3 cells. Type b2 cells signal through a-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, b7 and b3 cells through two different kainate
receptors. Adapted from DeVries, S. H. 2000. Bipolar cells use kainate and AMPA receptors to filter visual information into
separate channels. Neuron 28, 847-856.
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Gilula, N. B, 1973; T'sukamoto, Y. er al, 1992; Hornstein,
E.P. etal,2004; 2005). Itis also possible, that neighboring
bipolar cells are electrically coupled (Feigenspan, A.
et al, 2004; Han, Y. and Massey, S. C., 2005).

The mean diameter of the antagonistic surround
of midget and diffuse bipolar cells was 467 pm and
743 um, respectively. For midget bipolar cells, the
surrounds are about the same as the receptive field
diameters of macaque H1 horizontal cells (Dacey, D.
M, 2000). The diffuse bipolar cell surrounds are
consistently larger, suggesting in addition to the hor-
izontal cell input an input at their axon terminal
system from a wide field amacrine cell type.

1.12.6 Intensity-Response Function

RB cells have the lowest response threshold for
light stumuli amongst mammalian bipolar cells
(Figures 8(a)-8(d)). The mean threshold (defined as
5% of the maximum response) of mouse RB cells is
0.1 Rh* rod " s™" and their dynamic range is ~3.3 log
units (Wu, S. M. ez al, 2004). This is more than 1 log
unit wider than the rod photocurrent (Field, G. D. and
Rieke, F., 2002). The light-evoked response of RB cells
increases monotomically (Figure 8(a)) and follows a
Hill function (Figure 8(b)) with a Hill coefficient of
1.07 £ 0.19 (Euler, T. and Masland, R. H., 2000) and
1.15+0.11 (Berntson, A. and Taylor, W. R., 2000).

(a)

oﬂo

R

o
0, 19/0

Euler T. and Masland R. H. (2000) measured also the
intensity—response function of RB cells which had lost
their axons (axotomized). The dynamic range of the
axotomized RB cells was reduced by more than 1 log
unit and the Hill curve was much steeper (Hill coeffi-
cient 2.39 £ 0.84; Figure 8(c)). A comparable reduction
of the dynamic range of RB cells was also observed
when the cells were superfused with GABA antago-
nists. Both results show, that GABAergic inhibition at
RB axon terminals can modulate the intensity-response
function of RB cells. This conclusion is also supported
by recent measurements of bipolar cells in GABA¢
receptor knockout mice (McCall, M. A. ez al, 2002).
The thresholds for light stimuli of ON-cone bipolar
cells of the mouse retina are generally higher than
those for RB cells (Wu, S. M. ez 4l, 2004). Different
types of ON-cone bipolar cells exhibit different thresh-
olds and dynamic ranges, and thus cover only a small
range of light intensities (~2 log units). The full range
of intensities transferred to the inner retina is therefore
encoded by different bipolar cells types (Figure 8(d)).

1.12.7 Synaptic Contacts of Bipolar
Cells in the Inner Plexiform Layer

The axons of bipolar cells terminate in the IPL in
lobular swellings (Figure 9). Some bipolar cell types,
such as DB3 and DB6 of the primate retina and type 7

Figure 9 Synaptic output of bipolar cells in the inner plexiform layer. Schematic diagram of the axon terminal of a cone
bipolar cell. It contains many presynaptic ribbons that are flanked by synaptic vesicles. (a) Electron micrograph of the axon
terminal of a rod bipolar cell. Kindly provided by O. Dick. The five ribbons are marked by their expression of the ribbon
associated protein piccolo. (b) Magnified view of a cone bipolar cell ribbon synapse (dyade). The presynaptic bipolar cell (b.c.)
releases glutamate and the two postsynaptic partners (a.c., amacrine cell; g.c., ganglion cell) express two different sets of
glutamate receptors. The amacrine cell in turn makes a synapse back onto the bipolar cell terminal (reciprocal synapse).
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of the mouse retina keep their axon terminals within
a narrow stratum (Figure 6; Chan, T. L. e 4/, 2001;
Jusuf, P. R. ez al,, 2004; Lin, B. ez al., 2005). Hence their
output will be restricted to the amacrine and gang-
lion cell dendrites they meet within that stratum.
Other bipolar cells such as type 4 and type 6 of the
mouse retina occupy with their axon terminals the
complete OFF- or ON-sublamina, respectively
(Ghosh, K. K. er 4., 2004). They are possible engaged
in contacts with a wider variety of postsynaptic neu-
rons. Midget bipolar cells of the primate retina
represent a special case, because their axon terminals
precisely match in width and depth the dendritic tops
of midget ganglion cells, and they together form a
densely interconnected glomerulus that can only be
resolved by EM (Kolb, H. and Dekorver, L., 1991;
Calkins, D. J. et al., 1994, Jusuf, P. R. er al,, 2006). The
axon terminals of neighboring bipolar cells of a given
type usually tile the retina without much overlap in
horizontal direction (RB cells: Young, H. M. and
Vaney, D. I, 1991; midget cells: Wissle, H. er al,
1994; calbindin bipolar cells of the rabbit: Massey S.
C. and Mills S. L., 1996). Because of this basically
onefold coverage the density of a given bipolar cell
type is inversely proportional to the area occupied by
the axon terminals (Figure 6(e)).

Bipolar cell axon terminals provide synaptic out-
put through multiple ribbon synapses. The number
of ribbon synapses made by midget bipolar cells of
the macaque monkey retina ranged from nine to 48
(mean £ standard deviation 26.5+9.3; Jusuf, P. R.
et al., 2006). An earlier report that this number dif-
fered between midget bipolar cells contacting M- or
L-cones (Calkins, D. J. er al., 1994) was not confirmed
by Jusuf P. R. er al. (2006). The number of ribbon
synapses made by RB cells of the rabbit retina was up
to 30 compared to only 15 in the rat retina (Strettoi,
E. er al., 1990; Chun, M. H. ez 4l., 1993), which reflects
the smaller size of RB axon terminals in rats
(Figure 9(a)). The fine structure of the bipolar
cell output synapses in the IPL was first described
from EM by Missotten L. (1965). He identified the
presynaptic ribbon surrounded by vesicles and
the two postsynaptic elements. Dowling J. E. and
Boycott B. B. (1966) named this synaptic arrangement
a dyad. They recognized that one of the postsynaptic
partners at cone bipolar cell dyads was usually a
ganglion cell dendrite, while the other one was an
amacrine cell process (Figure 9(b)). The amacrine
cell process often made within about 0.5-1.0 pm of
the dyad a conventional synapse back onto the bipo-
lar cell axon terminal. This arrangement appears to

be a reciprocal synapse and because most amacrine
cells are inhibitory it is the structural correlate of
negative feedback at the dyad. Bipolar cell axons
receive in addition to reciprocal synapses also input
from amacrine cells not related to the dyads (Sterling,
P. and Lampson, L. A,, 1986). In the case of RB cell
dyads both postsynaptic partners are amacrine cells
(Al and AIl; Famigliett, E. V. and Kolb, H., 1975;
Kolb, H. and Famigliett, E. V., 1976) and Al cells
provide the reciprocal synapses (see Mammalian
Rod Pathways).

The molecular composition of the presynaptic
ribbon of bipolar cell dyads is similar to that of
photoreceptor ribbons. RIBEYE, CtBP2, Kif3a, and
Piccolo have all been localized to the bipolar cell
ribbons (Muresan, V. er al, 1999; Schmitz, F. et al,
2000; tom Dieck, S. ez al, 2005; Deguchi-Tawarada, M.
et al., 2006; Jusuf, P. R. er al, 2006) and this suggests
that the mechanisms of glutamate release is also
comparable to the photoreceptors synapses. Mbl-
bipolar cells of the goldfish retina have a large,
round axon terminal, and vesicle fusion, exocytosis,
and endocytosis have been studied on this model
system in great detail (von Gersdorff, H., 2001;
Berglund, K. er 4/, 2002; Heidelberger, R. er al,
2002; Zenisek, D. er al, 2000; Lagnado, L., 2003;
Zenisek, D. er al, 2003; Singer, J. H. er al, 2004,
Lenisek, D. er al, 2004). The voltage signals that
control neurotransmitter release from bipolar cells
are graded with the intensity of the light stimulus
and maintained according to the duration of the
stimulus. These sustained signals stimulate a contin-
uous cycle of vesicle exocytosis and endocytosis. The
ribbon holds vesicles for exocytosis. The most direct
evidence for this idea comes from the work of
Zenisek D. ez al. (2000) who used total internal reflec-
tion fluorescence microscopy (TIRF) to image
individual vesicles in the synaptic terminal of Mbl1-
bipolar cells.

Glutamate release from bipolar cell terminals
priori depends upon the graded electrical response of
the cell elicited by the light stimulus. However, it 1s
also regulated by diverse feedback mechanisms act-
ing at the dyad. (1) GABA or glycine released by the
amacrine cells can feedback onto the bipolar cell
terminal (Euler, T. and Masland, R. H. 2000;
Shields, C. R. er al, 2000; Matsui, K., er al, 2001;
Freed, M. A. er al, 2003). (2) Bipolar cell terminals
express mGluRs as autoreceptors that regulate vol-
tage-dependent Ca’*-channels (Awatramani, G. B.
and Slaughter, M. M., 2001; Brandstitter, J. H. ez 4/,
1998; Palmer, M. J. ez al., 2003). (3) Bipolar cell axon
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terminals express cannabinoid receptors, which reg-
ulate voltage-dependent K" -channels (Fan, S. F. and
Yazulla, S., 2005). (4) Synaptic vesicles release pro-
tons that inhibit Ca*"-channels and thus inhibit
locally the release (Hosoi, N. er al, 2005).

1.12.8 Glutamate Receptors in
the Inner Plexiform Layer

Bipolar cells release glutamate at their ribbon
synapses (Tachibana, M., 1999) and the GluRs are
clustered in the postsynaptic membranes adjacent to
the ribbons. As a rule, only one member of the dyad
expresses a given GluR subunit, which implies that
the two postsynaptic partners express different
GluRs (Hartveit, E. er al, 1994; Qin, P. and
Pourcho, R. G., 1996; Brandstitter, J. H. ez al, 1997;
Qin, P. and Pourcho, R. G., 1999; Fletcher, E. L. ez al,
2000; Griinert, U. e 4/, 2002). The postsynaptic clus-
ters of GluRs appear as brightly immunofluorescent
puncta when studied by light microscopy and their
density and laminar distribution across the IPL dif-
fers for the different subunits (Figure 10).

1.12.8.1 a-Amino-3-Hydroxy-5-Methyl-4-
Isoxazolepropionic Acid Receptor Subunits

The GluR1-immunoreactive puncta in the IPL have
a stratified distribution and several bands of high and
low expression can be recognized (Figure 10(a)).
Some amacrine and ganglion cells are labeled extra-
synaptically and GluR1 is probably expressed by a
subset of these cell classes. GluR2/3-immunoreac-
tive puncta occur at high density across the IPL with
an increased density along the strata occupied
by the dendrites of cholinergic amacrine cells
(Figure 10(b)). The GluR4 subunit shows an
even distribution of puncta across the OFF- and
ON-sublamina of the IPL (Figure 10(c)). The
GluR2/3 the GluR4 have been
observed at the vast majority of bipolar cell ribbons
in rabbit and primate retinas (Ghosh, K. K. ez 4/, 2001;
Jusuf, P. R. er al., 2006) which implies that at least one
member of the dyad usually expresses an AMPA
receptor. In the case of RB cells it has been shown
that Al cells express the GluR2/3 and GluR4 sub-
units (Ghosh, K. K. ez 4/, 2001; Li, W. er al, 2002).
Physiological recordings from synaptically con-
nected pairs of RB and AIl cells have also shown

and subunits

(b)..GIuR2/3

(d) GluR6/7

Figure 10 Expression of glutamate receptors (GluRs) in the inner plexiform layer (IPL) of the mouse retina. Confocal
fluorescence micrographs of vertical sections that were immunolabeled for GluR subunits. (a) The GIuR1 subunit is found
extrasynaptically in bipolar, amacrine, and ganglion cells. The dashed line (arrowheads) in the outer plexiform layer (OPL)
represents labeling of bipolar cell dendritic tips underneath cone pedicles. A punctate distribution representing synaptic
clustering is found in the IPL. (b) The GIuR 2/3 subunit shows punctate fluorescence in both the OPL and the IPL. (c) The
GluR4 subunit is also found in synaptic hot spots both in the OPL and the IPL. The band of puncta in the OPL is rather wide in
(b) and (c), suggesting that processes associated with rod spherules such as horizontal cell axon terminals are also labeled.
(d) The kainate receptor subunit GIuR 6/7 shows sparse label in the OPL, although many immunofluorescent puncta are
present throughout the IPL. Scale bars =25 um. Adapted from Haverkamp, S. and Wéssle, H. 2000. Immunocytochemical

analysis of the mouse retina. J. Comp. Neurol. 424, 1-23.
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that AMPA receptors mediate the signal transfer
from RB to All cells (Veruki, M. L. er al, 2003;
Singer, J. H. and Diamond, J. S., 2003).

1.12.8.2 Kainate Receptor Subunits

Immunoreactive puncta representing synaptic clus-
ters of kainate receptor subunits KA2 and GIluR6/7
have been found throughout the IPL (Figure 10(d);
Qin, P. and Pourcho, R. G., 1996; Brandstitter, J. H.
et al, 1997; Qin, P. and Pourcho, R. G., 1999). Peng
Y. W. eral. (1995) observed labeling of some amacrine
and ganglion cells for GIuR6/7, suggesting they both
can express kainate receptors. Whole-cell recordings
have shown that some amacrine cells express exclu-
sively kainate receptors others express only AMPA
receptors and many amacrine cells have a mixed
population of GluRs (Dumitrescu, O. N. er al,
2006). Kainate receptors were found to play only a
minor role in generating the light-evoked synaptic
currents of brisk sustained (X) type ganglion cells of
the cat retina (Cohen, E. D., 2000). Synaptic clusters
of the orphan receptor subunits §1/2 have also been
observed throughout the IPL (Brandstitter, J. H. ez 4/,
1997) postsynaptic to OFF-cone, ON-cone, and RB
cells. However, in only one instance the postsynaptic
partner was identified; the Al cell at RB cell terminals
(Ghosh, K. K. e al, 2001; Li, W. e al, 2002).
Unfortunately it is not yet known, which other
GluR subunits, together with the 61/2 subunits, con-
stitute the GIluR receptor channel of Al cells,
however, kainate receptor subunits are the most
probable candidates.

1.12.8.3 N-Methyl-p-Aspartate Receptor
Subunits

Synaptic clusters of NMDA receptor NR1 subunits,
which are a necessary constituent of all NMDA
receptors, have been observed in the IPL, extending
from the border of the amacrine cell layer to the
innermost part of the IPL. There is a marked reduc-
tion of NMDA receptor clusters in the inner part of
the IPL, where RB cells terminate (Fletcher, E. L.
et al., 2000, Kalloniatis, M. er 4, 2004), and signaling
through NMDA receptors appears to have only a
minor role in the signal transfer from RB cells to
AI/AII cells (Boos, R. er al, 1993; Singer, J. H. and
Diamond, J. S., 2003; Veruki, M. L. er 4/, 2003). The
two subunits NR2A and NR2B have also a punctate
distribution in the IPL; however, the density of
puncta differs for the two subunits. Approximately

four bands of higher density can be discerned for the
NR2A subunit, in contrast to a prominent band in the
center of the IPL in the case of the NR2B subunit.
Only ~30% of the NR2A and NR2B clusters were
found to coincide. These results suggest that there
are at least three different types of postsynaptic
NMDA receptor clusters in the IPL: those containing
NR1/NR2A, NR1/NR2B, and only a small number
composed of NR1/NR2A/NR2B.

NMDA receptors play an important role in the
transfer of light signals from cone bipolar cells onto
ganglion cells. This was first demonstrated in the
retina of cold blooded animals (Mittman, S. e al,
1990; Diamond, J. S. and Copenhagen, D. R, 1993;
1995; Matsui, K. er al, 1998; Higgs, M. H. and
Lukasiewicz, P. D., 1999). However, although light
evoked, NMDA receptor mediated, postsynaptic cur-
rents were measured in these studies, spontaneous
miniature postsynaptic currents (SEPSCs) lacked a
NMDA receptor-mediated component. Light-evoked
excitatory synaptic currents of brisk sustained (X)
ganglion cells of the cat retina showed also a signifi-
cant contribution from NMDAR (Cohen, E. D., 2000).
In rat RGCs electrically evoked EPSCs recorded from
ganglion cells were also mediated by both AMPA and
NMDA receptors (Chen, S. and Diamond, J. S., 2002);
however, sEPSCs were mediated solely by AMPA
receptors. This problem was recently solved by the
application of postembedding immunelectron micro-
scopy: AMPA and NMDA receptors are both
aggregated on ganglion cell dendrites postsynaptic to
the bipolar cell ribbon. However, AMPA receptors are
immediately adjacent to the ribbon and the glutamate
release site, while NMDA receptors are found perisy-
naptically at some distance from the ribbon (Zhang, J.
and Diamond, J. S, 2005). They are only activated
during muldvesicular, light-activated glutamate
release and do not detect the small amount of gluta-
mate released by the fusion of a single vesicle (Singer,
J. H. et al., 2004).

1.12.8.4 Metabotropic Glutamate
Receptors

Of the eight different mGluR subtypes known pre-
sently, all but mGluR3 have been shown to be
expressed and distinctly localized in the rodent retina
(Tagawa, Y. et al, 1999). They are clustered at the
bipolar cell output synapses and EM has shown that
they can occupy a pre- and/or postsynaptic position
(Brandstitter, J. H. er al, 1996; Koulen, P. er al, 1996).
Usually only one member of the dyad expresses a
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given mGluR. The distribution of mGluR clusters
across the IPL is different. The subtype mGIluR2 for
instance is enriched in two narrow bands of the IPL
which coincide with the bands of the dendrites of
cholinergic amacrine cells (Koulen, P. er al, 1996).
Postsynaptic ~ clusters  expressing the  subtype
mGluR7are enriched in four broad horizontal bands
and show a reduced density along the cholinergic
bands (Brandstitter, J. H. er al, 1998). The different
mGluR subtypes are unlikely to be involved with the
direct signal transfer from bipolar cells onto the post-
synaptic amacrine and ganglion cells. They are
supposed to be modulators and it has been shown
that GABA( receptors of RB cells are regulated
down by mGluR1/5 (Euler, T. and
Wissle, H., 1998).

agonists

1.12.8.5 Co-Stratification of Pre- and
Postsynaptic Partners in the Inner Plexiform
Layer

Bipolar axons terminate at distinct levels within the
IPL, and different types of amacrine and ganglion
cells also keep their processes at specific levels within

the IPL, which leads to the prediction that they also are
engaged in mututal synaptic contacts (Figures 11(a)—
11(d); Masland, R. H., 2001; Roska, B. and Werblin, F.,
2001; Jusuf, P. R. er al, 2004; Wissle, H., 2004; Lin, B.
et al., 2005; Coombs, J. e al, 2006; Kim, T".J. and Jeon, C.
J., 2006). However, this simple rule has only been
verified in a few instances. Midget bipolar cells of the
primate retina — both ON- and OFF-midget — contact
midget ganglion cells and their axon terminal together
with the ganglion cell dendrites form a kind of glomer-
ulus (Kolb, H. and Dekorver, L., 1991; Calkins, D. J.
et al, 1994; Jusuf, P. R. er al., 2006). Midget ganglion cells
of the primate retina show sustained light responses and
this predicts that midget bipolar cells also have sus-
tained light responses.

Parasol ganglion cells of the primate retina
also occur as OFF- and ON-pairs and their
dendrites stratify in sublamina 2 and sublamina 4,
respectively (Watanabe, M. and Rodieck, R. W., 1989;
Dacey, D. M. and Packer, O. S, 2003; Dacey, D. M,
2004). OFF-parasol cells receive their major, excitatory
input from DB3 bipolar cells (Calkins, D. J,, 1999;
Jacoby, R. A. ez al, 2000), ON-parasol cells from DB4/
DB5 bipolar cells (Marshak, D. W. ezal,, 2002). The DB3

Figure 11 Stratification and functional subdivision of the inner plexiform layer (IPL). (a) Vertical section through a mouse
retina that was double immunostained for calbindin (red) and for Pep 19 (green). Calbindin is expressed in horizontal, some
amacrine, and some ganglion cells. Pep 19 labels rod bipolar (RB) cells, a subpopulation of cone bipolar, amacrine (among
them the cholinergic amacrine cells) and ganglion cells. Their processes subdivide the IPL into distinct strata; among them are
the OFF-(sublamina 1/2) and the ON-(sublamina 3/4) cholinergic strata. The axon terminals of RB cells terminate in stratum
4/5. Adapted from Haverkamp, S. and Wassle, H. 2000. Immunocytochemical analysis of the mouse retina. J. Comp. Neurol.
424, 1-23. (b) Vertical section through a transgenic mouse retina where ganglion cells express green fluorescent protein
under the control of the thy1 promotor (Feng, G. et al., 2000). This putative OFF (C2 type) ganglion cell stratifies in the outer
IPL. (c) This bistratified (putative direction selective (DS)) cell stratifies at the same level as the cholinergic amacrine cells. This
putative ON (A-type) ganglion cell stratifies in the inner IPL. Scale bar= 50 pm.
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bipolar cell of the primate and the b2 cell of the ground
squirrel are probably homologous types (DeVries, S. H.,
2000). Since b2 cells receive their light signals through
AMPA receptors, they have a high temporal transfer
rate. This would be in accordance with the high flicker
fusion frequency of parasol cells (Lee, B. B. ez al, 1988).
Lin B. and colleagues (2005) studied the costratification
of type 7 bipolar cell axon terminals and ganglion cell
dendrites of the mouse retina. One monostratified
ganglion cell and one bistratified cell tightly cofascicu-
late with the axon terminals of type 7 bipolar cells.

The small bistratified ganglion cells of the primate
retina are the blue ON/yellow OFF ganglion cells
(Dacey, D. M. and Lee, B. B,, 1994). They have their
inner dendritic tier in stratum 5 and their outer
dendritic tier in stratum 1 of the IPL. The inner tier
coincides with the axon terminal of blue-cone bipolar
cells (BB in Figure 2), which provide the S-ON input.
The outer ter collects synapses from DB2/DB3
bipolar cells and they provide the M- and L-OFF
input (Calkins, D. J. ez al, 1998; Calkins, D. ], 2001). A
further bistratified ganglion cell of the mammalian
retina is the ON/OFF direction-selective (DS) gang-
lion cell (Amthor, F. R. ez al., 1989; Figure 11(c)). The
inner and outer tier of its dendritic tree coincides
with the level of stratification of ON- and OFF-
cholinergic amacrine (Famiglietti, E. V., 1992) cells.
Mouse cone bipolar cell axon terminals have been
studied with respect to their costratification with the
cholinergic strata (Ghosh, K. K. ez 4/, 2004; Pignatelli, V.
and Strettoi, E., 2004), however, none of the nine
types precisely coincided with the dendrites of cho-
linergic amacrine cells. In the rabbit retina it was
shown that DS ganglion cells receive direct input
from bipolar cells, however, the majority of their
synaptic input is from amacrine cells (Dacheux
etal.,2003).Brown S. and Masland R. (1999) identified
an ON-cone bipolar cell of the rabbit retina by its
immunoreactivity for the carbohydrate epitope
CD15 and demonstrated that CD15-positive bipolar
cells axon terminals stratify within and slightly more
distally of the ON-cholinergic band. In addition, they
follow the pattern of the ON-cholinergic dendrites,
and are, therefore, good candidates for providing
synaptic input to the DS circuitry.

1.12.9 Conclusions

At least 10 different types of bipolar cells transfer the
visual signals from the outer to the inner retina. RB
cells are exclusively connected to rod spherules and

they are involved with the transfer of scotopic signals.
The major distinguishing anatomical feature of the
different types of cone bipolar cells is the level of
stratification of their axons in the IPL, where they
preferentially contact those ganglion and amacrine
cells which have their dendrites at the same level
within the IPL. Some of the bipolar cells select cer-
tain types of cones, such as the midget bipolar cells of
the primate retina or the blue-cone bipolar cells of
most mammals and they transfer a chromatic signal
into the IPL. However, most bipolar cells contact all
cones, usually five to 10, within their dendritic field
and they differ in their intrinsic properties. The
major subdivision is into ON- and OFF-bipolar
cells, and this is based on two different types of
GluRs expressed at their dendrites: ionotropic
GluRs in OFF-bipolars and mGluR6 in ON-bipolars.
OFF-bipolar cells can be further subdivided accord-
ing to the specific expression of AMPA or kainate
receptors. The physiological consequences of this
molecular diversity are different temporal resolution
and possibly different threshold sensitivity. The axon
terminals of bipolar cells in the IPL release glutamate
at their output synapses. The release depends upon
the intrinsic membrane properties of bipolar cells
(HCN, K'-, Na'-, and Ca’"-channels). It can also
be modulated by the mGluR autoreceptors and pos-
sibly by other receptors, such as dopamine or
cannabinoid receptors. Feedback from amacrine
cells has been shown to regulate the bipolar cell
intensity /response function. The postsynaptic part-
ners of bipolar cells, amacrine, and ganglion cells also
express different sets of GluRs, including NMDA
receptors and mGluRs. How this molecular diversity
is translated into the transfer of the light signal
through the retina remains a challenging question.
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