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Orientation selectivity in the primary visual cortex (V1) is a receptive field property that is at once simple
enough to make it amenable to experimental and theoretical approaches and yet complex enough to repre-
sent a significant transformation in the representation of the visual image. As a result, V1 has become an area
of choice for studying cortical computation and its underlying mechanisms. Here we consider the receptive
field properties of the simple cells in cat V1—the cells that receive direct input from thalamic relay cells—and
explore how these properties, many of which are highly nonlinear, arise. We have found that many receptive
field properties of V1 simple cells fall directly out of Hubel and Wiesel’s feedforward model when the model
incorporates realistic neuronal and synaptic mechanisms, including threshold, synaptic depression,
response variability, and the membrane time constant.
Introduction
In most sensory areas of the brain, the local circuit transforms

its input to generate a novel representation of the external

world. The sensory receptive fields that are produced represent

the visible result of a neuronal computation. Sensory transfor-

mations can be subtle, as in the case of the lateral geniculate

nucleus (LGN), in which the center-surround structure of the

input from retinal ganglion cells is largely preserved in the

output from the geniculate relay cells (Hubel and Wiesel,

1962). Or transformations can be dramatic, as in the case of

the retina, in which the pixel-like representation of the visual

image by retinal photoreceptors is transformed into the

center-surround receptive fields of retinal ganglion cells (Kuffler,

1953).

The quintessential example of a complex sensory computa-

tion is the one performed by the primary visual cortex (V1).

There, selectivity for a range of image properties emerges

from relatively unselective inputs. Simple cells in layer 4 of V1,

unlike their LGN inputs, are sensitive to contour length, direction

of motion, size, depth, and most famously, orientation (Hubel

and Wiesel, 1962). As striking as the cortical transformation is,

the resulting changes in the visual representation can be

measured experimentally in quantitative detail and described

with mathematical precision. Few areas outside the visual cortex

have been described so comprehensively and on so many

levels, from basic neuronal response properties, to anatomical

connectivity, to functional architecture. Since the cerebral

cortex is thought to be the primary locus of high-level processes

such as perception, cognition, language, and decision making,

it is no wonder that the visual cortex has become the most

widely studied proxy for computation in the cerebral cortex.

Not only does it lend itself to questions of how its sensory

transformation contributes to visual perception (Gilbert and Li,

2012), but the emergence of orientation selectivity is the model

system for studying how cortical circuitry performs a neuronal

computation.
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Models of Orientation Selectivity
Few computational models have the elegance, simplicity, and

longevity of Hubel and Wiesel’s proposal for how the cortical

circuit generates orientation selectivity. In their 1962 paper,

they proposed that a simple cell becomes orientation selective

by virtue of the excitation it receives from LGN relay cells whose

receptive fields are aligned parallel to the simple cell’s preferred

orientation (Figure 1A). The total excitatory input integrated over

an oriented stimulus that moves across the receptive field will be

nearly identical at all orientations, because the geniculate inputs

respond identically at each stimulus orientation. What varies

instead is their relative timing, which will be nearly simultaneous

for the preferred orientation but spread out in time for the non-

preferred orientations (Figure 1B). Even for nonpreferred stimuli,

however, the total excitatory input is nonzero. A threshold is

therefore required to render the spike output of the cell perfectly

orientation selective, with no response at the orthogonal orienta-

tion (Figure 1B, bottom).

One feature of simple cells that surely prompted Hubel and

Wiesel to propose the feedforward model is the similarity

between the ON and OFF subfields of simple cells and the ON

and OFF centers and surrounds of geniculate relay cells. That

ON subfields of simple cells are in fact driven from input from

ON-center LGN relay cells (and OFF from OFF) was demon-

strated convincingly by spike-triggered averaging of the spike

responses of a simple cell from a simultaneously recorded

LGN cell (Tanaka, 1983). If an excitatory connection is detected,

the receptive field center of the presynaptic LGN cell almost

invariably overlaps a subfield in the simple cell of the same

polarity (Figure 1C), and the stronger the connection, the more

closely aligned the receptive fields (Reid and Alonso, 1995).

Further confirmation of the feedforward model comes from

experiments showing that the LGN relay cell axons that project

into a cortical orientation column—recorded while the cortical

neurons are silenced pharmacologically—have their receptive

fields aligned parallel to the preferred orientation of nearby cells
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Figure 1. The Feedforward Model of
Orientation Selectivity in Primary Visual
Cortex
(A) The feedforward model as originally proposed
by Hubel and Wiesel (1962). Four relay cells from
the LGN (top right), whose receptive fields are
shown to the left, synapse onto a V1 simple cell
(bottom right). The simple cell derives its preferred
orientation from the axis of alignment of these
relay cell receptive fields and others like them that
are not shown.
(B) The response of the feedforward model to
drifting gratings in the preferred orientation (top)
and the orthogonal orientation (bottom). LGN
neurons with spatially offset receptive fields
respond synchronously for the preferred orienta-
tion and asynchronously for the orthogonal orien-
tation (middle panels). The average feedforward
input increases in response to both stimuli, but
only the preferred orientation response is sufficient
to cross threshold (dotted lines) and evoke action
potentials (right panels).
(C) The spatial relationship between the receptive
fields of 23 recorded LGN relay cells (circles) and
the receptive field of their postsynaptic simple cells
(ovals). Each simple cell receptive field, along with
its presynaptic LGNcell receptive fields, havebeen
scaled and shifted to superimpose on an idealized
receptive field. The image is adapted from Reid
and Alonso (1995). Not shown is a tendency for
LGN cells overlapping the center of a simple cell
subregion to make stronger connections than
those overlapping the periphery of the subregions.

(D) The receptive fields of two different sets of LGN relay cells that terminate in one column of V1 (circles), superimposed on the receptive field of
a V1 simple cell recorded in layer 4 of the same column (square). The image is adapted from Chapman et al. (1991).
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recorded prior to silencing (Figure 1D) (Chapman et al., 1991).

Third, the summed receptive fields of a group of LGN cells pro-

jecting to a single orientation column—identified by spike-trig-

gered averaging of cortical field potentials—form a simple-like

receptive field aligned with the column’s preferred orientation

(Jin et al., 2011).

While there is little disagreement that a simple cell’s preferred

orientation is laid out by its geniculate input, less certain is

whether feedforward input is sufficient to explain all of a simple

cell’s behavior, or whether additional circuit elements and

mechanisms are required. Hints supporting the latter interpreta-

tion started to emerge soon after the 1962 paper. Hubel

and Wiesel had made their observations delivering visual

stimuli by hand and judging neuronal responses by ear. The

subsequent introduction of methods for precise stimulus

delivery and response measurement made possible a more

quantitative description of simple cell response properties. A

number of these properties appeared to be inconsistent

with a purely feedforward model, at least a model in which all

the elements were linear, as was commonly assumed. These

properties, which we will address below, include (1) cross-

orientation suppression, (2) contrast invariance of orientation

tuning width, (3) contrast-dependent changes in response

timing and in temporal frequency preference, and (4) the

mismatch between measured orientation tuning and the tuning

predicted by a simple cell’s receptive field organization.

Uncovering the origin of these properties has proven to be

one of the keys to understanding the nature of the cortical

computation.
One comprehensive solution to the origin of simple cell nonlin-

earities was suggested by psychophysics: in the tilt aftereffect

illusion, the perceived orientation of a vertical stimulus is

shifted away from vertical after prolonged viewing of a slightly

oblique stimulus. This result was interpreted to mean that

intracortical inhibition, specifically inhibition between cortical

neurons of different preferred orientations, sharpened orienta-

tion tuning or even created it de novo (Blakemore and Tobin,

1972). This proposal was strengthened by pharmacological

experiments: cortical application of GABAA antagonists cause

a broadening of orientation tuning (Sillito, 1975). Cross-orienta-

tion inhibition, a form of lateral inhibition (Hartline, 1949), but in

the orientation domain rather than the spatial domain, is consid-

ered a natural extension of similar mechanisms either observed

or proposed to operate throughout the brain. Because of the

columnar organization of orientation preference in the cortex,

the orientation domain translates into the spatial domain on the

cortical surface. Cross-orientation inhibition can then emerge

from simple, spatially defined rules of cortical connectivity.

Cross-orientation inhibition has been proposed to operate in

several distinct modes, depending on the orientation depen-

dence and amplitude of inhibitory interconnections. In attractor

models, feedback inhibition forms a set of multistable attractors

(Ben-Yishai et al., 1995; Somers et al., 1995), in which the width

of orientation tuning of cortical cells is determined by the lateral

extent of cortico-cortical connections. In recurrent models,

recurrent excitatory connections amplify feedforward inputs in

a way that is sculpted by lateral inhibitory connections (Douglas

et al., 1995). Here again, the width of tuning and other aspects of
Neuron 75, July 26, 2012 ª2012 Elsevier Inc. 195
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cortical responses are set by intracortical rather than thalamo-

cortical interconnections. In balanced models, strong recurrent

excitation and inhibition are thought to balance one another

tightly (van Vreeswijk and Sompolinsky, 1998). In addition to

explaining many aspects of simple cell behavior, this balance

can explain the large variability of cortical spiking responses

(Shadlen and Newsome, 1998). In push-pull models, cross-

orientation inhibition arises from feedforward inhibition from

simple cell-like inhibitory interneurons (Troyer et al., 1998,

2002), which themselves receive no inhibition and so fire at the

null orientation, helping to establish contrast-invariant orienta-

tion tuning. In normalization models, a large pool of cortical

interneurons of all different preferred orientations generates

shunting inhibition proportional in strength to stimulus contrast

at all orientations (Carandini et al., 1997; DeAngelis et al., 1992;

Heeger, 1992). The excitatory thalamic inputs are therefore

normalized (divided) by a signal proportional to contrast.

Normalization models have been highly successful in explaining

many of the contrast-dependent, nonlinear properties of simple

cells and will be considered below in more detail.

One central driving force for inhibition-based models of

cortical computation has been how well they can account for

all of the simple cell’s response nonlinearities (Carandini and

Heeger, 2012). Aside from pharmacological experiments

showing a degradation of orientation selectivity under GABAA

blockade, however, direct experimental evidence for strong

cross-orientation inhibition in cat V1 is equivocal. Intracellular

recording of membrane potential (Vm) in simple cells shows little

hyperpolarization in response to nonpreferred stimuli (Ferster,

1986). Measurements of Vm alone, however, cannot rule out

the presence of shunting inhibition; an increase in membrane

conductance with a reversal potential at rest would generate

no hyperpolarization yet would reduce the effectiveness of excit-

atory current in depolarizing the membrane. Detecting the pres-

ence of shunting inhibition requires injecting current into a cell

while presenting visual stimuli to move the membrane potential

away from the reversal potential of inhibitory synapses. Such

experiments suggest that inhibition in simple cells has the

same preferred orientation and tuning width as excitation

(Anderson et al., 2000; Douglas et al., 1995; Ferster, 1986;

Martinez et al., 2002; though see Monier et al., 2003). Overall,

it appears that whatever shunting inhibition is present at the non-

preferred orientation is too small to support the inhibitory models

of orientation tuning.

Additional evidence that visually selective synaptic inhibition

does not contribute directly to shaping orientation selectivity

comes from experiments in which visually evoked action

potentials in cortical cells are suppressed. During inactivation,

either by cooling (Ferster et al., 1996) or by electrical stimulation

(Chung and Ferster, 1998), orientation selectivity of the remaining

excitatory input, the majority of which probably arises from the

LGN, changes little. That is, the LGN inputs alone generate

membrane potential responses that are as well tuned for orienta-

tion as the inputs from the fully functioning cortical circuit.

These results give rise to an apparent contradiction. The feed-

forward input to simple cells is probably organized very much as

Hubel and Wiesel proposed but apparently fails to account for

many properties of simple cells. Inhibition-based models can
196 Neuron 75, July 26, 2012 ª2012 Elsevier Inc.
account for these properties but lack definitive experimental

support.

The resolution to this contradiction lies in the specific imple-

mentation of the feedforward model. The most common imple-

mentations tend to be highly simplified: LGN responses are

assumed to be linearly related to stimulus strength; LGN cells

excite simple cells in proportion to their spike rates. In contrast,

real neurons are filled with nonlinear processes: spike threshold,

synaptic depression, trial-to-trial response variability, driving

force nonlinearities on synaptic currents, response saturation,

and more. These nonlinear processes, it turns out, are critical

in generating simple cell behavior: when we incorporate them

into the feedforward model, almost all of the nonlinear properties

of simple cells emerge in quantitative detail. Indeed, these prop-

erties are nearly unavoidable when the model is based on real-

istic synaptic and cellular mechanisms. Unlike many neuronal

models, the resulting feedforward model is heavily constrained

by experimental data. There are few intrinsic assumptions, few

parameters, and all but two parameters are experimentally con-

strained; and the two unconstrained parameters can vary over

a wide range without affecting the model’s fit to the data. We

will consider each of the nonlinear response properties of simple

cells in turn and discuss how an amended feedforward model

accounts for them.

Cross-orientation Suppression
Cortical spiking responses to a preferred (‘‘test’’) grating (Fig-

ure 2A) are profoundly attenuated, or even completely extin-

guished, by simultaneous presentation of an orthogonal

(‘‘mask’’) grating (Figure 2B). This cross-orientation suppression

has long been considered functional evidence for inhibition

between neurons of distinct orientation preferences (cross-

orientation inhibition). In support of this interpretation, antago-

nists of GABAA-mediated inhibition reduce cross-orientation

suppression in visually evoked potentials (Morrone et al., 1982,

1987). Cross-orientation suppression is also sensitive to the

mask orientation, suggesting that neurons selective for orienta-

tion, such as those found in cortex, are key circuit elements

underlying suppression.

Nevertheless, aspects of cross-orientation suppression

appear to be at odds with a cortical mechanism. First, cross-

orientation suppression is largely monocular (Ferster, 1981;

Walker et al., 1998); a null-oriented mask stimulus presented to

one eye has little effect on a preferred-oriented test stimulus

presented to the other eye, whereas the majority of cortical

neurons—presumably including inhibitory interneurons—are

binocular. Second, strong suppression can be evoked by mask

stimuli of high temporal frequency, beyond the frequencies to

which most cortical neurons can respond (Freeman et al.,

2002). Third, unlike most cortical cells, suppression is relatively

unaffected by contrast adaptation (Freeman et al., 2002). Fourth,

the onset of suppression is coincidentwith the onset of excitatory

neuronal responses, earlier than the onset of inhibition (Smith

et al., 2006). And finally, in intracellular recordings, inhibition

appears to decrease, rather than increase, when amask stimulus

is superimposed on a test stimulus (Priebe and Ferster, 2006).

All of these features of cross-orientation suppression aremore

reminiscent of LGN relay cells than they are of V1 cells; relay cells
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Figure 2. Cross-orientation Suppression in
a Feedforward Model of Visual Cortex
(A and B) The spatial receptive fields of LGN
relay cells (colored circles) are superimposed on
top of a 32% contrast vertical grating (A) or
a plaid composed of 32% horizontal and vertical
gratings (B).
(C and D) Stimulus luminance is plotted as a func-
tion of time for two LGN relay cells, indicated by
color (C, grating; D, plaid).
(E and F) The contrast response curve of LGN relay
cells. The arrows indicate the contrast passing
over each relay cell’s receptive field (E, grating;
F, plaid).
(G and H) The modeled responses of the relay cells
based on the contrast passing over their receptive
fields include both saturation and rectification
(G, grating; H, plaid).
(I and J) The average input to a target V1 simple
cell. The average relay cell input is about 10%
less for the plaid stimulus (I) than for the grating
stimulus (J).
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are monocular, respond at high temporal frequency, adapt little

to contrast, and, by definition, provide the excitatory input to

the cortex. It has been proposed, therefore, that cross-orienta-

tion suppression arises from nonlinear interactions within the

thalamocortical projection itself, rather than from within the

cortex (Carandini et al., 2002; Ferster, 1986). One nonlinearity

is synaptic depression: by increasing the overall level of activity

in LGN cells, themask stimulus could increase the overall level of

depression at the thalamocortical synapses, thereby reducing

the excitatory drive evoked by the test stimulus. Thalamocortical

depression, however, may not be strong enough to account fully

for cross-orientation suppression (Boudreau and Ferster, 2005;

Li et al., 2006; Reig et al., 2006).

Alternatively, cross-orientation suppression may arise from

two simple and well-described response nonlinearities of LGN

relay cells: contrast saturation and firing-rate rectification

(Ferster, 1986; Li et al., 2006; Priebe and Ferster, 2006). In

response to drifting gratings, LGN relay cells modulate their firing

rates in synchrony with the grating cycles, but because LGN

relay cells have low spontaneous firing rates, high-contrast

stimuli cause response rectification, clipping the downward

phase of the response at 0 spikes/s (Figures 2C and 2D). Further,

LGN responses do not increase linearly with contrast but instead

saturate for contrasts above 32% (Figures 2E and 2F).

When the test andmask have identical contrasts, superimpos-

ing them results in a plaid pattern that moves up and to the right

(Figure 2B, white arrow). Some LGN relay cells (e.g., Figure 2B,

red) lie on a diagonal in the plaid stimulus where the dark bars

from the two gratings superimpose, alternatingwith the locations

where the bright bars superimpose. The result is a luminance

modulation exactly twice as large as that generated by the test

or mask stimuli alone (Figure 2D, red). The receptive fields of

other LGN cells (e.g., Figure 2B, blue) lie at a location where

the bright bars of one grating superimpose on the dark bars of

the other and vice versa. These LGN cells see no modulation

of luminance, and so their responses fall to zero (Figure 2D, blue).

Because the red curve has doubled in size while the blue one

has fallen to zero, the sum of the two curves in Figure 2C is the
same as the sum of those in Figure 2D. For a purely linear

system, in which the response of the LGN cells is proportional

to the stimulus, and the simple cell sums its LGN inputs, the

same would be true of the simple cell’s Vm responses: the depo-

larization evoked by test + mask would equal the depolarization

evoked by the test grating alone. It is the underlying assumption

of linearity in many feedforward models, then, that leads to the

conclusion that inhibition is required to explain cross-orientation

suppression.

Contrast saturation and response rectification, however, are

highly nonlinear. For the test + mask stimulus, the responses

of the LGN cells that see no contrast modulation necessarily still

fall to zero. But the responses of those LGN cells that see twice

the contrast modulation (e.g., Figure 2H, red neuron) do not

double. Their response to the test stimulus itself was already

near saturation, so doubling the stimulus contrast increases

the cell’s responses only slightly. As a result, the sum of the

LGN responses—and therefore the input to the simple cell—falls

in the presence of the mask (compare Figures 2I and 2J).

Introducing realistic contrast saturation and rectification to an

otherwise linear feedforward model results in cross-orientation

suppression that is almost identical to that observed in real

simple cells. In the model, the depolarization in a simple cell

was taken to be proportional to the summed responses of eight

LGN cells whose receptive fields were aligned in space.

Response saturation and rectification were inserted by drawing

the LGN responses from a database of the recorded responses

of cat LGN cells (Priebe and Ferster, 2006). Cross-orientation

suppression in the model matched closely the suppression

observed in the Vm responses of V1 simple cells: 9% for the

high-contrast test gratings and 52% for low-contrast test grat-

ings (Priebe and Ferster, 2006).

To calculate the corresponding cross-orientation suppression

in the spike responses of the model cell, the depolarization

evoked by each stimulus was raised to the third power, to

simulate the expansive nonlinearity of threshold as smoothed

by trial-to-trial variability. The resulting cross-orientation sup-

pression of the model’s spiking responses (29% and 89% for
Neuron 75, July 26, 2012 ª2012 Elsevier Inc. 197
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Figure 3. Contrast Invariance of Orientation
Tuning
(A) Orientation tuning curves of a simple cell
derived from a simple feedforward model for
different stimulus contrasts. Red dots indicate the
high-contrast null-oriented stimulus and the low-
contrast preferred stimulus.
(B) A threshold-linear relationship between Vm and
spike rate.
(C) The predicted orientation tuning curves for
spike rate.
(D) Tuning curves for spike rate in real recorded V1
simple cells show nearly identical width at all
contrasts and zero response at the null orientation.
(E and F) Orientation tuning curves for Vm (E) and
spike rate (F) at 4% (gray) and 64% (black) contrast
recorded intracellularly from a simple cell in cat V1.
This cell probably received the bulk of its synaptic
input from the LGN, as indicated by the significant
depolarization at the null orientation (E).

(G and H) Vm (G) and spike (H) responses at 4% and 64% contrast for a simple cell that probably received the bulk of its synaptic input from other orientation-
selective cortical cells, since it shows no depolarization at the null orientation (G). All response amplitudes are measured at the peak of the depolarization or spike
rate increase evoked by a stimulus, which we derive from the mean response plus the amplitude of the response harmonic component at the stimulus frequency
(DC + F1).
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high- and low-contrast test stimuli) is consequently larger than

what is predicted for Vm and is comparable to what has been

observed experimentally.

While nonlinearities in relay cell responses account for the

mask-induced reduction in the modulation component of simple

cell Vm, these nonlinearities also predict a rise in the mean

LGN input to V1 neurons, which is not observed experimentally.

This discrepancy might arise in part from synaptic depression at

the thalamocortical synapse (Carandini et al., 2002; Freeman

et al., 2002) and because many simple cells receive less than

half of their excitatory input from the LGN (Chung and Ferster,

1998; Ferster et al., 1996). In addition, some of the predictions

of this model appear at odds with the interactions between

low-contrast test + mask, for which relay cell contrast saturation

should have little effect but nonetheless have been reported to

interact in cortical complex cells (Busse et al., 2009; MacEvoy

et al., 2009). Nevertheless, careful consideration of the properties

of the thalamic input to cortical neurons reveals that a realistic

feedforward model gives rise to cross-orientation suppression.

Contrast Invariance of Orientation Tuning
Natural stimuli are composed of a wide range of stimulus

features. In order to extract these features properly, sensory

systems must detect and respond selectively to stimulus

features even in the face of large changes in signal strength. A

primary method to address this problem is gain control, in which

neurons adjust their responses on the basis of signal strength

while maintaining the same relative feature selectivity. In this

manner, the ratio of the responses of neurons with different

stimulus preferences would be invariant to changes in stimulus

strength and would therefore become a straightforward,

strength-independent indicator of the stimulus parameter

(Carandini and Heeger, 2012).

In V1, the width of orientation tuning of simple cells is invariant

to stimulus contrast; the orientation tuning curve simply scales

with contrast (Alitto and Usrey, 2004; Sclar and Freeman,

1982; Skottun et al., 1987). Contrast invariance, however, pres-

ents considerable difficulty for feedforwardmodels of orientation
198 Neuron 75, July 26, 2012 ª2012 Elsevier Inc.
selectivity (Figure 3). A linear feedforward model predicts that

the orientation tuning curve for the peak synaptic input from

a row of LGN relay cells is approximately Gaussian in shape (Fig-

ure 3A). The curves ride on a nonzero offset because the LGN

relay cells respond equally, although with different relative

timing, at all orientations, including the null orientation. Thus,

as relay cells’ responses increase with contrast, both the offset

and the amplitude of the simple cell’s tuning curve increase pro-

portionately. When these tuning curves for Vm are transformed

by a simple threshold (Figure 3B), the predicted tuning curves

for spike rate (Figure 3C), unlike in real simple cells (Figure 3D),

are no longer contrast invariant. This apparent failure of the feed-

forward model is highlighted in Figure 3 by the red dots, which

mark the responses to a high-contrast null stimulus and low-

contrast preferred stimulus.

In some simple cells (Figures 3G and 3H), not even the Vm

responses conform to the predictions of the feedforward

model. Instead, they are themselves contrast invariant, with

nearly identical tuning curve widths at different contrasts and

virtually no depolarization at the null orientation at any contrast

(Figure 3G). The spike-rate tuning curves are narrower than

those for Vm (Figure 3H) but again do not narrow with contrast

as would occur with a simple threshold nonlinearity.

Inhibition can easily account for the contrast invariance of real

simple cells. Although the details vary, computational models

have been developed that achieve contrast invariance using

either cross-orientation inhibition (Troyer et al., 1998) or omni-

orientation inhibition (Ben-Yishai et al., 1995; Somers et al.,

1995). Two experimental findings, however, suggest a different

arrangement. First, simple cells receive little inhibition or excita-

tion at the null orientation (Anderson et al., 2000). This observa-

tion would suggest that simple cells like those in Figure 3G, with

contrast-invariant synaptic input, receive their dominant input

from other cortical cells, rather than the LGN, since the spike

output of most cortical cells is itself contrast invariant. In support

of this proposal, in simple cells with invariant synaptic input,

inactivation of the cortical circuit greatly reduces the size of visu-

ally evoked input (Finn et al., 2007). Conversely, in simple cells
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and the Origin of Contrast-Invariant
Orientation Tuning in Simple Cells
(A–C) A power-law relationship between Vm and
spike rate (B) will transform a set of Gaussian
orientation tuning curves for Vm with identical
widths (A) into a set of Gaussian tuning curves for
spike rate, again with identical, but narrower,
widths (C). Tuning curves with no offset from rest,
as in (A), are typical of cells dominated by cortical
input.
(D) Amplitudes of individual Vm responses (points)
and mean response amplitude (curve) for low and
high contrasts recorded intracellularly from
a simple cell.
(E) Same as (D) but derived from a feedforward
model as described in the text.
(F) Intracellularly recorded Vm responses to six
cycles of a grating at three different combinations
of orientation and contrast.
(G) Average and trial-to-trial standard deviation
(shading) for the three stimuli.
(H) Average spike responses for the three stimuli.
(I–K) As in (A)–(C), for a simple cell dominated by
input from the LGN. The Gaussian-shaped tuning
curves for Vm therefore ride on a contrast-depen-
dent offset (I). In order to achieve contrast-
invariant orientation tuning of the spike rate
responses (K), the relationship between Vm and
spike rate must be contrast dependent (J), as
determined by the contrast dependence of trial-to-
trial variability (D).
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that receive most of their synaptic excitation from the LGN

(Figure 3E), the Vm tuning curve rides on top of a contrast-depen-

dent vertical offset as predicted by the feedforward model

(Figure 3A).

Even if the feedforward model can explain the origins of the Vm

tuning curves in Figures 3E and 3G, explaining how these curves

are transformed into contrast-invariant spike-rate tuning curves

in Figures 3F and 3H ismore complex. The key lies in the ongoing

cortical response variability, or noise, and how it affects the rela-

tionship between average Vm and spike rate (Anderson et al.,

2000). Tuning curves for visual responses are generally derived

from the averages of numerous trials. What is needed to under-

stand contrast invariance, therefore, is not the familiar threshold-

linear relationship between instantaneous Vm and spike rate but

the relationship between mean Vm and mean spike rate. Mean

spike rate, however, depends not only on average Vm but also

on trial-to-trial variability (Carandini, 2004).

Consider, for example, a stimulus that evokes amean depolar-

ization that carries Vm, on average, half of the way toward

threshold. One might expect such a stimulus to evoke, on

average, no spikes. But because of trial-to-trial variability,
Neuron
on some trials Vm actually exceeds

threshold, whereas on others it stays

near rest. The mean Vm is subthreshold,

and yet the mean spike rate is no longer

0. Thus, for a given mean Vm, a higher

variability leads to a higher mean spike

rate. Similarly, for given variability, a

higher mean Vm leads to a higher mean

spike rate. Most importantly, the mean
spike rate increases gradually, starting immediately from the

resting potential, rather than remaining at 0 until threshold. This

smoothing of the instantaneous threshold-linear relationship

can be derived from a convolution of the threshold-linear curve

with an approximately Gaussian distribution of trial-to-trial vari-

ability in Vm. The result approximates a power-law relationship,

in which spike rate is proportional to (Vm � Vrest)
p (Hansel and

van Vreeswijk, 2002; Troyer et al., 2002).

A power law is the one relationship between mean Vm and

mean spike rate that can preserve contrast invariance of orienta-

tion tuning in spike rate for simple cells with invariant Vm, (i.e., in

cells with predominantly cortical input, Figure 3G). Raising the

Gaussians of the Vm responses, each with width s, to a power

p generates a new set of Gaussians for the spike responses,

all with width s 0 = s/Op (Figures 4A–4C). Since in most

cells, p lies somewhere between 2 and 5 (Priebe et al., 2004),

threshold generates a narrowing, or iceberg effect, of tuning

width by a factor between 1.4 and 2.2.

Trial-to-trial variability also solves the problem of how the

same mean depolarization for high-contrast preferred and low-

contrast null stimuli (Figure 3E, red dots) can generate different
75, July 26, 2012 ª2012 Elsevier Inc. 199
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mean spike rates (Figure 3F, red dots) for simple cells dominated

by input from the LGN (Finn et al., 2007). We know that mean

spike rate depends on both mean Vm and trial-to-trial variability.

Since mean Vm is the same for the two conditions, one of two

things must change with contrast: either biophysical threshold

or trial-to-trial variability. Biophysical threshold does vary some-

what in vivo (Azouz and Gray, 2000; Yu et al., 2008) in part

because of moment-to-moment changes in dVm/dt (Hodgkin

and Huxley, 1952). But it does not change systematically with

contrast. Trial-to-trial variability of the Vm responses, on the

other hand, does. Figure 4D shows the average tuning curves

at high and low contrast, along with the trial-to-trial variability

(individual points), in which a trial is one cycle of a drifting grating.

The larger vertical spread of points at low contrast leads to

a systematic increase in the mean spike rate evoked by a given

mean Vm.

The effects of a change in variability on the relationship

between mean Vm response and mean spike rate are evident

in raw membrane potential traces (Figure 4F). The Vm response

to a high-contrast preferred stimulus (Figure 4F, black) is

highly stereotyped across cycles and has a low standard devia-

tion (Figure 4G, gray shading). Vm reaches threshold on every

stimulus cycle and evokes significant numbers of spikes

(Figure 4H, black). The Vm response to the high-contrast null

stimulus (Figure 4F, blue) also varies little from trial to trial, has

a low standard deviation (Figure 4G, blue), and because it is

below threshold on nearly every trial, evokes few spikes

(Figure 4H, blue). The response to a low-contrast preferred stim-

ulus (Figure 4F, green) differs significantly in character. Its mean

response (Figure 4G, green) peaks at exactly the same sub-

threshold potential as the high-contrast null response

(Figure 4G, blue) but has far greater trial-to-trial variability and

standard deviation (Figure 4G, green shading). Because of the

increased variability, on some trials the cell reaches threshold

(Figure 4F, cycles 2 and 3) and the resulting mean spike rate is

significant (Figure 4H, green).

We can now summarize the full transformation between Vm

and spike rate for simple cells that receive their dominant input

from the LGN. The Vm tuning curves in Figure 4I are transformed

by a different power law for each contrast (Figure 4J) to give the

spike-rate tuning curves in Figure 4C. As variability rises with

decreasing stimulus contrast, the mean spike rate evoked by

any given mean Vm rises as well. Thus, two stimulus conditions

that evoke similar mean Vm responses evoke very different

numbers of spikes (Figures 4I–4J, red dots).

If response variability and its contrast dependence contribute

to the contrast invariance of orientation tuning, the next question

becomes, ‘‘What is the source of the Vm response variability?’’

One possible source is trial-to-trial changes in cortical excit-

ability. In this case, feedforward thalamic input would be stable

from trial to trial, whereas amplification by the cortical circuit

would vary from trial to trial. Intracortically generated shunting

inhibition, for example, could modulate variability in a contrast-

dependent manner (Monier et al., 2003), perhaps in association

with the occurrence of cortical up and down states (Haider and

McCormick, 2009; Stern et al., 1997). To determine the contribu-

tion of the cortical circuit to response variability of simple cells,

Sadagopan and Ferster (2012) measured variability while the
200 Neuron 75, July 26, 2012 ª2012 Elsevier Inc.
cortical circuit was inactivated. As mentioned above, inhibition

evoked by electrical stimulation of the cortex suppresses spike

responses locally, without strongly affecting the LGN (Chung

and Ferster, 1998). Even with the cortical circuit inactivated, at

all orientations, Vm responses to flashing high-contrast stimuli

still showed less variability than did responses to low-contrast

stimuli, suggesting that intracortical circuitry neither generates

nor amplifies variability in a contrast-dependent manner.

An alternate source of contrast-dependent changes in cortical

response variability is the feedforward thalamic input. In this

hypothesis, spontaneous fluctuations in the retina and the LGN

are suppressed by visual stimulation in a manner that is depen-

dent on the strength of the visual stimulation. To test this

possibility, Sadagopan and Ferster (2012) made extracellular

recordings from LGN cells under the same conditions as those

Finn et al. (2007) used to make intracellular recordings from

simple cells. As described previously (Hartveit and Heggelund,

1994; Sestokas and Lehmkuhle, 1988), for a given response,

variance was lower at high contrast than at low contrast. Over

the population, the average Fano factor (variance/mean) drop-

ped nearly 45% (from 2.1 to 1.3) between 2% contrast and

32% contrast.

As suggestive as this change in variability is, however, it alone

cannot explain the Vm response variability in simple cells.

Cortical simple cells clearly pool the inputs from a number of

LGN relay cells, and if the variability in each of those inputs

were completely independent, then the variability in the simple

cell would be lower than the variability in the individual inputs

by ON, where N is the number of inputs. In that case, the Vm

response variability of a simple cell with 10–20 independently

varying LGN inputs would be three to four times lower than the

variability of individual LGN relay cells, far lower than what is

observed in simple cells. If, on the other hand, response vari-

ability in LGN relay cells were perfectly correlated, then variability

in a simple cell’s Vm responses would be the same as in its

presynaptic LGN cells. Simultaneous recording in groups of

nearby LGN cells shows that the correlation coefficient for vari-

ability between pairs of cells falls in the range of 0.25, with little

variation as a function of stimulus contrast (Sadagopan and

Ferster, 2012).

With measurements of LGN response variability, its depen-

dence on contrast, and its cell-to-cell correlation, it is possible

to construct a highly constrained feedforward model of a V1

simple cell. Sadagopan and Ferster (2012) simulated simple cells

with input from between 8 and 32 individual LGN cells arranged

in two subfields with aspect ratios between 2 and 4. Each

presynaptic LGN cell generated a change in conductance in

themodel simple cell in proportion to its spike rate, after applica-

tion of rate-dependent synaptic depression (Boudreau and

Ferster, 2005). The simple cell’s resting conductance and the

peak conductance evoked by an optimal stimulus were taken

from intracellular measurements (Anderson et al., 2000). Orienta-

tion tuning curves for the mean Vm response in the modeled

simple cell are shown in Figure 4E at two different contrasts

(solid curves), along with the responses on individual trials

(points). The model’s response variability compares well to that

of real simple cells (Figure 4D) in both the relative amplitude of

themean responses and the contrast-dependent—and relatively
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Figure 5. The Match between Measured
Width of Orientation Tuning and that
Predicted by Receptive Field Maps
(A and B) Simple cell receptive field maps based
on spike rate (A) and membrane potential (B) are
generally matched. Red indicates spatial locations
with preference for OFF and green indicates pref-
erence for ON.
(C) Orientation tuning curves measured from peak
spike rate (black) are narrower than those pre-
dicted from receptive field maps (blue).
(D) Measured and predicted tuning curves are
matched for membrane potential.
(E) Population data showing the mismatch
between measured and predicted tuning width in
spike rate data (replotted from Gardner et al.,
1999).
(F) Population data showing the match between
measured and predicted tuning width in mem-
brane potential data (replotted from Lampl et al.,
2001).
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orientation-independent—change in trial-to-trial variability.

These features of the responses are relatively robust to changes

in the two free parameters of the model, the number of LGN

inputs, and the aspect ratio of the simple cell receptive field.

One surprising aspect of the model is that the match with

the data requires the nonlinearities of synaptic depression and

of the relationship between conductance and Vm (‘‘driving

force nonlinearity’’). When these are removed from the model,

the trial-to-trial variability becomes less dependent on contrast

andmore dependent on orientation. In other words, it is a combi-

nation of biophysical mechanisms that contribute to the contrast

invariance of V1 simple cell responses.

Mismatch of Receptive Field Maps and Orientation
Tuning
If orientation tuning were derived solely from the spatial organi-

zation of LGN input, it should be possible to predict the orienta-

tion tuning curve of a simple cell from a detailed map of its

receptive field. That is, if both the orientation tuning curve and

the receptive field map arise from the spatial organization of

the thalamic input, there should be a direct correspondence

between the two. Indeed, predictions derived from the receptive

field map and measured orientation tuning curves match closely

in orientation preference. When assayed from spike rate,

however, there is a strong mismatch between predicted and

measured width of tuning (Gardner et al., 1999; Jones and

Palmer, 1987). The measured tuning is far narrower than the

predictions (Figures 5A–5C).

This difference in selectivity has often been interpreted as

evidence for intracortical cross-orientation inhibition. Lateral

inhibition—particularly shunting inhibition—could selectively

antagonize the feedforward excitatory input at orientations to

either side of the preferred. Predicted tuning curveswould reflect

only the broadly tuned thalamocortical input, whereas measured

tuning curves would include the sharpening effects of intracort-

ical inhibition. As noted above, however, direct evidence for

cross-orientation inhibition is not consistently observed.

An alternative mechanism that can account equally well for

the tuning mismatch, and is present in all neurons, is spike
threshold. Threshold allows only the largest membrane potential

deflections—those evoked by orientations close to the preferred

orientation—to evoke spikes. This iceberg effect narrows the

orientation tuningmeasured from spike rate about 3-fold, relative

to the tuning for Vm responses (Carandini and Ferster, 2000;

Volgushev et al., 2000). If threshold were responsible for the

selectivity mismatch between receptive field maps and tuning

curves, then a number of consequences follow. First, the

mismatch between measured and predicted tuning width

for spike rate responses should be comparable to the 3-fold nar-

rowing of the iceberg effect. Second, the mismatch should

disappear if threshold were taken out of the equation. And

indeed it has been found (Lampl et al., 2001) that the measure-

ments of tuning width match closely with predictions drawn

from receptive field maps when both are drawn from Vm

responses (Figures 5D–5F).

This match at the membrane potential level constrains the

locus of the mismatch between tuning curves and receptive field

maps to a point after the integration of synaptic inputs into

membrane potential in the cortical simple cell. If synaptic inhibi-

tion were the mechanism underlying the mismatch between

receptive field maps and tuning curves, then the mismatch

would be evident in membrane potential as well.

If threshold so clearly narrows the orientation tuning curves,

one question that remains is why there is no commensurate

effect on the receptive field map? Why do the maps derived

from spike rate and membrane potential match closely (Figures

5A and 5D)? The answer lies in the nature of stimuli employed

to measure the receptive field maps. Receptive field maps

are generally derived from a noise stimulus in which spots of

light are flashed randomly (and independently) at each location

in the receptive field simultaneously. At any one moment,

several excitatory locations are likely to be on, and the

membrane potential fluctuates near threshold. In this case, loca-

tions that on their own evoke only subthreshold membrane

potential responses (were they to start from rest) can still influ-

ence the ongoing spike rate and be detected in spike rate

recordings. Thus, a noise stimulus circumvents the threshold

nonlinearity, resulting in a spiking receptive field map that is
Neuron 75, July 26, 2012 ª2012 Elsevier Inc. 201
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Figure 6. The Change in Temporal
Frequency Tuning between LGN and Cortex
(A–C) Temporal frequency tuning for peak
response at two different contrasts for an LGN cell
(A), and the Vm responses (B), and spike rate
responses (C) of a V1 simple cell.
(D) Response phase versus temporal frequency for
three different LGN cells.
(E) A histogram of the visual latency for 23 LGN
cells, where visual latency is the slope of the
relationship between phase and TF, as in (D).
(F) Averaged single-cycle responses of 23 LGN
cells to drifting gratings at four different TFs (gray).
The responses have been shifted to have identical
temporal phases at the stimulus frequency. The
responses of all 23 cells are then averaged to
model the input to a simple cell (black).
(G) As in (F), but here the LGN responses are
shifted relative to one another according to their
visual latencies (D and E).
(H) A comparison of the model simple cell
responses from (F) and (G).
(I) Temporal frequency tuning curves from a model
simple cell. Moving from right to left, for each curve
one additional mechanism has been added to the
model as indicated by the color code.
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comparable to that recorded directly from Vm responses

(Mohanty et al., 2012).

Threshold is also likely to provide the explanation for why

pharmacological blockade of GABAA-mediated inhibition

broadens orientation tuning in cortical cells (Sillito, 1975). Block-

ing inhibition appears to increase the overall excitability of

cortical neurons such that previously ineffective stimuli on the

edges of the spike-rate tuning curve become suprathreshold

(Katzner et al., 2011).

Temporal Nonlinearities in Simple Cell Responses
Up to now, we have considered receptive field properties in the

spatial domain—that two stimuli of different orientations sup-

press one another, that orientation tuning is contrast invariant,

and that the width of orientation tuning is narrower than predic-

tions based on the receptive field map. Here we consider three

temporal aspects of simple cell responses that also fail to

emerge from the simplest forms of the feedforward model.

First, simple cells do not respond well to rapidly changing

stimuli. Compared to LGN cells, the preferred temporal frequen-

cies (TFs) of simple cells are lower by a factor of 2 (Hawken et al.,

1996; Orban et al., 1985). Here, temporal frequency refers to the

number of bars of the drifting grating that pass over the receptive

field in each second. Compare, for example, the TF tuning of the
202 Neuron 75, July 26, 2012 ª2012 Elsevier Inc.
LGN cell in Figure 6A (black) and the

simple cell in Figure 6C (black). The peaks

of the tuning curves are shifted relative to

one another, as are the TF50 values

(arrows; the frequency at which the

response amplitude falls to 50% of its

peak). Note that the simple cell’s Vm

responses (Figure 6B) fall somewhere

between the LGN and the simple cell’s

spike responses (Figures 6A and 6C).

This mismatch in preferred TF between
LGN and cortex does not represent a nonlinearity; a linear, low-

pass RC filter could shift the peak frequency of a simple cell’s

output relative to its input.

The second temporal feature of simple cells is that the

preferred TF in simple cells decreases almost 2-fold with

decreasing stimulus contrast (Albrecht, 1995; Carandini et al.,

1997; Hawken et al., 1996; Holub and Morton-Gibson, 1981;

Reid et al., 1992). Compare, for example, the black and gray

tuning curves in Figure 6C. This property does represent a non-

linearity: the transformation between stimulus and response

changes with stimulus strength (contrast).

One element that surely contributes to the mismatch in

preferred TF between simple cells and their synaptic input

from the LGN is the membrane time constant, t. Together, the

membrane input resistance R and membrane capacitance C

form a linear low-pass filter with a time constant t = RC, which

lies near 15 ms for most simple cells (Anderson et al., 2000).

The frequency at which such a filter attenuates its input by

a factor of 2 (f3dB = 1/2pt) is about 11 Hz. The presence of this

filter can explain about one-half the difference between preferred

TFs in the Vm responses of simple cells and in the spike

responses of LGN cells.

Much of the remaining difference probably arises when

multiple LGN cells with slightly different visual latencies
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a simple cell to drifting gratings (TF = 2 Hz) at six
different contrasts (0%, 4%, 8%, 16%, 32%, and
64%). Amplitude increases and phase advances
with increasing contrast.
(C and D) Vm and spike rate responses super-
imposed for 64% (C) and 4% (D) contrast to show
the relative phase shift between the two.
(E) Response phase (relative to Vm response at
64%) as a function of contrast for the records in
(A) and (B).

(F) Response phase as a function of contrast for three different simple cell models: LGN responses synchronized in phase and averaged, LGN responses shifted
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converge on a single simple cell. Here, visual latency is defined

as the slope of the relationship between response phase (relative

to stimulus phase) and temporal frequency for a flickering grating

(Saul and Humphrey, 1990). This relationship is shown for three

different cells in Figure 6D, and a histogram of the slopes for 23

cells is shown in Figure 6E.

To understand how the spread of LGN latencies affects the

feedforward model of a simple cell, we first created a model in

which a number of LGN cells with identical latencies converge

on a simple cell. We therefore superimposed the responses of

the 23 recorded simple cells after aligning their responses to

have identical temporal phases at four different TFs (Figure 6F,

gray). The depolarization in the simple cell was taken to be

proportional to the mean of the 23 input waveforms (black).

The LGN latencies are not identical (Figure 6E), however, but

vary from one another by as much as 60 ms. As a result, even

though receptive fields of the presynaptic LGN cells might be

perfectly aligned in space, their responses will be misaligned in

time. In a more realistic model, then, each response waveform

in Figure 6F must be shifted by the visual latency of the corre-

sponding LGN cell (Figure 6G). This creates a subtle dispersion

of the peaks of the LGN responses. At low TFs (1–4 Hz), this

dispersion is barely noticeable; the temporal shift, 60 ms, consti-

tutes only one-sixteenth to one-fourth of a cycle. At these TFs,

therefore, the latency shifts change the summed input to the

simple cell hardly at all (blue traces). At higher TFs (8–16 Hz),

however, 60 ms translates to a large proportion of a cycle (Fig-

ure 6H). The dispersion of the peaks of the individual LGN traces

is easily visible and has a significant effect on the amplitude of

the summed input to the simple cell. In other words, the temporal

dispersion of the LGN inputs acts like a low-pass filter, selec-

tively attenuating the peak of the visually evoked conductance

change at high TFs (Figure 6I, compare synchronized LGN

inputs, blue, and latency-shifted LGN inputs, red).

Tomake themodel somewhatmore realistic, we further added

short-term synaptic depression (green), a membrane time

constant of 15ms (magenta), and finally a power-law relationship

between Vm and spike rate (black). The overall effect is to

shift the tuning curve of the model simple cell about two

octaves to the left, as is observed in records from simple cells

(Figures 6A and 6C, black). Repeated simulations of a simple

cell, in which we selected a subset of cells from a population

of 23 recorded LGN cells, showed shifts in the preferred TF of

the model simple cell on average by 4.5 Hz and shifts in the

TF50 of 8 Hz.
Note that this version of the feedforward model also exhibits

the contrast-dependent shift in the preferred TF and TF50 seen

in simple cells (Figures 6B and 6C, compare black and gray).

The shift arises in part from the LGN responses, which them-

selves show such a shift (Figure 6A). In addition, at the preferred

orientation, high-contrast stimuli decrease the simple cell’s input

resistance and therefore the membrane time constant (t) about

2-fold (Anderson et al., 2000; Douglas et al., 1995). A 2-fold

decrease in t raises the cutoff frequency (f3dB) of the membrane

low-pass filter by a factor of 2 and therefore should raise the

preferred temporal frequency and TF50 of the membrane poten-

tial responses.

The third temporal nonlinearity in simple cell responses is

a phase advance with increasing contrast (Albrecht, 1995;

Carandini and Heeger, 1994; Dean and Tolhurst, 1986). That is,

the timing of spike responses shifts earlier and earlier as stimulus

contrast increases (Figure 7A). One unexpected finding from

intracellular records is that simple cell spike responses are

consistently phase advanced relative to the underlying Vm

responses (Figures 7C and 7D). Some mean membrane poten-

tials evoke significant spike rates in the rising phase of the

response (Figures 7C and 7D, right arrows) and yet no spikes

on the falling phase (left arrows). A stationary threshold or

power-law relationship between Vm and spike rate will not

capture this behavior. Some aspect of the Vm-to-spike relation-

ship is probably changing during the response. For example,

trial-to-trial variability might change during the course of the

response, or spike adaptation might occur. The maximum effect

occurs at high contrasts (Figure 7E), in which the phase shift

between Vm and spike rate is almost 20�.
We also noted that the contrast-dependent phase advance is

smaller in Vm than it is in spike rate (Figure 7E). About half of the

48� phase shift in Vm between low and high contrast (Figure 7E,

black) can be attributed to the responses of LGN cells (Figure 7F,

black), which have a 25� phase shift of themselves. Adding a real-

istic dispersion in visual latency (as we did for the preferred TF

shift above) has only a very small effect on the phase shifts of

Vm responses in a model simple cell (Figure 7F, red). Adding

synaptic depression (from Boudreau and Ferster, 2005) brings

the total phase shift of the model to 40�. Depression, like spike

adaptation, has the effect of reducing the depolarization evoked

on the falling phase of the response relative to the rising phase,

since the falling phase is preceded by a period of high activity

and the rising phase is preceded by a period of low activity.

Thus, it appears that the contrast-dependent phase advance is
Neuron 75, July 26, 2012 ª2012 Elsevier Inc. 203



Missing response at null orientation

Response property

Biophysical mechanism

Contrast invariance of orientation tuning

RF maps underestimate orientation tuning

Cross-orientation suppression

Contrast-dependent phase advance

Contrast-dependent changes in TF tuning

GABA-blockers decrease orientation tuning

Spatial frequency tuning

Direction selectivity

Surround suppression

Inhibition-based models

Feed-forward model

T
hreshold

LG
N

 response variability

g-to-V
m

 nonlinearity

LG
N

 latency dispersion

R
F
 subregion size

Lateral inhibition

C
hange in 

LG
N

 C
ontrast saturation

S
ynaptic depression

Figure 8. The Biophysical Mechanisms Underlying the Response
Properties of V1 Simple Cells
Inhibitory models propose that all of a simple cell’s nonlinear properties arise
from intracortical synaptic inhibition that is either unselective for orientation or
selective for the orthogonal orientation to the feedforward input (red points).
Alternatively, a simple feedforward model incorporating experimentally
determined nonlinear processes can account for most of the behavior of
simple cells. Black points indicate which mechanisms contribute to which
simple cell properties.
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primarily accounted for by the responses of the LGN relay cells in

combination with their known synaptic dynamics.

Conclusions
On the basis of their remarkable discovery of orientation prefer-

ence, Hubel and Wiesel put forward a simple yet powerful model

of how selectivity could emerge from nonselective thalamocort-

ical inputs: that cortical neurons integrate input from LGN affer-

ents with aligned receptive fields. This concise idea has become

a central frame of reference for understanding cortical computa-

tion. Yet, it stands in contrast to many models of sensory pro-

cessing. Since Hartline first described lateral inhibition in the

retina (Hartline, 1949), lateral inhibition has been either found

experimentally or proposed on theoretical grounds to operate

in almost every sensory modality, and at every level of the brain,

from the sensory periphery to cognitive and perceptual process-

ing. It has been invoked to sculpt the crude selectivity of excit-

atory inputs for everything from sound frequency, to odorants,

to phonemes. Hubel and Wiesel’s model, by its omission, raises

the question of whether, and how, inhibition contributes to

generating the quintessential feature of cortical receptive fields.

A number of cortical receptive field properties have seemed at

odds with the simple account provided by Hubel and Wiesel.

These response properties have challenged the essence of the

feedforward model and forced a critical evaluation of the mech-

anisms underlying cortical computation. Most of the nonlinear

response properties discussed here can be described quantita-

tively within a theoretical framework in which the feedforward

synaptic drive is normalized by a signal related to stimulus

contrast (Carandini and Heeger, 2012; Carandini et al., 1997;
204 Neuron 75, July 26, 2012 ª2012 Elsevier Inc.
Geisler and Albrecht, 1992; Heeger, 1992). Formally, the

response, R, of a cortical neuron can be described as:

R=Rmax

"
h

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
50 + c2

p
#n

where h is the linear, orientation-selective, feedforward drive, c

is stimulus contrast, and c50 is the contrast at which R reaches

half its maximal value (Rmax). With proper selection of parame-

ters, this one equation can fit the complete array of simple cell

behaviors, including contrast saturation, cross-orientation inhi-

bition, and surround suppression.

The equation itself is agnostic regarding the mechanism

underlying contrast-dependent normalization; the normalization

computation fits simple cell behavior well regardless of the origin

of the contrast-dependent normalization signal (Carandini and

Heeger, 1994). One widely discussed mechanism is shunting

inhibition, in which contrast-dependent changes in input resis-

tance scale the depolarization generated by the feedforward

drive. Inhibition could arise either from pooling the input from

orientation-specific interneurons with a range of preferred orien-

tations or from interneurons that are unselective for orientation

(Azouz et al., 1997; Cardin et al., 2007; Hirsch et al., 2003). In

addition, the change in input conductance, through its effect

on the membrane time constant, t, could account for the

temporal nonlinearities of simple cells (contrast-dependent

changes in preferred temporal frequency and response phase).

With shunting inhibition, then, a single underlying mechanism

could give rise to the complete spectrum of simple cell proper-

ties (Figure 8, red dots).

And yet the inhibition most often found in cortical cells has

neither themagnitude nor the orientation independence required

to support the normalization framework. It is this observation that

prompted our reexamination of the feedforward model. We find

that when a series of biophysical properties common to nearly all

neurons is incorporated into a feedforward model, all of the

observed nonlinear properties of simple cells emerge (Figure 8,

black points). None of these mechanisms is orientation specific

and many are not even specific to the visual system. Driving

force nonlinearity on synaptic currents, spike threshold, and

synaptic depression are found throughout the brain; trial-to-trial

response variability (Churchland et al., 2010) and response satu-

ration are found across many sensory and motor systems.

Although the modified feedforward model accounts for much

of the behavior of simple cells, it has only two free parameters:

the number of presynaptic LGN cells and the aspect ratio of

the simple cell’s subregions. Even these two parameters have

a wide range of permissible values. All of the other properties

of the model are experimentally constrained, including thalamo-

cortical synaptic depression, the relationship between Vm and

spike rate, latency dispersion and contrast saturation in LGN

cells, the driving-force nonlinearity on synaptic currents, and

themembrane time constant. Thus, when the feedforwardmodel

ismade realistic by the addition of very basic andwell-character-

ized neuronal mechanisms, the known properties of simple cells

emerge per force.

Among the biophysical mechanisms that contribute to

cortical receptive fields, threshold has by far the most influence.
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Simple cells rest well below threshold and have very little spon-

taneous activity. The resulting iceberg effect narrows orientation

tuning for spikes relative to Vm by as much as 3-fold or more,

increases direction selectivity by 4-fold or more (Carandini and

Ferster, 2000; Lampl et al., 2001), increases spatial frequency

selectivity (Lampl et al., 2001), enhances the distinction between

simple and complex cells (Priebe et al., 2004), and increases

ocular dominance (Priebe, 2008). Because of the iceberg effect,

cortical connections need not be nearly as specific as they

appear to be in measurements derived from spike responses;

the Vm responses at the periphery of the tuning curve are hidden

by threshold. Threshold might also have important implications

for plasticity and development. The dramatic changes seen,

for example, in ocular dominance plasticity are most often

measured from spike responses. Changes in spike responses,

however, might be generated by smaller shifts in the ocular

dominance of Vm responses and therefore by relatively smaller

changes in connectivity (Priebe, 2008).

Though inhibition may not sculpt orientation selectivity in cat

V1, it is nonetheless a fundamental component of the cortical

circuitry. Estimates put the proportion of inhibitory neurons in

layer 4 at 25%. Inhibition and excitation share selectivity: those

stimuli that elicit excitation also elicit inhibition onto cortical

neurons (Douglas et al., 1988; Ferster, 1986). One possible func-

tion of such shared selectivity is to maintain the stability of the

cortical circuitry. Inhibition allows a circuit to have strong excit-

atory recurrent connections to amplify small signals without

risking runaway feedback in the excitatory network (Douglas

andMartin, 1991). Strong excitatory recurrence in turn increases

the dynamic range of cortical neurons, increases their informa-

tion-carrying capacity, increases the ability of the cortex to

perform complex computations (Hansel and Sompolinsky,

1996; Latham and Nirenberg, 2004; Tsodyks et al., 1997; van

Vreeswijk and Sompolinsky, 1998), and may underlie surround

suppression (Ozeki et al., 2009).

Surround suppression is one receptive field property that

probably requires strong lateral inhibition (Figure 8, black dot in

column 1). But here, the underlying inhibition has the same

preferred orientation as excitation: surround suppression is

greatly reduced when the surround stimulus is presented at

the cross-orientation (Hubel and Wiesel, 1965; DeAngelis et al.,

1994). Thus, the inhibition is "lateral" in the spatial domain, rather

than in the orientation domain. The effects of even this inhibition,

however, may be weak in simple cells. Among simple cells that

are dominated by excitation from the LGN, few exhibit strong

surround suppression (Ozeki et al., 2009).

Much effort has been directed recently into uncovering the

mechanisms underlying orientation selectivity in rodents. The

mouse provides opportunities to exploit recent advances in

genetic labeling of specific neuronal subsets, in optogenetics,

and in imaging. These techniques promise an evenmore detailed

and fine-grained understanding of the cortical circuit than has so

far been possible in the cat. Reports that inhibitory neurons are

more broadly orientation selective than excitatory neurons

(Kerlin et al., 2010; Runyan et al., 2010) and that the tuning width

of inhibition recorded intracellularly is broader than that for exci-

tation (Atallah et al., 2012; Li et al., 2012) raise the possibility of

cross-orientation inhibition in the mouse. Not all results are in
agreement, however (Tan et al., 2011), and some experiments

suggest that threshold is as important or more so in shaping

neuronal responses (Jia et al., 2010). Whether or not mouse V1

uses identical mechanisms to cat V1, the following differences

exist between the two in overall organization: mouse receptive

fields are almost ten times larger than those in the cat, as is

preferred stimulus size; mice have no orientation columns; it

appears that the cortico-cortical excitatory inputs in the mouse

come from cells of widely different orientation preference

(Jia et al., 2010; Ko et al., 2011); and in some reports (Kerlin

et al., 2010; Kuhlman et al., 2011; Sohya et al., 2007;

Tan et al., 2011), though not others (Niell and Stryker, 2008;

Wang et al., 2010), orientation tuning in the mouse is somewhat

weaker than in the cat and in primates. We note, however, that

most of themechanisms that operate in concert with the feedfor-

ward model in the cat, including threshold, synaptic depression,

response variability, and the conductance nonlinearity, will

almost certainly be present in the mouse as well.

Hubel and Wiesel’s original feedforward model contained two

hierarchical stages, one to explain the emergence of V1 simple

cells from LGN afferents and a second stage to explain the emer-

gence of V1 complex cells (characterized by overlapping ON and

OFF responses) from simple cells within V1. The model posits

that V1 complex cells integrate excitatory inputs from a subset

of simple cells of similar orientation preference but with different

receptive field positions. Several lines of evidence support this

aspect of the feedforward model: (1) spike-triggered averaging

of simple- and complex-cell pairs show excitatory connections

from the former to the latter (Alonso and Martinez, 1998); (2)

anatomical studies show a strong projection from layer 4, which

is dominated by simple cells, to the superficial layers, which is

dominated by complex cells (Gilbert and Kelly, 1975); and (3)

silencing simple cells generally silences complex cells (Martinez

and Alonso, 2001).

One aspect of the original hierarchical feedforward model that

has been open to question is whether the shift from simple cells

to complex cells is made in one step, or whether multiple steps

are required to generate completely overlapping ON and OFF

subfields (Chance et al., 1999). The observed diversity in subfield

overlap suggests that the generation of complex cells with

completely overlapping ON and OFF subfields may emerge

imperfectly (Priebe et al., 2004; Rust et al., 2005; though see

Martinez et al., 2005). Nonetheless, the data are generally

consistent with the hierarchy proposed by Hubel and Wiesel.

Orientation Selectivity as a Model for Cortical
Computation
Orientation selectivity was originally identified in cat V1 and has

since been identified in every mammalian species examined.

The degree of orientation selectivity, the exact layer in which it

emerges in the cortex, and whether cells of similar orientation

preference are organized into columns varies between species,

but orientation selectivity still appears to be a fundamental

component of the image that V1 extracts. This raises the

question of how well a computation performed in V1 represents

the computations performed throughout the many areas of

the cerebral cortex. Does V1 contain highly specialized and

unique machinery for the computation of orientation from the
Neuron 75, July 26, 2012 ª2012 Elsevier Inc. 205
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retinal image? Or do other areas of cortex perform a similar

feedforward computation on inputs carrying different types of

information?

The anatomical (Brodmann, 1909) and emerging molecular

(Bernard et al., 2012) diversity of cortical areas might suggest

that the computation in V1 is specific, if not to V1 itself, then to

other primary sensory areas that share a similar laminar struc-

ture. On the functional level, however, there are indeed reasons

to believe that diverse cortical areas share common computa-

tional mechanisms. First, the normalization framework, which

is a prominent feature of the V1 computation, is not limited to

V1 but appears in many parts of the sensory system (Carandini

and Heeger, 2012). Even high-level processes such as response

modulation related to attention or behavioral state can be

described as a normalization-like shift in gain (Reynolds and

Heeger, 2009). Second, the feature selectivity for excitation

and inhibition are often matched in other cortical areas as they

are in V1. Third, the neuronal mechanisms underlying V1 feature

selectivity are not limited to neurons in V1. Threshold, response

variability, driving-force nonlinearities, response saturation, low-

pass filtering, response diversity, and synaptic depression

are mechanisms inherent to all neurons that support action

potentials. Whether neurons in other areas of the cortex take

advantage of them, and, if so, whether they use them in ways

analogous to V1, is an open question.
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