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Inter-Neuronal Correlation Distinguishes Mechanisms of
Direction Selectivity in Cortical Circuit Models
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Direction selectivity is a fundamental physiological property that arises from primary visual cortex (V1) circuitry, yet basic questions of
how direction-selective (DS) receptive fields are constructed remain unanswered. We built a set of simple, plausible neuronal circuits that
produce DS cells via different mechanisms and tested these circuits to determine how they can be distinguished experimentally. Our
models consisted of populations of spiking units representing physiological cell classes ranging from LGN cells to V1 complex DS cells.
They differed in network architecture and DS mechanism, including linear summation of non-DS simple-cell inputs or nonlinear pairwise
combinations of non-DS inputs. The circuits also varied in the location of the DS time delay and whether the DS interaction was
facilitatory or suppressive. We tested the models with visual stimuli often used experimentally, including sinusoidal gratings and flashed
bars, and computed shuffle-corrected cross-correlograms (CCGs) of spike trains from pairs of units that would be accessible to extracel-
lular recording. We found that CCGs revealed fundamental features of the DS models, including the location of signal delays in the DS
circuit and the sign (facilitatory or suppressive) of DS interactions. We also found that correlation was strongly stimulus-dependent,
changing with direction and temporal frequency in a manner that generalized across model architectures. Our models make specific
predictions for designing, optimizing, and interpreting electrophysiology experiments aimed at resolving DS circuitry and provide new
insights into mechanisms that could underlie stimulus-dependent correlation. The models are available and easy to explore at
www.imodel.org.

Introduction
Direction selective (DS) neurons exist in nearly all visual animals,
yet crucial questions about the underlying circuitry remain un-
answered. In primate primary visual cortex (V1), two major un-
resolved issues are the location of the DS time delay (dt) and the
nature (facilitatory vs suppressive) of the DS interaction.

All models of DS neurons essentially involve a time delay be-
tween spatially offset inputs (Reichardt, 1961; Barlow and Levick,
1965; Adelson and Bergen, 1985). Many studies suggest that this
delay is presynaptic to the DS cell, for example, arising from
temporal diversity in lateral geniculate nucleus (LGN) (De Valois
and Cottaris, 1998; De Valois et al., 2000; Saul et al., 2005), or
from latency variation in V1 simple cells (Wolfe and Palmer,
1998; Peterson et al., 2004). An alternative to presynaptic delay
theories is that the DS delay arises postsynaptically, resulting
from an integration stage within the DS cell itself. There is grow-
ing evidence that dendrites can act as local computational sub-
units (Borg-Graham and Grzywacz, 1992; Mel, 1993; Polsky et
al., 2004; Branco et al., 2010), and the mechanisms responsible

for generating a dendritic DS delay could be either passive (Rall,
1964; Koch et al., 1983, Agmon-Snir and Segev, 1993) or active
(Koch et al., 1982; Mel 1992, 1993; Koch and Poggio, 1992;
Branco et al., 2010).

Another unresolved issue is whether facilitatory or suppres-
sive influences are predominant in creating cortical direction se-
lectivity. Some models hold that excitatory inputs are arranged to
sum optimally for stimuli moving in the preferred direction
(Reichardt, 1961). Such facilitatory interactions are supported by
evidence that preferred direction motion generates supralinear
excitation (Albrecht and Geisler, 1991; DeAngelis et al., 1993).
Conversely, the class of suppressive models involves inhibitory
signals that diminish excitatory inputs for antipreferred direction
motion (Barlow and Hill, 1963; Barlow and Levick, 1965). Evi-
dence for the resulting sublinear summation has been reported in
V1 DS cells (Reid et al., 1987, 1991; Tolhurst and Dean, 1991).
Alternatively, excitatory and inhibitory inputs may combine to
generate DS receptive fields (RFs) (Priebe and Ferster, 2005).

Spike train cross-correlation is a powerful tool for studying
functional connectivity in the visual system (Perkel et al., 1967;
Moore et al., 1970; Toyama et al., 1981; Michalski et al., 1983;
Ts’o et al., 1986; Nelson et al., 1992; Alonso and Martinez, 1998;
Usrey et al., 1998, 1999, 2000). To explore how cross-correlation
can resolve DS circuits in vivo, we examined spike train cross-
correlograms (CCGs) from non-DS cells and their postsynaptic
DS units in a set of thalamocortical network models with popu-
lations of spiking LGN and V1 simple and complex cells with
realistic synaptic connections. We built models that differed in
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the placement of the time delay and the sign of the DS interaction
and found that the CCGs exhibit characteristic features that dis-
tinguish the different DS mechanisms. We also found that the DS
mechanisms create a characteristic stimulus dependence in CCG
features. Our results demonstrate the power of cross-correlation
for elucidating DS circuitry and provide a guide to developing
specific experimental protocols for solving long-standing ques-
tions of functional circuitry.

Materials and Methods
Model implementation. The models presented here have been developed
using a simulation framework built in our laboratory called WM,
which is written in C. Input to WM consists of text files that describe
models, stimuli, and desired outputs. The output is written in a binary
format called nData (.nd). The WM framework can be downloaded
(www.imodel.org/wm) and compiled from source code; however, to
make our models more easily accessible, they are available on a website
(www.imodel.org) that allows all models presented here to be viewed
over the internet by anyone with a standard Java-enabled web browser.
The iModel website allows users to view the visual stimuli, explore the
synaptic connectivity within the models, and analyze the model outputs
(e.g., spike trains) using Java applets. In addition, it specifically provides
the resources needed to reproduce all simulations and plots in this man-
uscript (www.imodel.org/t/11/t1/).

In this study, we present results from several population models that
we have built for simulating DS neurons in V1. Each model is a network
of conductance-driven leaky integrate-and-fire (LIF) spiking units and
consists of 2048 LGN units, 512–2048 orientation-tuned simple V1 units,
and four DS units. Despite their scale, the fundamental architecture and
computations performed in the models are straightforward, and a com-
plete functional description is given below. When stating parameter val-
ues, we will provide in parentheses the textual names of the parameters in
the model text files available at the iModel website.

Model classes and network architecture. We consider three classes of DS
models: presynaptic delay, postsynaptic delay, and linear models. Each
contains four populations of LIF units: LGN, inhibitory (IN) and excit-
atory (EX) non-DS simple cells, and DS units (Fig. 1 A). Each population
consists of a 3D array of units in which the first two dimensions (x,y)
represent spatial position in terms of either the RF center location within
the visual field (for LGN; Fig. 1 B) or the location of the cell body within
an idealized cortical sheet (IN, EX, DS; Fig. 1 D–F ). The third dimension
(z), referred to as the “layer,” allows each topographical location to con-
tain multiple units that differ in some aspect of RF organization or phys-
iological function (e.g., RF spatial phase). Units are referred to by the
population name, followed by indices for the x, y, and z dimensions, e.g.,
EX_5_5_0.

In each model, the visual stimulus provides the input to the LGN units,
which send excitatory inputs to IN and EX units in V1. From this stage,
the model classes differ in architecture. In the presynaptic and postsyn-
aptic delay models, IN units send inhibitory input to EX units, which
provide synaptic input to the DS units (Fig. 1 A) through a pairwise
nonlinear interaction (described below). In the linear model, however,
both IN and EX populations provide direct synaptic input to the DS
population, without any special nonlinear interaction. Another key ar-
chitectural difference among the three model classes is the addition of
temporally delayed populations of LGN, IN, and EX units in the presyn-
aptic delay model and the linear model. The delayed LGN population,
LGN_D, is identical to the original but has a fixed time delay added to the
temporal response. It sends input to the delayed V1 populations (IN_D
and EX_D) using the same synaptic architecture as the non-delayed pop-
ulations. The presence of the delayed populations are indicated by the red
arrows in the circuit diagrams in Figure 2 A (presynaptic delay model)
and Figure 2 E (linear model).

The detailed implementation of each model is described below, starting
with the DS units and working back to the LGN. The LIF units and synaptic
transmission, which are common to all models, are described last.

DS population. The DS population consists of a small grid of 2 � 2 �
1 LIF units (Fig. 1 F) and is aligned to the central 2 � 2 block of EX and IN

units in terms of cortical position and preferred orientation. When tested
with drifting sinusoidal gratings, the DS units in all models show similar
tuning, with preferred spatial frequency (SF) � 1.6 cycles/°, temporal
frequency (TF) � 10 –12 Hz, and direction � 0° (Fig. 1G shows the
latter). The DS units differ across model classes in both the populations
that provide direct input and how inputs are combined.

Nonlinear subunit models: synaptic connectivity. For the nonlinear
models, the excitatory input to each DS unit is the sum of contributions
from a set of nonlinear subunits, in which each subunit implements a
pairwise interaction of the outputs of two spatially offset EX units (Fig.
2 A, C). These inputs were chosen by first assigning synaptic weights to
EX units using a Gaussian function in cortical distance (cdist), SD � 58
�m, and in orientation difference (cori), SD � 30°, in which the maxi-
mum weight, 1.0, indicates no difference in cortical position or target
orientation preference. Connections are dropped for any weights �0.05
(minw), and each of the remaining connections was either kept or
dropped by applying a random, independent connection probability of
0.35 (prob). The weights of the resulting set of inputs are then scaled to
achieve a total equivalent weight of 50 unitary inputs (normw). Having
established a set of EX inputs, each is then paired with the EX unit that has
an RF spatial phase shift of 90°. In the presynaptic delay models, the
matching phase-shifted unit is chosen from the temporally delayed pop-
ulation, thus the paired inputs are offset in space and time. Overall, single
DS cells ended up having inputs that differed in preferred orientation by
26 – 45° and differed in preferred SF by �1⁄2 octave. The RF size of the DS
units remained the same as that of the EX units.

In addition to Gaussian weighting, uniform weights were used in some
versions of the presynaptic delay model. Uniform weights were limited to
a cortical radius of 135 �m (cdist), with no explicit constraint on orien-
tation. We varied the connection probability (prob) over the set of values
{0.05, 0.15, 0.30, 0.50, 0.75}to generate networks with the following
numbers of identically weighted inputs, {4, 8, 13, 24, 35}.

Pairwise nonlinear interaction. To create DS signals, the paired spiking
inputs within each subunit are combined nonlinearly. In the presynaptic
delay model, in which delayed and non-delayed EX inputs are paired
(Fig. 2 A, B), the spike trains are each convolved with an �-function post-
synaptic conductance (PSG) waveform [Kexc(t); Eq.14], to form signals,
s1(t) and s2(t), which are scaled and multiplied to yield a conductance:

gi(t) � Ds1(t)s2(t), (1)

for the ith synaptic interaction pair, where D � 1.75 (mask_amp). This
facilitatory multiplicative interaction of signals offset in space and time is
like a classical Reichardt detector (Reichardt, 1961). To generate an anal-
ogous suppressive interaction, we use the following:

gi�t� � Ds1�t��1 � s2�t��	, (2)

where D � 1 and [. . . ] 	 indicates half-wave rectification.
In the postsynaptic delay models, the paired EX inputs have the same

response latency, and the pairwise interaction itself includes a delay of the
signal from the second unit in the pair (Fig. 2C). The delay is imple-
mented by convolving the spike train of the second unit with a smooth,
causal temporal filter, M(t), which we refer to as a mask:

M�t � 0� �
et2


2 e�t2/
2
, (3)

and M(t) � 0 for t � 0 (Fig. 2 D). This function rises to a maximum of 1
at t � 
, which is set to the value of the DS time delay, dt. Other smooth,
causal functions that peak with a set delay would also be suitable. The
result of this convolution forms the masking signal, s2(t) (Fig. 2 D, red
trace), associated with the second unit. The spikes from the first EX input
to the subunit are multiplied by s2(t) and then convolved with the cortical
PSG waveform, Kexc(t), to generate a conductance to the DS unit gi(t).
For suppressive interactions, the function used to scale spikes from the
first EX input is [1 � s2(t)] 	, as in the presynaptic delay model.

The choice of dt is constrained by the SF and TF tuning of EX units in
our model, which we have tuned to plausible values for V1 simple cells
(De Valois et al., 1982; Foster et al., 1985; Hawken et al., 1996). Specifi-
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cally, the optimal TF for our non-DS input cells
is 10 –12 Hz, giving a response period of 83–
100 ms/cycle. In the quadrature model under-
lying our networks, non-DS inputs that are
shifted by 1⁄4 cycle are paired, so it takes 21–25
ms for the optimal grating to drift across the
spatial shift between paired inputs. The exact
value is not critical (10 – 40 ms is acceptable),
and we set the dt to the round figure of 20 ms,
which is close to optimal, except in Figure 3, G
and H, in which dt is varied.

Our aim is to compare differences between
the models that result from differences in the
DS mechanism. In both the presynaptic and
postsynaptic delay models, the populations
preceding the DS level (LGN, IN, and EX units)
have identical RFs and thus have the same tun-
ing and firing rates in our simulations, given
identical stimuli. The distribution over cortical
distance and orientation of the EX inputs to the
DS units is also identical in all of the models, as
are the synaptic weights of these inputs. Thus,
any differences in the behavior of the models
should reflect solely differences in the DS
mechanisms.

We also consider a hybrid of the presynaptic
and postsynaptic delay models that has the
same connectivity pattern as the presynaptic
delay model but with a 10 ms time lag between
delayed and non-delayed populations (rather
than 20 ms). The nonlinear DS interaction is
the same as for the postsynaptic delay model,
but it pairs the delayed and non-delayed EX
inputs and adds a postsynaptic delay of 
 � 10
ms, giving an overall dt of �20 ms.

Linear model: synaptic connectivity. The lin-
ear model creates DS units with narrow orien-
tation bandwidth (Fig. 1G, DS_Simp) in one
step by directly summing conductance inputs
from an appropriate combination of weakly
oriented presynaptic units in the EX, IN,
EX_D, and IN_D populations (Fig. 2 E, gray
ovals show presynaptic RFs). The inputs from
each population are chosen to align with spatial
Gabor-function templates:

Gab�x,y� � cos�2�fsx � ��e�
1

2
� x2/	orth

2 	y2/	par
2 �,

(4)

where (x,y) defines a position within the topog-
raphy of the visual field, fs is the SF, � is the
phase, and 	orth and 	par are the SDs of the
Gaussians running orthogonal and parallel to
the orientation of the sinusoid. Equation 4 cor-
responds to a vertically oriented template, but
the template of each unit is rotated to match its
target preferred orientation. The Gabor pa-
rameters are fs � 2 cycles/° (sf), 	orth � 0.125°
(sd_orth), and 	par � 0.215° (sd_par), with
� � 0° (phase) for EX inputs, 90° for EX_D,
180° for IN, and 270° for IN_D. The templates
for the delayed populations are shifted 90° rel-
ative to the non-delayed populations, and
those for the IN populations are opposite to
those for the EX populations (Fig. 2 E), estab-
lishing a “push–pull” arrangement. The 90°
phase shift between delayed and non-delayed
inputs imparts direction selectivity to both the
summed excitatory and summed inhibitory
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Figure 1. The network architecture. The four nonlinear models presented in this study share the same connection scheme. A,
Visual input drives the LGN, which provides excitatory input to IN and EX populations. The EX units receive inhibitory drive from the
IN population and drive the DS units. B, Populations of ON- and OFF-center LGN units provide input to the V1 simple cell popula-
tions, with connections determined by a Gabor template (Eq. 4). The ON and OFF units marked here (white and black dots,
respectively) provide input to the EX cell circled in white in D. C, An approximation of the RF corresponding to the synaptic map in
B is shown (red box) along with RFs for templates having three other spatial phases at the same spatial (x,y) location in the map.
The RFs are rendered by replacing each synaptic input with the center Gaussian of the LGN DOG filter (Eq. 6). D, The EX units are
arranged around pinwheels in an orientation map. There are four layers of units, with each layer varying in spatial phase (0, 90, 180,
and 270°). E, The IN inputs to a single EX unit are shown in color, coded to match the preferred orientation of the individual inputs
(inset left). The weight of each IN input depends on how well its RF is anti-correlated with the RF of the postsynaptic EX unit. F, For
efficiency, the DS population has only four units, all of which prefer vertical orientation (being centered on the orientation map)
and motion to the right (0°). The DS unit circled in red receives an input from the EX unit circled in D. G, Averaged direction tuning
curves at 100% stimulus contrast for DS units (purple trace, n � 4) and for the EX units (green trace, n � 16) and IN units (blue
trace, n � 16) that had preferred orientation 0° (red region of orientation map). The left and right panels correspond to the
presynaptic delay model and linear model, respectively.
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conductances, and both have the same preferred direction as the DS unit
that they drive. The push–pull arrangement generates excitatory and
inhibitory conductances that are 180° out-of-phase in the preferred
direction, matching conductance data reported for DS units in cat V1
(Priebe and Ferster, 2005).

For a given Gabor template, the algorithm
for selecting specific inputs from the presynap-
tic population to the DS unit is as follows. For
each potential presynaptic unit, an RF mask is
computed by convolving a 2D array, which is 1
(�1) at the location of each ON (OFF) LGN
input and 0 everywhere else with a 2D Gaussian
equal to the LGN center Gaussian (Gctr in Eq.
6). A correlation coefficient (Pearson’s r) is
computed between the template and the mask
for each unit. The mean and SD over all posi-
tive r values is computed, and initial synaptic
weights are set by dividing each r value by the
mean plus 2 SDs. All weights �1 are assigned to
1 to prevent a few of the most well-matched
units from dominating the synaptic input. For
efficiency in model execution, the number of
inputs is minimized by pruning away weights
�0.2 (minw). To make the connection pattern
probabilistic, only 10% (prob) of these connec-
tions are maintained, chosen randomly. Fi-
nally, the remaining synaptic weights are scaled
so that the total for each input population is
equivalent to 30 (normw) unitary inputs.

IN and EX populations. The IN and EX pop-
ulations represent simple, non-DS V1 cells
with varying degrees of orientation selectivity.
In the presynaptic and postsynaptic delay
models, the IN and EX populations each con-
sist of 12 � 12 � 4 units (Fig. 1 D, E) whose RFs
have elongated ON and OFF subregions simi-
lar to 2D maps found in studies that have char-
acterized the subunits of DS complex cells
(Szulborski and Palmer, 1990). These RF pro-
files produce units with narrow orientation
tuning (Fig. 1G, left). The z-layer index differ-
entiates four spatial phases (0, 90, 180 and
270°) of the RFs (Fig. 1C). In the linear model,
IN and EX units have smaller RFs (approxi-
mately half the size of their postsynaptic DS
units) that are primarily unimodal, i.e., domi-
nated by a single ON or OFF region (Fig. 2 E,
gray ovals), approximating the structure of
subunits to DS cells also found experimen-
tally (Livingstone and Conway, 2003). This
RF structure produces weakly orientation-
tuned units that approximate input-layer V1
cells (Fig. 1G, right). They are organized in a
single layer, 20 � 20 � 1, with two spatial
phases (0 and 180° corresponding to ON and
OFF) alternating in a checkerboard manner.
These smaller, less oriented units are more
appropriate building blocks for the linear
model, in which narrow orientation tuning
and direction selectivity emerge in one syn-
aptic step. The IN_D and EX_D populations,
which are present in the presynaptic delay
and linear models, are constructed identi-
cally to the IN and EX populations, except
the former receive inputs from the LGN_D
rather than LGN population. When charac-
terized with classical drifting sine grating
stimuli, the IN and EX units prefer on aver-
age TF � 12 Hz and SF � 1.6 cycles/° (1.2
cycles/° in the linear model).

The LGN synaptic input to each non-DS V1 unit is chosen proba-
bilistically using a Gabor template, Gab(x,y) of Equation 4, that is
rotated to match the target preferred orientation of the unit within an
orientation map (Fig. 1 D, E, color map) in which orientation varies

Presynaptic Delay 

Postsynaptic Delay 

Linear

Gabor templates

IN and EX RFs

exc

A

C

B

E

D

Figure 2. DS mechanisms. A, In the presynaptic delay models, there are two LGN populations, identical except for a fixed delay
added to the temporal response function of the second population. The LGN populations drive separate but otherwise identical IN
and EX populations. One EX unit each from the delayed and non-delayed populations is paired to form a subunit (open circles), and
the output signals are multiplied in a DS interaction, forming an input to the DS unit. B, LGN temporal filters for the non-delayed
(black traces) and delayed (red traces) LGN populations in the presynaptic delay model. Filters are identical except for a fixed time
lag of 20 ms, the dt. C, In the postsynaptic delay model, the DS delay arises within the DS subunit (half-filled circles). D, In the
subunit interaction, the spikes (top raster) from one EX unit are convolved with a causal waveform, yielding a mask signal (red
trace). The mask is used to scale the amplitude of the spike train (bottom raster) from the second EX unit in the interaction. These
scaled spikes are convolved with the PSG waveform to form a conductance (bottom black trace) to the DS unit. Red asterisks mark
correspondence between some spikes from the second EX unit and their contribution to the conductance g_exc (bottom trace). E,
The linear model circuitry is similar to that of the presynaptic delay model, with delayed and non-delayed LGN input to two
populations of EX and IN units. However, IN units synapse not on EX units but directly onto DS units. EX and IN inputs are chosen to
fit Gabor templates (Eq. 4) that approximate a tilted spatiotemporal filter, providing direction-tuned conductances to the DS units.
EX and IN inputs are also chosen to be 180° out-of-phase (push–pull), to fit experimental data on relative timing of conductances
in DS cells (Monier et al., 2003; Priebe and Ferster, 2005).
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from 0 to 180° around four pinwheel centers. The phase of the orien-
tation map is such that the central units, e.g., EX_5_5_0 (highlighted
in Fig. 1D), prefer approximately vertical (0°) orientation (indicated by red).
For the presynaptic and postsynaptic delay models, the parameters of the
Gabor function were fs � 2 cycles/° (sf), 	orth � 0.125° (sd_orth), 	par �
0.215° (sd_par), � � 0, 90, 180, or 270°, and the number of LGN inputs to
each unit was 30 (nsamp). For the linear model, fs � 1 cycles/° (sf), 	orth �
0.06° (sd_orth), 	par � 0.10° (sd_par), � � 0, 180°, and the number of LGN
inputs to each unit was 10 (nsamp). The specific inputs (as shown in Fig. 1B)
were chosen probabilistically as follows. An LGN unit at position (i,j) is
considered a match to the template if the value of �Gab(i,j)� is greater than a
threshold, 
 � 0.05 (eps). The probability of selecting any given match is the
fraction of its value relative to the total value of all LGN units that are a match
to the template. Chosen points at positive template values result in synapses
from ON units, whereas negative values result in synapses from OFF units.
The synaptic strengths are set to be equal for all LGN inputs. Because of the
random sampling, the LGN-driven RFs of the V1 units are irregular (Fig. 1C)
rather than ideal Gabor functions.

In the presynaptic and postsynaptic delay models, in which non-DS
subunits with clear elongated ON and OFF subregions are desired,
each EX unit receives inhibitory inputs from the IN population that
are spatially anti-correlated with the EX unit in terms of the LGN-
derived RFs (Fig. 1 D, E). The synaptic weights of these anti-phase IN
to EX connections are set by the strength of the anti-correlation. The
algorithm for selecting the particular inputs is similar to that described
above for the non-DS-to-DS connections in the linear model, except that
the correlation r value is computed between the LGN-driven RF masks of
EX and IN units. Only IN units within cortical distance 500 �m (cdist) of
the EX unit are considered as possible inputs, and only negative r values
are kept for additional processing, with the initial synaptic weight being
set to �r�. For efficiency, weights �0.5 (minw) are pruned, and weights are
scaled so that the total input to a given EX unit, wIN, is 10 (normw)
unitary inhibitory inputs (defined below for the LIF model). The result of
this anti-correlated connectivity is that the strongest inhibition to an EX
unit comes from IN units with similar orientation but opposite ON/OFF
subfields (Troyer et al., 1998), which reinforces the ON/OFF structure of
the oriented EX RFs and attenuates the DC component of the feedfor-
ward excitation.

LGN population. The LGN population (Fig. 1B) has dimensions 32 �
32 � 2 units. Layers 0 and 1 contain OFF- and ON-center units, respectively.
Each step on the spatial grid represents 0.04° of visual angle, thus the repre-
sentation covers a 1.28 � 1.28° patch of the visual field.

The raw input, R, to the LGN units is computed by convolving the
visual stimulus, I (described below), with a difference of Gaussians
(DOG) linear filter:

R(x,y,t) � I(x,y,t) � DOG(x,y,t). (5)

The DOG filter is the difference of two functions that are Gaussian in x–y
space and biphasic in time:

DOG�x,y,t) � Gctr(x,y)h(t) � Gsurr(x,y)h(t � �t), (6)

where

G� x,y� � �e�� x2	y2�/�2	g
2�, (7)

and

h(t) � hAB(t)hG(t). (8)

This temporal filter, h(t), is the product of the biphasic temporal filter,
hAB(t), used by Adelson and Bergen (1985):

hAB�t� � �kt�n e�kt� 1

n!
�

�kt�2

�n � 2�!�, (9)

and a Gaussian envelope, hG�t� � e�t2/�2	h
2�, which controls the relative

weight of the negative lobe of hAB(t). The parameter values for Gctr are
� � 4 (amp1) and 	g � 0.05° (sig1), for Gsurr are � � 0.1 (amp2) and 	g

� 0.25° (sig2). The temporal filter parameters are 1/k � 5 ms (tab_k),
n � 3 (tab_n), �t � 8 ms (cs_delay), and 	h � 25 ms (tsig).

The time-varying raw input, r(t), to a specific LGN ON unit,
LGN_i_j_1, is R(i,j,t), whereas that for the OFF unit, LGN_i_j_0, is com-
puted as Q � R(i,j,t), where Q is the integral of the DOG filter. The raw
input, r(t), is transformed to an excitatory conductance, gexc(t), by scal-
ing and adding an offset and noise, as follows:

gexc
LGN(t) � Ar(t) � B � GWN(	n,	t), (10)

where GWN is Gaussian-filtered Gaussian white noise with SD 	n and
temporal SD 	t, and A and B are constants. There is no inhibitory con-
ductance to the LGN units. For LGN units in all models described here,
A � 3.5 (gx_scale), B � 28.5 nS (gx_bias), 	n � 2.0 nS (gx_noise/sd), and
	t � 1.0 ms (gx_noise/tsd). The excitatory conductance drives our stan-
dard LIF model (described below) to produce an output spike train.

When driven with drifting sinusoidal grating stimuli, the LGN units
have SF and TF tuning curves that peak at 1.6 cycles/° and 18 Hz, respec-
tively. In DS models requiring the additional, temporally delayed
LGN_D population, we simply impose on the raw temporal response, R,
a fixed temporal delay, dt � 20 ms (t_delay), except when other values
are stated. Otherwise, the function for the LGN and LGN_D populations
are identical, except for independent noise.

Synaptic conductances. All neurons in the models are conductance-
driven LIF units, and the conductances are determined primarily by
spikes, which are the sole means of communication between units. This
section describes for each population how the conductances are com-
puted. Only the stimulus-driven excitatory input to the LGN (described
above) and additive conductance noise (described below) are not based
on input spikes.

DS units. In addition to the input from the nonlinear DS subunits
described above, DS units also receive background spikes that activate
their excitatory and inhibitory conductances. These background inputs,
modeled as Poisson spike trains, provide a source of independent noise to
each unit, maintain them near threshold, and establish a minimal spon-
taneous firing rate. The summed spike trains are represented as follows:

Sexc/inh�t� � �
j

NP

��t � tj�, (11)

where  is the scale factor (amp) and NP is the number of Poisson spikes
determined by the rate (rate), and tj are spike times (Table 1 shows rates
and  values). Thus, the total excitatory and inhibitory conductances for
a given DS unit in the presynaptic and postsynaptic delay models are as
follows:

gexc�t� � �
i

Nsub

gi�t� � Sexc�t� � Kexc�t�, (12)

ginh(t) � Sinh(t) � Kinh(t), (13)

where gi(t) is the conductance produced from the ith subunit, Nsub is the
number of subunits, Sexc(t) and Sinh(t) are the background excitatory and
inhibitory spike trains, respectively, and Kexc/inh are the unitary PSG

Table 1. Background spike rates and scale factors for cortical populations

Population name

Excitatory Inhibitory

Rate (spikes/s) Scale factor Rate (spikes/s) Scale factor

DS_Post_Fac, etc.
IN 100 2 50 2
EX 0 200 6
DS 150 5 200 2

DS_Simp
IN 0 0
EX 0 0
DS 300 2 50 2

Values for DS_Post_Fac apply to all nonlinear presynaptic and postsynaptic delay models. DS_Simp is the linear
model. These values relate to Equation 11 (see Materials and Methods).
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waveforms for the excitatory and inhibitory conductances (see below,
LIF units). The PSGs are � functions:

Kexc/inh�t� � c�te1��t, (14)

where 1/� � 3 ms is the time-to-peak (tau) and c � 1 nS is the maximal
conductance (amp) for excitatory inputs, and 1/� � 4 ms (tau) and c �
4 nS (amp) for inhibitory inputs. This form of PSG was chosen for
computational efficiency (Bernard et al., 1994).

In the linear model, the total conductances to a DS unit are as follows:

gexc(t) � Kexc(t) � [SEX(t) � SEX_D(t) � Sexc(t)], (15)

ginh(t) � Kinh(t) � [SIN(t) � SIN_D(t) � Sinh(t)], (16)

where Sexc(t) and Sinh(t) are the background spikes, and the other S(t)
terms represent the summed spike trains from the four input populations
(indicated by the subscripts), each having the following general form:

S�t� � �
i

Ncells� wi� �
j

Nspikes
i

��t�tij�� , (17)

where Ncells is the total number of inputs to the DS unit from the given
population, Nspikes

i is the number of spikes from the ith unit in that
population, wi is the scaled synaptic weight from the ith unit, and tij are
the spike times.

EX and IN units. The excitatory and inhibitory conductances for any
given IN or EX unit can also be written as convolutions of spike trains
with PSGs:

gexc(t) � SLGN(t) � KLGN(t) � Sexc(t) � Kexc(t), (18)

ginh(t) � [SIN(t) � Sinh(t)] � Kinh(t), (19)

where SLGN is the sum of the LGN input spikes (as in Eq. 17, with wi �1
for all i). The LGN PSG is a difference of exponentials function:

KLGN�t� � ��e�t/�f � e�t/�r�, (20)

for t � 0 (0 otherwise), where �r �1 ms (tau_r) and �f � 4 ms (tau_f) are
the rise and fall time constants, respectively.

The IN spikes, SIN(t), to a single EX unit (presynaptic and postsynaptic
delay models), are also captured by Equation 17.

LIF units. Each unit in the model is a conductance-driven LIF unit,
where the intracellular voltage V is,

C(dV/dt) � gexc(Vexc � V) � ginh(Vinh � V) � gleak(Vleak � V),

(21)

where C is the membrane capacitance (c_x), Vexc (v_ex) and Vinh (v_in)
are reversal potentials for the excitatory and inhibitory conductances,
gexc and ginh, respectively, and Vleak (v_leak_x) is the reversal potential for
the leak conductance, gleak (g_leak_x). When V reached Vthresh (v_th_x),
a spike was discharged and V was set to Vreset (v_reset_x). To implement
a refractory period, V was held at Vreset for a short refractory period
(trefr_x) after each spike.

We used the same values as Troyer et al. (1998) for our IN and EX
units: IN, C � 214 pF, gleak � 18 nS, Vleak � �81.6 mV, Vreset � �57.8
mV; EX, C � 500 pF, gleak � 25 nS, Vleak � �73.6 mV, Vreset � �56.5
mV. Our DS units have the same values as the EX units. For LGN, C �
200 pF, gleak � 75 nS, Vleak � �73.6 mV, and Vreset � �56.5 mV.
Refractory periods were 1.5 ms for IN, 2.5 ms for EX and DS, and 0.5 ms
for LGN (trefr_x). The LGN refractory period also had an added stochas-
tic component, which was the absolute value of a zero-mean Gaussian
random variable (SD � 2 ms; trefr_x_sd). For all units, Vexc � 0, Vinh �
�70 mV, and Vthresh � �52.5 mV (values of Troyer et al., 1998). The
voltage equation was simulated using a fifth-order Cash–Karp Runge–
Kutta method with adaptive step size (Press et al., 1992). Any negative
conductance values, if they occurred, were set to 0.

We also tested models in which the LIF computation was replaced with
a Poisson-like spike generation mechanism, keeping the mean driven
firing rates at similar levels. In these models, the total excitatory (g_exc)
and inhibitory (g_inh) synaptic conductances from the LIF model are
used to directly compute an output firing rate as follows: Rate(t) � offset 	
scale � ( gexc 	 scale_in � ginh 	 offset0). In addition, we removed the
background noise spikes because they are unnecessary. The Poisson ver-
sions of the models are available at www.imodel.org and are named with
an additional “.Poiss ” extension, e.g., DS_Post_Fac.Poiss. The results are
very similar to those obtained with the LIF spiking mechanism, demon-
strating that the exact method by which spikes are generated is not critical
for our conclusions. Nevertheless, we use the conductance-based mech-
anism here because it permits us to explore an important model (the
linear model) that is based on conductance data.

Visual stimuli. The visual stimulus, I(x,y,t) (Eq. 5), for our modeling
framework was designed to closely approximate that presented on CRTs
during typical electrophysiology experiments. We represented stimuli on
the same spatial grid (32 � 32, 0.04°/pixel) used to define the LGN
population and at a 2 ms resolution in time. Drifting sine-wave gratings
were represented using values from 0 to 1 (black to white) and were
presented within a circular aperture (2.5° diameter) that covered the
entire RF. All simulations with grating stimuli were run at TF � 10 Hz,
SF � 1.6 cycles/°, and contrast 50% unless indicated otherwise. For di-
rection tuning curves (see Figs. 1G; 3 A, B; 4 A, B; 7A), we ran 10 trials of
each stimulus (4 s per trial). For CCG plots using grating stimuli (see Figs.
3–5, 7–9), simulations were run for 100 trials.

We also tested the models with a random 1-D ternary white noise
stimulus consisting of 16 adjacent bars presented simultaneously at a
frame rate of 50 Hz. The bars have a width of 0.2°, length of 2.0°, and
orientation 0° and are randomly assigned to be black, white, or mean gray
for each 20 ms frame. Simulations with this stimulus were run for 50
trials at 8 s duration (see Fig. 6).

CCGs. The main data analysis tool in this study is cross-correlation,
and our methods have been described previously in full (Bair et al., 2001).
We provide a brief description of the essential details here. Spike trains
from M trials for the two neurons are represented as discrete binary
signals of period T at the millisecond resolution:

xk
i �t� � � 1,

if on trial i neuron k fires an action
potential during the tth millisecond,

0, otherwise,
(22)

where k � 1,2 and 1 � t � T and 1 � i � M. The spike train cross-
correlation function is defined as

C1,2��� �
1

M�
i�1

M �
t�1

T

x1
i �t� x2

i �t � ��, (23)

and the CCG is a normalized form of the cross-correlation function

CCG(�) �
C1,2(�)

(�)��1�2

, (24)

where �1 and �2 are the mean firing rates (in spikes per second) of the
neurons. The function (�) is a triangle representing the extent of over-
lap of the spike trains as a function of the discrete time lag �:

��� � T � �t�, �� T � t � T�, (25)

where T is the duration of the spike train segments used to compute C1,2.
Dividing C1,2 by (�) in Equation 24 changes the units of our CCG from
raw coincidence count to coincidences per second and corrects for the
triangular shape of C1,2 caused by finite duration data.

To eliminate stimulus-driven correlations, we subtract a shift predic-
tor, which is the average correlation computed over all nonsimultaneous
trials (Bair et al., 2001). After the shift predictor is subtracted, CCGs are
smoothed by convolving with a Gaussian (SD � 2 ms). We defined the
peak of the CCG to be the maximum positive value of the smoothed CCG
between 0 and 50 ms after the presynaptic spike. Dips were similarly
defined as the maximal negative value reached in this interval. The time-
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to-peak of the CCG was measured as the time lag at which the peak value
was reached.

Results
Our results are organized in five sections as follows. First, we
describe three classes of DS models that we have built, which
differ in the location of the DS delay and whether the interaction
of the non-DS inputs is linear or nonlinear. Second, we show how
the location of the DS delay can be revealed using cross-
correlation. Third, we introduce suppressive versions of the
models and show that CCGs can also reveal the sign of DS non-
linearity, and we describe a novel form of stimulus-dependent
correlation that is predicted by the models. Fourth, we show that
these results hold for both linear and nonlinear models of direc-
tion selectivity. Fifth, we explore how the results hold up with
variation in the number of presynaptic inputs, which can deter-
mine how visible key features of the CCGs would be for in vivo
experiments. Finally, we outline a set of proposed experiments
based on the predictions from the modeling results.

Simple network models for DS neurons
The models studied here are implemented as networks of LIF
units that represent ON- and OFF-center LGN cells, V1 simple
cells, and V1 DS cells (Fig. 1; see Materials and Methods). We
introduce the models below in terms of three classes: presynaptic
delay, postsynaptic delay, and linear. The first two classes involve
multiplication of spatially offset inputs, similar to the Reichardt
detector (Reichardt, 1961), whereas the latter approximates a
space–time oriented linear motion filter.

Presynaptic delay models are widely supported by studies pro-
posing that DS cells are built from non-DS inputs that have
different response latencies or temporal phases (Adelson and
Bergen, 1985; De Valois et al., 2000; Saul et al., 2005). In our
implementation (Fig. 2A), each DS unit (yellow circle) receives
input from orientation-tuned EX simple cells (green circles) that
are driven by two distinct populations of LGN cells: delayed and
non-delayed (red and black arrows, respectively). The LGN pop-
ulations differ only in their temporal response attributable to the
introduction of a delay, dt, that shifts the response latency of one
population (Fig. 2B). Each input subunit (Fig. 2A, white circles)
to the DS cell is formed by pairing a delayed excitatory unit
(EX_D) with a non-delayed excitatory unit that has a spatial RF
shifted by 90° of phase relative to the delayed unit. The signals
arising from the paired non-DS cells are multiplied (see Materials
and Methods), and the resulting outputs from multiple subunits
are summed to form an excitatory conductance that drives the DS
unit. Overall, this model involves a fundamentally nonlinear DS
interaction between two inputs that are offset in space and time.

Our postsynaptic delay model is motivated by studies showing
that dendrites possess mechanisms for nonlinear integration that
allow different spatiotemporal patterns of input to be distin-
guished (Torre and Poggio, 1978; Koch et al., 1982; Borg-Graham
and Gryzwacz, 1992; Mel, 1993; Branco et al., 2010). As in the
presynaptic delay model, hypothetical subunits combine inputs
from pairs of simple cells with spatially offset RFs, but there is no
presynaptic temporal delay (Fig. 2C). The delay is implemented
in the postsynaptic subunit by convolving the spikes arriving
from one unit (the delayed unit) with a mask (a smooth, causal
function) that peaks with a fixed dt after the spike and decays
rapidly (Fig. 2D, red trace). The smooth, delayed signal is used to
scale the conductance contributed by the spikes from the non-
delayed unit in the pair. Thus, the mask creates a delayed window
of sensitivity in the postsynaptic cell to the input from the non-

delayed cell. This is not intended to represent a specific dendritic
mechanism but is a simple computational representation of the
impact of a postsynaptic delay on incoming spikes. For example,
Koch et al. (1982) suggested this could arise in DS circuits from
differences in the kinetics of conductances, and a recent cortical
study has demonstrated directional, temporally structured, su-
pralinear interactions between dendritic inputs (Branco et al.,
2010). In summary, our postsynaptic and presynaptic delay mod-
els share the same architecture of synaptic connections but differ
fundamentally only in where the DS delay is applied.

Our third model, the linear model, lacks the multiplicative
nonlinearity of those described above. In this model, the DS cells
receive direct input from both EX and IN simple non-DS units
(Fig. 2E). These non-DS inputs are chosen so that collectively
they create a tilted space–time filter, as motivated by demonstra-
tions that the sum of separable filters can produce inseparable
directional filters (Adelson and Bergen, 1985; Watson and Ahu-
mada, 1985). In keeping with experimental evidence (Monier et
al., 2003; Priebe and Ferster, 2005), the inhibitory and excitatory
inputs are chosen so that excitatory and inhibitory conductances
in the DS cell are tuned to the same preferred direction, and, to
reproduce the observed time course of these conductances, the
inhibitory and excitatory inputs are spatially out-of-phase by
180°. The delay (dt) in this model comes from two populations of
LGN units that differ in response latency and drive separate de-
layed and non-delayed populations of excitatory and inhibitory
units, as in our presynaptic delay model.

All three network models produced DS units with high direc-
tion indices (DIs). For example, Figure 3A shows the direction
tuning curves for one DS unit (purple trace) and for a typical pair
of excitatory units (black and cyan traces) that form an input
subunit to the DS unit in the presynaptic delay model. Similar
curves hold for the postsynaptic delay model (Fig. 3B) and the
linear model (described below). The DIs ranged from 0.84 to 1.0
in these models. The preferred directions of all DS units were near
0° (rightward motion, by design), although the preferred orien-
tations of the non-DS inputs varied substantially from 0° (see
Materials and Methods). Additional functional characterization
of the constituent units (LGN, IN, EX, and DS) in these models
can be found online at www.imodel.org, in which the models are
named DS_Post_Fac (postsynaptic delay), DS_Pre_Fac (presynaptic
delay), and DS_Simp (linear model).

Probing the DS time delay
To date, there is no direct experimental evidence for where the
time delay necessary for building cortical DS cells originates, but
spike train cross-correlation offers a way to answer this question.
Figure 3C shows the CCG between orientation-tuned simple EX
units and a DS unit in the presynaptic delay model. The peak in
the CCGs near 0 reflects the direct synaptic connection between
the EX and DS units, and it is shifted slightly to the right of 0
because the DS unit fires with higher probability after its input.
Importantly, both the delayed and the non-delayed units that
form the DS subunit have the same time-to-peak in the CCG: the
curves for the non-delayed (black) and delayed (cyan) inputs are
superimposed and difficult to distinguish. Thus, for the presyn-
aptic delay model, there is no information in the CCG about the
relative delay between the non-DS inputs.

Figure 3D shows analogous CCGs for the postsynaptic delay
model. In contrast to the previous example, the timing of the
peak in the CCG depends on which EX unit is included in the
CCG computation: the CCG for the input that gets delayed post-
synaptically has a longer time-to-peak (cyan curve) than the CCG
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for the input that does not get delayed
(black curve). In our network model, the
DS unit receives inputs from multiple EX
cells (34 in this example) with weights that
fall off with cortical distance and with dif-
ference in preferred orientation (see Ma-
terials and Methods); however, the timing
distinction here held for all inputs. For ex-
ample, for a pair of EX inputs with lower
synaptic weight, approximately half that
of the strongest input to the recipient DS
cell, the amplitude of the CCG peaks (Fig.
3C,D, dashed traces) are attenuated but
the differences in timing remain clear.

These results demonstrate a simple but
powerful principle: any delay that occurs
before the point at which the presynaptic
signals are recorded will not be reflected in
the CCG, whereas any delay incurred after
that point will be. Extracellular recordings
in cortex typically reflect somatic action
potentials; therefore, delays occurring in
the retina, LGN, or the dendrites or soma
of the EX units would all generate CCGs
consistent with the presynaptic delay
model. Conversely, any delay arising after
spike generation in the presynaptic input
will appear in the CCG between those
spikes and the DS cell output. Thus, any
type of postsynaptic delay, regardless of
the mechanism, would generate CCGs
with peaks shifted to reflect the delay, as
observed for the postsynaptic delay
model.

Thus, our models make different ex-
perimental predictions for DS circuits
with presynaptic and postsynaptic delays.
For presynaptic delays, the time-to-peak
distribution for CCGs between non-DS
inputs and postsynaptic DS targets would
be narrow and centered close to 0 time lag,
characteristic of fast monosynaptic con-
nections in cortical circuits. Figure 3E
shows this distribution for all excitatory
input connections to all DS units in the
presynaptic delay model (for details, see
figure legend). In contrast, postsynaptic
delays would produce a distribution of
peak times that is far broader, encompass-
ing short time lags for non-delayed inputs
and longer lags for inputs that get delayed
as part of the DS computation. Figure 3F
shows this distribution for all excitatory
inputs to DS units in the postsynaptic de-
lay model. This distribution is bimodal,
with the early peak (black arrow) reflect-
ing non-delayed inputs and the late peak
(cyan arrow) reflecting delayed inputs.
Although the models have a single DS de-
lay (20 ms) and fixed AMPA conductance
time course (4 ms), diversity appears in
the time-to-peak distributions as a result
of errors in estimating the peak times for
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Figure 3. CCGs can reveal the dt. Results for the presynaptic and postsynaptic delay models are compared in the left and right columns,
respectively. A, B, Direction tuning curves are plotted for a DS unit (purple line) and two EX units (black and cyan lines) that form one of its
input subunits. Central disks show background firing rates for DS (purple) and EX units (cyan). Both the presynaptic and postsynaptic delay
models achieve similar direction tuning (compare purple traces in A and B). C, D, CCGs between EX and DS units show the normalized
coincident firing (in excess of the shift predictor) as a function of time relative to the EX spike (100 trials, 4 s/trial, drifting gratings at 10 Hz
in preferred direction). CCGs are smoothed (Gaussian convolution, SD � 2 ms). For the presynaptic delay model (C), CCGs for both the
non-delayed EX-to-DS connection (black traces) and delayed EX-to-DS connection (cyan traces) have the same time-to-peak. Peak time is
consistent for high (solid line) and low (dashed line) synaptic weights (connections EX_6_6_2 and EX_D_6_6_2 to DS_1_1, w�8.76 of
50.0 total; EX_5_5_0 and EX_D_5_5_0 to DS_0_1, w�3.68 of 50.0). In the postsynaptic delay model (D), the time-to-peak in the CCG
depends on the type of the EX unit. The delayed EX unit CCG has a time-to-peak reflecting the DS delay (cyan traces). The non-delayed input
CCGhasatime-to-peakexpectedforafastAMPAmonosynaptic input(blacktraces).HighweightinputsEX_6_6_2and6_6_3toDS_1_1,
lowerweight inputsEX_5_5_0and5_5_1toDS_0_1,weightsarethesameasin C. E,Histogramoftime-to-CCG-peakforallEXandEX_D
connections (166 units) to all four DS units in the presynaptic delay model. The peak is defined as the maximum positive value of the
smoothed CCG between 0 and 50 ms after the presynaptic spike. F, Histogram of CCG time-to-peak for all EX connections to DS units in the
postsynaptic delay model (black bars) and a hybrid model with 10 ms presynaptic and 10 ms postsynaptic delay (red trace). G, H, CCGs
between the delayed EX input (G, EX_D_6_6_2; H, EX_6_6_3) and recipient DS unit (G, H, DS_1_1) as the dt is varied.
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connections that have low synaptic weights, thus noisier CCGs.
Even with this diversity, the scale of the postsynaptic delay can be
discerned from the spread of values across the entire time-to-
peak histogram.

To examine how the time-to-peak in the CCGs depended on
the dt, we varied dt and computed CCGs between the delayed
excitatory input unit and the postsynaptic DS unit. Reasonable dt
values for these models, which involve 1⁄4 cycle phase shifts, are 1⁄4
period of optimal TFs. For example, 10 – 40 ms maps to TFs of
�25 to 6 Hz, which covers a wide range of optimal TFs for V1 DS
neurons. Varying dt over this range in the presynaptic delay
model had no effect on the timing of the CCG peak, which
remained at �7 ms (Fig. 3G). In the postsynaptic delay model,
however, the peak shifted systematically as dt was increased
(Fig. 3H ).

It is possible that a combination of mechanisms could exist in
vivo; therefore, we tested a hybrid model that combines presyn-
aptic and postsynaptic delays. In this hybrid, the delayed excit-
atory input units are delayed by only 10 ms but have an additional
10 ms of postsynaptic delay. The distribution of CCG time-to-
peak values from non-delayed and delayed inputs in the hybrid
model are superimposed in Figure 3F (red line). The histogram
has a bimodal distribution not unlike that for the postsynaptic
delay model, but the second peak in the histogram now occurs 10
ms earlier than in the model with a purely postsynaptic 20 ms
delay. Thus, in the hybrid model, the delayed inputs have CCG
time-to-peak values that reflect the shorter postsynaptic delay.
This reinforces the observation above that any postsynaptic delay
will appear in CCG peak times, whereas presynaptic delays will
not be visible in this analysis. In general, a more complete picture
of where the DS delay originates can be built by measuring both
the response latency and the CCG peak times for non-DS units
that have significant CCG peaks to DS targets. Response latency
distributions will be broad if substantial presynaptic delays are
involved in computing direction selectivity, as suggested by De
Valois and colleagues (De Valois and Cottaris, 1998; De Valois et
al., 2000).

We have focused on how the CCG peak depends on dt, but it
is worth noting that the CCG peak is sensitive to all the processes
that shape the temporal profile of input to the DS neuron. For
example, changing the time course of the synaptic conductance
in the model will alter the shape and timing of the CCG peak, as
has been explored in previous studies (Veredas et al., 2005; Osto-
jic et al., 2009). Likewise, the CCG peak for the delayed input in
the postsynaptic delay model is determined primarily by the
shape of the mask, which is substantially longer than, and thus
obscures the shape of, the rapid AMPA PSG waveform. Our
framework allows testing the relative influence of a variety of
effects, e.g., background firing rates and passive time constants,
in network models with functional inputs, which to date have
been examined only in simpler circuit models (Melssen and Ep-
ping, 1987; Veredas et al., 2005; Ostojic et al., 2009).

Inter-neuronal correlation in facilitatory versus suppressive
DS circuits
A second key unsolved problem of cortical DS circuitry concerns
the type of nonlinear interaction involved. There is evidence for
both suppressive interactions, in which input generated by stim-
ulus motion in the antipreferred direction is less than expected
from linear summation across the RF (Reid et al., 1991; Tolhurst
and Dean, 1991), and facilitatory interactions, in which preferred
direction input is greater than that predicted by a simple linear
model (Albrecht and Geisler, 1991; DeAngelis et al., 1993).

To understand how CCGs could be used to address this prob-
lem, we implemented suppressive variants of the two facilitatory
models described above. Both the presynaptic and postsynaptic
delay models above operate by multiplying signals, s1 and s2, from
the presynaptic excitatory units within a DS subunit. To imple-
ment suppression, we instead compute the product s1 � (1 � s2),
where s2 is the delayed signal (see Materials and Methods). Thus,
in our suppressive models, the non-delayed signal provides excit-
atory drive that is suppressed by the delayed signal. In these mod-
els, we do not explicitly represent the biophysical mechanism for
suppression. In particular, we allow spikes arising from the EX
population (normally intended to be excitatory simple cells) to
cause suppression in postsynaptic DS units. The relevant units
could have been formed into a separate population and relabeled
as “IN” units, but for simplicity we have not done so.

The direction tuning curves for the suppressive model DS
units (Fig. 4A,B, dashed lines) show less selectivity (have lower
DIs) than those for the facilitatory models (solid lines). This re-
flects the nature of the underlying suppressive computation as
follows. When the excitatory (s1) input fires, the complementary
suppressive input (s2) to the DS subunit is unlikely to have fired
recently by chance, because typical cortical firing rates are low. In
the facilitatory models, this means it is unlikely that a given spike
is facilitated, whereas in the suppressive models, it is unlikely that
a given spike is suppressed. Thus, the suppressive models operate
in a more permissive regime in which baseline firing rates are
higher (Fig. 4A,B, dashed circles are larger than solid). The sup-
pressive models can be adjusted to increase the DI by retuning
other network parameters, for example, by tuning the excitatory
units to have a higher F1/DC ratio for drifting gratings and a
lower spontaneous firing rate. We built such a model and found
results similar to those presented below (data not shown). We use
the lower DI models here because they are identical to the facili-
tatory versions except in the DS mechanism.

We hypothesized that changing the sign of the DS interaction
from facilitatory to suppressive would cause the CCG peak to be
replaced by a dip for the suppressive connections. When stimu-
lated by a drifting grating that was optimal for the DS unit, both
the presynaptic and postsynaptic facilitatory models showed
clear CCG peaks (Fig. 4C,D, solid blue traces). However, the
CCGs for the suppressive versions of the models were relatively
flat (Fig. 4C,D, dashed blue traces), showing little or no evidence
of functional connection. The hypothesized dips in the CCG
were, however, revealed when we presented a grating drifting in
the antipreferred direction (Fig. 4C,D, dashed red traces). At the
same time, antipreferred motion generated much smaller peaks
for the facilitatory DS connections (solid red traces). These ob-
servations demonstrate that experimentally observed correlation
between the non-DS and DS stage is only partly determined by
the functional connection and depends strongly on the visual
input.

To verify the robustness of the direction dependence, we com-
puted CCGs for all connections from delayed excitatory units to
DS units in all models (the delayed inputs being those that pro-
vide either the facilitatory or suppressive signal to the DS inter-
action). The CCG peak and dip amplitudes are plotted as a
function of the synaptic strength in Figure 4E–H for preferred
(blue) and antipreferred (red) motion. In the facilitatory models
(Fig. 4E,F), the CCG peaks grew with synaptic weight for pre-
ferred motion (blue points) but remained low across all weights
for antipreferred motion (red points). For suppressive models
(Fig. 4G,H), CCG dips grew larger with weight for antipreferred
motion (red points) but remained low across weights for pre-
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ferred motion. In general, the strongest stimulus dependence was
observed for high synaptic weight inputs, but moderate to weak
inputs also showed clear stimulus dependence in both presynap-
tic (Fig. 4E,G) and postsynaptic (Fig. 4F,H) delay models. In
places in which the red and blue data points overlap, a pairwise

comparison revealed that this is primarily
scatter across connections; the two data
points for a particular connection almost
always maintained the ordering consis-
tent with the entire population of inputs.
The few exceptions in each model were at
the lowest synaptic weights.

In summary, facilitatory and suppres-
sive interactions within functional DS
circuits have distinct and stimulus-de-
pendent signatures in the CCGs obtained
in our models: facilitation is revealed as
peaks in CCGs for preferred motion,
whereas suppression is exposed as CCG
dips in response to antipreferred motion.
This raises important caveats for applying
CCG analysis in vivo to assess the sign of
DS interactions. In particular, relying on
the optimal stimulus, although it has the
advantage of raising DS firing rate and
thereby improving CCG estimates, may
completely conceal strong functional in-
teraction. If circuitry like that of the sup-
pressive model were encountered in vivo,
in addition to CCG dips, peaks will also be
found for the non-delayed excitatory in-
puts, as in the facilitatory models (Fig.
3C,D). Thus, experimental findings of
both peaks and dips between non-DS in-
puts and DS units in vivo would be char-
acteristic of suppressive DS circuits.

Understanding the mechanism behind
the stimulus-dependent correlation ob-
served in these modeling experiments is
useful to help guide experimental design
and to place these observations in the con-
text of related studies. The underlying
mechanism can be visualized by compar-
ing the peristimulus time histograms
(PSTHs) for a pair of non-delayed and de-
layed inputs that form a DS subunit in
the suppressive presynaptic delay model.
These signals, which enter the nonlinear
interaction, have very little temporal over-
lap for preferred motion (Fig. 5A, shaded
region indicates overlap) but have sub-
stantial overlap for antipreferred motion
(Fig. 5B). It is in this region of overlap in
which the delayed unit suppresses incom-
ing spikes from the non-delayed input,
thereby diminishing the firing of the DS
unit. This suppression results in robust
dips in the CCG for antipreferred motion.
The lack of overlap in Figure 5A means
that there is little chance for actual sup-
pression during preferred motion and,
thus, little or no dip in the CCG. This type
of stimulus-dependent correlation is

novel because it originates from the sensitivity of the DS
mechanism to the relative timing of inputs rather than from
changes in population recruitment or connection strengths,
which have been explored extensively in the literature (see
Discussion).
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If it is indeed the temporal overlap of
input spikes that controls the dip ampli-
tude, then changing the stimulus TF
should also affect the CCG, because a
lower TF drives spikes over a longer time
interval in the excitatory inputs, while the
DS delay remains fixed at 20 ms. This can
be seen in the PSTHs for low TF (1 Hz)
gratings in both directions (Fig. 5C,D).
There is more overlap for low TFs, thus
more coincident spiking in the nonlinear
suppressive interaction, even for the pre-
ferred direction (Fig. 5, compare C, A).
This suggests that preferred direction
stimuli should produce CCG dips when
lower than optimal TFs are used to drive
the cells. To verify this, we computed
CCGs using preferred direction motion at
low and high TFs in the suppressive pre-
synaptic delay model (Fig. 5E, blue lines).
At TF � 1 Hz (light blue line), the CCG
dip is apparent, although it remains less
than half as large as that for 10 Hz anti-
preferred motion (red line). Nevertheless,
these results suggest that testing with low-
TF, preferred-direction stimuli may aid in
the detection of suppressive functional
connections in experiments in which an-
tipreferred motion produces too few
spikes for reliably measuring correlation.

A similar direction and TF dependence
also holds for the facilitatory model (Fig.
5F): the weak CCG peak (red line) for an
antipreferred stimulus at the optimal TF
(10 Hz) becomes substantially larger as TF
is decreased to 1 Hz (orange line). How-
ever, because these CCG peaks are smaller
than those for optimal preferred motion,
facilitatory DS interactions will still be
most effectively detected experimentally
using the optimal TF and direction (blue
line), in which the combination of a large
CCG peak and high firing rate affords the
best signal-to-noise ratio.

The visibility of peaks and dips in the
CCGs strongly depend on the parameters
of the sinusoidal gratings in the above
tests, but in an experimental setting, it
may be preferable to use a stimulus that reliably drives motion in
multiple directions simultaneously. To test this idea, we used a
stimulus that has often been used to map directional interactions
in vivo: random 1-D ternary white noise. This stimulus consists of
16 adjacent bars (Fig. 6A, icons) at the optimal orientation for the
DS unit, in which the luminance of each bar was assigned ran-
domly to be black, white, or mean gray for each frame at 50 Hz
(see Materials and Methods). This has been shown to drive DS
complex cells in vivo (Emerson et al., 1992) at spike rates similar
to those we used to generate CCGs with sinusoidal gratings
(10 –30 spikes/s). Figure 6 shows CCGs between delayed inputs
and the recipient DS unit in the presynaptic (Fig. 6A) and post-
synaptic (Fig. 6B) delay models in response to the random bar
stimulus. This single stimulus is able to reveal robust CCG peaks
for the facilitatory models (black traces) and dips for the suppres-

sive models (gray traces). Because this stimulus involves a ran-
dom sequence, unlike the sine stimulus, we tested 10 different
randomization seeds and found that the CCG shape had very
little dependence on the particular sequence (multiple traces
show runs for different seeds). As with the grating stimuli, shift
predictors (insets) have been subtracted. Thus, random dynamic
stimuli appear to be better able to activate simultaneously the
inputs to a variety of nonlinear DS interactions. More generally,
such stimulation could be valuable for broadly screening CCGs
across large populations in which the underlying mechanisms
and the nature of temporal interactions are not well established.

In summary, Figures 4 – 6 show how CCG features in our DS
circuits depend strongly on the sign of the DS interaction and on
the visual stimulus used. These results are instructive for both the
design and analysis of CCGs obtained experimentally. In net-
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works with facilitatory interactions, CCGs will show only peaks
when there is a functional connection. These peaks should be
strongest for stimuli in the preferred direction for the DS cell. In
contrast, networks with suppressive interactions can produce
CCGs that have both peaks and dips. Furthermore, dips will be
most apparent when using stimuli that have antipreferred direc-
tion motion. Thus, to ensure that all DS interactions are revealed,
it is necessary to use a stimulus protocol that drives both pre-
ferred and antipreferred direction motion, as we have shown for
both gratings with varying direction and TF, and dynamic ran-
dom stimuli. When determining the amount of data to collect, it
is important to consider that CCG dips may only be revealed by
presenting non-optimal stimuli.

Inter-neuronal correlation in a linear model for DS cells
Experimental evidence supports another important class of DS
model that requires only linear summation of non-DS synaptic
inputs followed by spike threshold to produce strongly DS re-
sponses (Reid et al., 1991; Jagadeesh et al., 1993, 1997; Priebe and
Ferster, 2005); therefore, we examined whether the principles
derived from the multiplicative nonlinear subunit models above
also apply to this linear model. In its most basic form, this is a DS
simple cell model, and we have implemented it as such (Fig. 2E;
see Materials and Methods) and made it available as the DS_Simp
model at www.imodel.org.

This linear model generated highly selective DS units (e.g.,
DS_0_1; Fig. 7A), with DIs ranging from 0.84 to 0.94. We com-
puted CCGs between the non-DS inputs, which include both EX
and IN units, and the postsynaptic DS unit for antipreferred and
preferred motion (Fig. 7B). The CCG peaks for both delayed and
non-delayed inputs occurred at similar, short time lags (data not
shown). This is expected because the dt in the linear model arises
in the LGN populations. It is therefore also a presynaptic delay
model and behaves like the nonlinear presynaptic delay model
with respect to CCG timing.

In the linear model, the responses of the DS units are deter-
mined by summation of non-DS inputs. We found that excit-
atory inputs generated peaks in the CCGs, whereas inhibitory
inputs created dips. These peaks and dips were visible for both
antipreferred and preferred (Fig. 7B) motion. However, the am-

plitude of the CCG features varied with
direction in a manner consistent with the
behavior of the nonlinear models above:
the excitatory-to-DS CCG peaks were
larger for preferred motion, whereas
inhibitory-to-DS CCG dips were larger
for antipreferred motion. This is some-
what difficult to observe in the plots of
CCG amplitude against synaptic weight
for preferred and antipreferred motion
(Fig. 7C,D), but it is more clear when plot-
ting the difference (preferred minus anti-
preferred) in CCG peak and dip
amplitude (Fig. 7E,F, respectively). Stim-
ulus dependence was apparent across all
synaptic strengths for excitatory inputs
(Fig. 7C,E) but less consistent for inhibi-
tory inputs (Fig. 7D,F). However, for
both sets of inputs, the difference in CCG
amplitude with stimulus direction was sta-
tistically significant (see legend of Fig. 7).

We demonstrated above for the multi-
plicative models that direction- and TF-

dependent correlation arises because the relative timing of spikes
from paired non-DS inputs engages the DS interaction in a
stimulus-dependent manner (Fig. 5). In the linear model, delayed
and non-delayed inputs are not paired as in the multiplicative
models. Therefore, to demonstrate how relative timing between
inputs shapes the stimulus dependence of CCGs, we modified the
linear model by simply eliminating the dt. This preserves the total
amount of input to the DS unit in the two directions and disrupts
only the relative timing of inputs. We found that this manipula-
tion eliminated the difference in CCG peak and dip amplitude
with stimulus direction (excitatory inputs, p � 0.59; inhibitory
inputs p � 0.91, two-tailed paired t test). Thus, the relative timing
of inputs underlying the DS mechanism in the linear model is also
essential for stimulus dependence of the CCG.

That we find similar results for CCGs obtained with the mul-
tiplicative and linear models, which are substantially different but
encompass the most widely cited schemes for direction selectiv-
ity, suggests that the temporal dependence of CCGs may be a
fundamental characteristic of diverse DS circuits. This increases
the likelihood that the trends revealed here may be observable in
electrophysiological experiments.

Although the CCG across a non-DS-to-DS synapse can reveal
much about the interaction, we found that it did not readily
reveal whether that connection corresponds to one in a linear
model (e.g., DS_Simp) or to a nonlinear multiplicative subunit
(as in our presynaptic and postsynaptic delay models). This
follows because, for a multiplicative subunit, the effect of an ob-
served input on the output is determined by weighting (multiply-
ing) its value by the value of the other (unobserved) input. This is
essentially the same as for a single, weighted input to the linear
model, which is multiplied by its synaptic weight. Analysis meth-
ods that use knowledge of responses for three units, including
two nonlinearly paired inputs and the postsynaptic unit, can dis-
tinguish such a mechanism from a linear model, but collecting
the relevant data in vivo would be substantially more difficult.

Network connectivity affects the amplitude of features
in CCGs
Whether the patterns of correlation described above can be ob-
served in vivo, when recording time is limited, may depend on
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network connectivity. If there are many
independent inputs with low connection
weights, CCG features could become too
small to reliably reflect functional connec-
tions. Furthermore, the amplitude of the
CCG peak generated by a particular con-
nection may depend on the firing rate of
the presynaptic neuron and how closely
its tuning matches that of the postsynaptic
DS cell. Although these issues have re-
ceived little attention experimentally, they
are important in practice and can be read-
ily demonstrated and examined in our
models.

A fundamental question about DS cir-
cuits is whether the total input to a DS cell
is provided by many inputs with small
weights, or fewer, strongly weighted in-
puts. To examine this in the presynaptic
delay model, we assumed a uniform
weight distribution over the excitatory in-
puts to the DS units, as opposed to the
approximately Gaussian distributions for
the models in the previous figures (see
Materials and Methods). To maintain a
constant DS firing rate as the number of
inputs, n, increases, the synaptic weight of
each input was decreased to keep the total
input constant. Figure 8A shows CCGs
for a single delayed excitatory-to-DS con-
nection obtained while varying n in the
presynaptic delay model (non-delayed in-
puts behaved similarly). The amplitude of
the CCG peak decreases as n increases, re-
flecting the reduced relative contribution
of one among many inputs. Although
CCG amplitude is strongly dependent on
synaptic weight, CCG time-to-peak re-
mains constant as input strength is varied.

The CCG peak amplitudes for all de-
layed excitatory inputs to the same DS
unit are plotted in Figure 8B as a function
of n. The black lines connect all points
corresponding to two particular synaptic
connections that persisted as n increased. All connections show
consistent decreases in CCG amplitude as the number of inputs
to the DS unit increases. Despite the decrease with n, the peak
measurements remained above baseline (Fig. 8B, red line). The
CCG amplitudes are expected to decay toward a limit near 0 that
depends on the correlation in the input population. Our delayed
and non-delayed excitatory units have modest spike count corre-
lation (rSC � 0.024 on average for neighbors; rSC is Pearson’s
correlation coefficient of spike counts for 100 4-s-long trials of a
grating drifting at direction 0°), which arises from their common
LGN and inhibitory inputs (see Materials and Methods). If cor-
relation among inputs were higher, the EX-to-DS CCG peaks
would be even larger than shown. This suggests that an input
providing �1⁄40 or more of the drive to a DS unit should have a
visible CCG peak in vivo. This is based on the assumption of
having 400 s of recording, with mean firing rates of �14 spikes/s
(delayed excitatory inputs) and 12 spikes/s (recipient DS cell) and
on the basis that CCG peaks covering the range of sizes shown

here are reported in the literature (Bair et al., 2001; Kohn and
Smith, 2005; Smith and Kohn, 2008).

Although synaptic weight strongly influences the size, and
thus visibility, of CCG peaks, Figure 8B shows that there remains
a considerable spread in CCG peak amplitude, even when synap-
tic weights are identical. We found that this spread related to
differences in firing rates and tuning across the presynaptic pop-
ulation. Figure 9A shows the full CCGs for the four delayed ex-
citatory connections corresponding to the points at n � 4 in
Figure 8B generated from responses to motion in the direction
(0°) preferred by the postsynaptic DS unit. Plotting CCG peak
amplitude versus mean firing rate for each input (Fig. 9B) reveals
a clear positive correlation. Thus, inputs that fire more strongly
tend to generate larger CCG peaks. Much of the variation in firing
rate across units in response to a particular stimulus arises from
variation in the RFs, or tuning, of those units. This variation is
caused partly by probabilistic connectivity, e.g., the sparse sam-
pling of LGN inputs to build simple V1 RFs, but more so by the
broad bandwidth of orientation preferences (Gaussian, SD �
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30°) of inputs to the DS unit. The diversity across orientation
tuning curves for the DS unit and its inputs is shown in Figure
9E–I. By changing the visual stimulus from 0 to 337° motion, the
CCGs and the firing rates reorder (Fig. 9C,D), and the input unit
EX_D 5_8_0 (black trace) now has the largest response and CCG
peak. This peak is as large as the largest obtained for the 0° stim-
ulus, although the firing rate of the DS cell is significantly reduced
for the 337° grating (Fig. 9E). The reordered CCG peak ampli-
tudes still follow the firing rates of the inputs (Fig. 9D). This result
is similar to previous experimental results showing that correla-
tion among simultaneously recorded cells with similar spatial
properties was strongest when the stimulus orientation was close
to preferred for all the recorded cells (Snider et al., 1998; Lampl et
al., 1999). Our result goes a step farther because it predicts that,
even when tuning preferences of the recorded neurons are very
similar, CCG peaks can be largest when stimuli are optimized to
drive the input non-DS cells, not the postsynaptic DS cell. This
suggests that it could be important to tailor stimuli to the tuning
preferences of particular units in paired and multiunit recordings
to fully reveal the nature of functional connections.

Overall, these results suggest that non-DS-to-DS CCG peaks
should be visible for a broad range of physiologically plausible
conditions on the number and distribution of inputs. Further-
more, we predict that CCG amplitude will depend on the pre-
ferred orientation of the non-DS input, with the strongest

correlation when the stimulus is at the optimal orientation for the
input. This again highlights the importance of careful selection of
stimulus parameters for revealing functional correlations in DS
circuits.

Proposed experiments
Our results suggest the following experimental protocols for re-
vealing functional DS interactions. (1) Record spikes simultane-
ously from many DS and non-DS neurons with overlapping RFs,
e.g., from layers 4C-� and 4B, respectively, in macaque (Hawken
et al., 1988; Nassi and Callaway, 2007). (2) To detect both CCG
peaks and dips, try altering the temporal coordination of non-DS
signals by presenting gratings in both the preferred and anti-
preferred directions or at lower than optimal TFs, or by present-
ing dynamic random stimuli. (3) Vary orientation to match
preferences for non-DS cells (putative inputs) because this may
give the largest correlation values (Fig. 9).

The distribution of key parameters of peaks/dips of the result-
ing CCGs may then reveal the DS mechanism. The distribution of
time-to-peak/dip in the CCG will depend on the location of DS
delay, with postsynaptic delays generating a broader, possibly
bimodal time-to-peak distribution (Fig. 3E,F). The distribution
of CCG amplitudes reveals the sign of the DS interaction, with
facilitatory interactions generating only peaks and suppressive
DS interactions generating both peaks and dips. The amplitude of
CCG features will depend on synaptic efficacy, which in principle
decreases for large numbers of independent inputs (Fig. 8). V1
simple cells may receive 10 –30 LGN inputs (Tanaka, 1983; Peters
and Payne, 1993; Alonso et al., 2001), and, if this holds for other
feedforward circuits, our simulations suggest that the peaks
should be easily detectable.

In our study, we have presented non-DS-to-DS cross-
correlation, but in vivo many neurons also have intermediate DI
values, referred to as direction-biased (DB) cells. It is likely that,
in these proposed experiments, in which multiple units are si-
multaneously recorded, there will be data from DB neurons, and
computing CCGs between these DB units and both DS and
non-DS units can shed light on how DB RFs are constructed. For
instance, DB RFs may arise from circuitry similar to that of DS
neurons (as would be the case with incomplete antipreferred di-
rection suppression, e.g., our DS_Pre_Sup model), in which case
DB neurons would receive delayed and non-delayed non-DS in-
puts that would be revealed by the CCG analyses proposed here.

Discussion
Our goals were to (1) build cortical circuit models that differ
in their DS mechanism, (2) distinguish them using cross-
correlation analysis, (3) examine the practicality and means of
applying this in vivo, and (4) present the models in an online
framework for use by others. Each is discussed below.

DS circuit models
We built a set of simple yet plausible circuit models implement-
ing some predominant ideas regarding direction selectivity: (1)
the temporal delay, (2) spatially offset detectors, (3) null-
direction suppression, (4) multiplicative nonlinearity, and (5)
linear, oriented spatiotemporal RFs. Ours differ from filter-based
models (Adelson and Bergen, 1985; Heeger, 1993), which are
simpler and have explained much electrophysiological data but
do not address implementation in terms of spiking circuits.
Without representing and processing spikes in relevant interme-
diate cell classes, our CCG analysis would be impossible. More
broadly, the LGN and simple cells represented in our models are
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also involved in form, depth, and color
processing, allowing a diverse set of future
studies to refine these circuits. Our mod-
els relate more to detailed biophysical
models (Suarez et al., 1995; Maex and
Orban, 1996; Rao and Sejnowski, 2003)
that include synaptic conductances, spike
generation, and interconnected popula-
tions. Those studies focused on represent-
ing particular DS mechanisms in more
detail, whereas we have emphasized the
construction of a set of alternative models
for developing experimental approaches.

Cross-correlation in DS circuit models
We found that spike train cross-
correlation provides several key insights
into DS circuits. First, correlation analysis
can reveal the location of the DS delay. DS
delays arising from variation in response
latency of non-DS inputs produce a CCG
time-to-peak consistent with a fast mono-
synaptic connection, whereas DS delays
generated postsynaptically produce a
CCG time-to-peak reflecting the addi-
tional duration of postsynaptic processing
(Fig. 3). Second, we found that cross-
correlation can reveal the sign of the DS
interaction (Fig. 4). Facilitatory interac-
tions generate CCG peaks, whereas sup-
pressive interactions generate dips. Third,
however, the peaks and dips are visible
only to the extent that the stimulus appro-
priately activates the DS mechanism; thus,
inter-neuronal correlation was stimulus
dependent (Figs. 4, 5). These results were
robust across a range of connection
strengths (Fig. 8) and held for nonlinear
and linear models (Fig. 7). Our results re-
garding stimulus-dependent correlation
were unanticipated, offering new insight
explained next.

Much attention has been given to the
idea that inter-neuronal correlation is not
fixed but varies with task (Vaadia et al.,
1995), over time (Aertsen et al., 1989), or
across stimuli (Snider et al., 1998; Kohn
and Smith, 2005). These studies proposed
mechanisms, including changes in con-
nection strengths and changes in the
distribution of input firing rates (“population recruitment”),
that cannot explain the stimulus-dependent correlation in our
models. Our connection strengths are fixed and, as stimulus di-
rection reverses, the firing rates of the input EX units do not
change on average. Instead, changes in correlation depend on the
temporal coordination of activity from presynaptic inputs, which
vary with direction and TF (Fig. 5). This holds in both nonlinear
models in which non-DS inputs are pairwise combined and a
linear model in which inputs are summed independently on the
DS cell. A second feature of the observed stimulus-dependent
correlation is that the correlation can be strongest for non-
optimal stimuli (in terms of firing rate). Past experimental stud-
ies of stimulus-dependent correlation in V1 (Snider et al., 1998;

Lampl et al., 1999; Kohn and Smith, 2005) found the strongest
correlation for optimal stimuli. We found that CCG dips were
largest for antipreferred motion (Fig. 5E) and that CCG peaks
could be higher at orientations suboptimal for the DS unit (Fig.
9). Overall, our results suggest an alternative mechanism for
stimulus-dependent correlation based on the temporal coordina-
tion of input at a subneuronal level.

Viability of proposed experiments
It is reasonable to believe that the experiments proposed above
(last section of Results) should be viable because previous CCG
studies have successfully identified monosynaptic connections
between hierarchical levels in the visual system, e.g., retina and
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LGN (Mastronarde, 1987; Usrey et al., 1998, 1999), LGN and V1
(Tanaka, 1983; Reid and Alonso, 1995; Usrey et al., 2000), and
between simple and complex cells within V1 (Toyama et al., 1981;
Alonso and Martinez, 1998). Peterson et al. (2004, their Fig. 7)
presented an example CCG between non-DS and DS cortical cells
with a delayed time-to-peak, consistent with a postsynaptic delay
mechanism. Multiunit array recordings in V1 facilitate such ex-
periments (Kohn and Smith, 2005), and two-photon calcium
imaging could reveal dendritic processing, as shown in retina,
optic tectum, and mouse visual cortex (Hausselt et al., 2007; Boll-
mann and Engert, 2009; Jia et al., 2010). Thus, the experimental
challenges that have precluded the type of analyses modeled here
are being overcome.

Model framework and interface
The models we presented are publicly accessible and designed
to be easy to test and manipulate. The online interface at
www.imodel.org offers tools for three major interactive func-
tions: (1) a library of visual stimuli that can be examined frame by
frame and in real time as parameters are changed, (2) neuronal
outputs, stored in our nData format, can be displayed and ana-
lyzed using the nData Viewer, and (3) model architecture and
maps of synaptic connections can be visualized using the iModel
Viewer. The iModel and nData Viewers are integrated to allow
anatomical and physiological data to be examined together.

The underlying modeling application, WM, is also down-
loadable (www.imodel.org) and allows users to customize
stimulus and model files, visualize the resulting model archi-
tecture, including monosynaptic and polysynaptic connectiv-
ity, animate visual stimuli superimposed on the architecture,
and select units and signals to be displayed on-the-fly during
simulation. WM can run on workstation clusters, allowing
rapid execution of experiments with numerous stimuli. We
aim to set a precedent in encouraging others to reproduce our
results and understand features and limitations of various
models through direct experimentation.

Limitations and future extensions
Our models do not include the potentially significant recurrent
intracortical input present in V1 (Douglas and Martin, 1991;
Peters and Payne, 1993). Several models of DS cells include re-
current connections (Suarez et al., 1995; Maex and Orban, 1996);
however, DS in these models is still implemented using compu-
tations (delays and spatial offsets) like those here. Suarez et al.
(1995) used Barlow–Levick null direction inhibition to achieve
DS (like our suppressive postsynaptic delay model), with recur-
rence simply acting to amplify weak feedforward input. Maex and
Orban (1996) used recurrent excitation to generate a delay loop
for facilitation, making a facilitatory postsynaptic delay model.
Recurrence is one of multiple mechanisms that could implement
components within our models; thus, our principal observations
may also hold for these models.

We focused on correlation across the non-DS-to-DS synapse, but
correlation is often measured in vivo between similar units, e.g., DS–
DS. We noted above that the EX–EX spike count correlation was
0.024 on average, consistent with recent reports that granular layer
cells in macaque show virtually no correlated variability (Hansen et
al., 2011). It will be important to characterize these correlations in
the model, comparing them with data as it becomes available for
specific cell types. Appropriate levels of DS–DS correlation will be
crucial for extending the network to include spatial pooling in visual
cortical area V5/middle temporal area MT, in which correlation im-
pacts information transmission (Zohary et al., 1994).

Our nonlinear DS mechanisms are phenomenological black
boxes. Although this makes the results more general, we may
overlook signatures of DS interactions that might only be re-
vealed if the exact biophysical mechanisms were simulated. To
address this, additional experimental evidence for particular
mechanisms will be required.
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