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To achieve robust estimates of depth, the brain combines informa-
tion from different visual cues1–3. Computational work proposes this 
produces more reliable estimates4 and behavioral tests show it makes 
objects easier to discern5,6. However, our understanding of the neural 
basis of integration is underdeveloped. Electrophysiological record-
ings suggest locations where depth signals converge7–9. Nevertheless, 
comparing the responses evoked by individual cues presented ‘alone’ 
(for example, disparity-, perspective- or motion-defined depth) does 
not imply fusion: response characteristics might be dominated by one 
cue or might show opposite tuning rather than integration10,11.

Here we used human fMRI to test for cortical areas that integrate 
cues, rather than containing convergent information (that is, colo-
cated, independent signals). To this end, we exploited two cues to 
which the brain is particularly sensitive: horizontal binocular dispar-
ity and depth from relative motion12. Psychophysical evidence for 
interactions between them13–16 suggests common stages of process-
ing; thus, these cues provide a useful pairing to test fusion.

To frame the problem of cue integration, consider a solid object (for 
example, a ballerina) whose depth is defined by both disparity and 
motion (Fig. 1a). An estimate of depth could be derived from each 
cue (quasi-)independently, defining a bivariate likelihood estimate in 
motion-disparity space. Thereafter, a fusion mechanism would pro-
duce a univariate ‘depth’ estimate with lower variance3,4. To probe 
this process, it is customary to measure discrimination perform-
ance; for instance, asking observers to judge which of two shapes has 
greater depth (Fig. 1b). There are two computationally distinct ways 
of solving this task: independence or fusion. Under independence, 
an ideal observer would discriminate the two bivariate distributions 
(Fig. 1b) orthogonal to the optimal decision boundary. By so doing, 
the observer will be more sensitive to differences between the shapes 
than if they judge only one cue. This improvement corresponds to the 
quadratic sum of the discriminabilities of the marginal distributions 

and has an intuitive geometrical interpretation: by the Pythagorean 
theorem, the separation between shapes is greater along the diagonal 
than along the component dimensions.

The alternative possibility is an optimal fusion mechanism that 
combines the component dimensions into a single (‘depth’) dimen-
sion. This reduces variance, thereby improving shape discrimination. 
Disparity and motion typically signal the same structure, making 
the predictions of independence and fusion equivalent (Fig. 1b). 
However, the alternatives can be dissociated by manipulating the 
viewed shapes experimentally (Fig. 1c,d), to effect different predic-
tions for independence (Fig. 1e) and fusion (Fig. 1f).

Here we tested for cue integration at the levels of behavior and fMRI 
responses. We presented a central plane that was nearer or farther than 
its surround (Fig. 2a). When viewing this stimulus, some neurons will 
respond to near positions and others far17, producing a dissociable 
pattern of activity. fMRI measures this activity at the scale of neuro-
nal populations; nevertheless, multivoxel pattern analysis (MVPA) 
provides a sensitive tool to reveal depth selectivity in human cortex18. 
Here we decoded fMRI responses evoked when viewing stimuli that 
depicted near or far depths defined by binocular disparity, relative 
motion and these signals in combination.

We developed three tests for integration. First, we assessed whether 
discrimination performance in combined cue settings exceeds quad-
ratic summation. Our logic was that a fusion mechanism is compro-
mised when ‘single’ cues are presented (Fig. 1c). For example, a ‘single 
cue’ disparity stimulus contains motion information that the viewed 
surface is flat, depressing performance (contrast single cues in Fig. 1e  
versus 1f). Thus, if ‘single cue’ data are used to derive a prediction for 
the concurrent stimulus, measured performance will exceed quad-
ratic summation. We used this test to establish a minimum bound 
for fusion, as considerations of fMRI signal generation and measure-
ment (for example, scanner noise) entail that this test cannot rule out  
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Humans exploit a range of visual depth cues to estimate three-dimensional structure. For example, the slant of a nearby tabletop 
can be judged by combining information from binocular disparity, texture and perspective. Behavioral tests show humans combine 
cues near-optimally, a feat that could depend on discriminating the outputs from cue-specific mechanisms or on fusing signals into 
a common representation. Although fusion is computationally attractive, it poses a substantial challenge, requiring the integration of 
quantitatively different signals. We used functional magnetic resonance imaging (fMRI) to provide evidence that dorsal visual area 
V3B/KO meets this challenge. Specifically, we found that fMRI responses are more discriminable when two cues (binocular disparity 
and relative motion) concurrently signal depth, and that information provided by one cue is diagnostic of depth indicated by the other. 
This suggests a cortical node important when perceiving depth, and highlights computations based on fusion in the dorsal stream.
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independence (see Discussion). Second, we determined whether 
improved performance is specific to congruent cues (Fig. 1e versus 1f).  
An independence mechanism should be unaffected by incongruency 
(Fig. 1d), as quadratic summation ignores the sign of differences. 
However, a fusion mechanism would be affected: a strict fusion mech-
anism would be insensitive, whereas a robust mechanism would revert 
to a single component. Third, motivated by psychophysical reports 
of cross-adaptation between cues13–15, we determined whether depth 
from one cue (for example, disparity) is diagnostic of depth from the 
other (for example, motion).

We found that fMRI responses from the V3B and kinetic occipital 
(KO) region (which we denote as area V3B/KO) supported stimulus 
decoding that surpassed the minimum bound, was specific for consistent 
depth cues and supported a transfer between cues. This suggests a region 
involved in representing depth from integrated cues, whose activity may 
underlie improved behavioral performance in multi-cue settings.

RESULTS
Psychophysics
We presented participants with random dot patterns (Fig. 2b) 
depicting depth from (i) binocular disparity, (ii) relative motion and  
(iii) the combination of disparity and motion. To test for integration 
psychophysically, we presented two stimuli sequentially with a slight 
depth difference between them and participants decided which had 
the greater depth (that is, which was nearer for near stimuli, or farther 
for far stimuli). Using a staircase procedure, we assessed observers’ 
sensitivity under four conditions by measuring just noticeable differ-
ence (j.n.d.) thresholds (Fig. 2c). We found that observers were most 
sensitive when disparity and motion concurrently signaled depth dif-
ferences, and least sensitive for motion-defined differences. Using 
performance in the ‘single cue’ (disparity alone or motion alone) con-
ditions, we generated a quadratic summation prediction for the com-
bined cue (disparity and motion) case. In line with the expectations 
of fusion, performance for congruent cues exceeded quadratic sum-
mation (F1,6 = 8.16; P = 0.015). Moreover, when disparity and motion 
were incongruent, sensitivity was lower (F1,6 = 11.07; P = 0.016)  

Figure 1 Schematic illustrations of cue fusion 
and ideal observer discrimination. (a) Cartoon 
of depth processing: depth of the ballerina 
figurine is estimated from disparity and motion, 
producing a bivariate Gaussian (purple blob 
in three-dimensional plot). Fusion combines 
disparity and motion using maximum likelihood 
estimation, producing a univariate depth 
estimate. (b) Discriminating two shapes defined 
by bivariate Gaussians (purple and green 
blobs). We envisage four types of detector: the 
disparity type and motion type respond to only 
one dimension (that is, discrimination of the 
marginals); the independent detector (bottom 
right) uses the optimal separating plane (gray 
line on the diagonal); the fusion detector (top 
right) integrates cues. (c) ‘single cue’ case: 
shapes differ in disparity but motion is the 
same. The optimal separating plane is now 
vertical (independent detector), and the fusion 
mechanism is compromised. (d) Incongruent 
cues: disparity and motion indicate opposite 
depths. Independent performance matches b; 
fusion is illustrated for two scenarios: strict 
(detector is insensitive) and robust (bar with 
dashed outline: performance reverts to that of 
one component). (e) Predicted measurements 
of independent units. Four types of stimuli 
are displayed: disparity (as in c), motion (motion indicates a depth difference, disparity specifies the same depth), disparity + motion (as in b), and 
incongruent (as in d). (f) Predicted measurements of fused units. Note that performance in the motion and the disparity conditions is lower than in e.
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Figure 2 Stimulus illustration and psychophysical results. (a) Cartoon 
of the decoding approach. Participants view stimuli that depict near or 
far depths. These differentially excite neuronal populations in an area 
of cortex. fMRI measurements reduce the resolution. We characterize 
the sensitivity of a decoding algorithm in discriminating near and far 
stimuli. (b) Disparity-defined and motion-defined depth stimuli. The top 
row provides a red-green anaglyph stereogram. The bottom row provides 
a cartoon of the relative motion stimuli: yellow arrow, speed of target; 
blue arrow, speed of background. (c) Behavioral tests of integration. 
Left, observers’ mean sensitivity (N = 7) with between-subjects s.e.m. 
Red horizontal line indicates the quadratic summation prediction. 
Right, results as an integration index for the congruent and incongruent 
conditions. A value of zero indicates the minimum bound for fusion. Data 
are presented as notched distribution plots. The center of the ‘bowtie’ 
represents the median, the ends depict 68% confidence values, and the 
upper and lower error bars 95% confidence intervals. *P < 0.05.
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and comparable to performance in the ‘single cue’ disparity condition 
(F1,6 < 1; P = 0.809). To quantify this effect, we calculated a psycho-
physical integration index (ψ): 

y =
+

−+S

S S

D M

D M
2 2

1

where SD+M is the observer’s sensitivity (1/j.n.d.) in the combined 
condition, and SD and SM correspond to sensitivity in the ‘single 
cue’ conditions (see ref. 19). A value of zero indicates the minimum 
bound for fusion (that is, the quadratic sum). Bootstrapping the index 
revealed that observers’ sensitivity exceeded the minimum bound for 
consistent (P < 0.001) but not inconsistent (P = 0.865) cue conditions. 
Additional tests (Supplementary Fig. 1) provided further psycho-
physical evidence of cue integration.

fMRI quadratic summation
To examine the neural basis of disparity and motion integration, we 
measured fMRI responses in independently localized regions of inter-
est (Fig. 3). We then used MVPA to determine which areas contained 
fMRI signals that enabled a machine learning classifier (support vec-
tor machine; SVM) to discriminate reliably between targets presented 
closer or farther than the fixation plane.

Both disparity- and motion-defined depth were decoded reliably 
by the classifier, and there was a clear interaction between condi-
tions and areas (Fig. 4a; F7.1,135.1 = 6.50, P < 0.001). However, our 
principal interest was not in ‘single cue’ processing, or in contrasting 
overall prediction accuracies between areas (these are influenced by 
a range of non-neuronal factors). Rather, we were interested in rela-
tive performance under conditions in which disparity and motion 
concurrently signaled depth. Prediction accuracies for the concurrent 
stimulus were statistically higher than the component cue accuracies 
in areas V3A (F2,38 = 7.07; P = 0.002) and V3B/KO (F1.5,28.9 = 14.35;  
P < 0.001). To assess integration, we calculated the minimum bound 
prediction (Fig. 4a) based on quadratic summation. We found that 
fMRI responses in V3B/KO supported decoding performance that 

(1)(1)

exceeded the minimum bound (F1,19 = 4.99, P = 0.019), but not  
elsewhere. We quantified this effect across areas using an fMRI  
integration index (φ): 

f =
′

′ + ′
−+d

d d

D M

D
2

M
2

1

where ′ +dD M is the classifier’s performance in the congruent condi-
tion, and ′dD and ′dM  are performance for ‘single cue’ conditions. The 
values of φ differed between areas (Fig. 4b; F4.5,86.6 = 3.14, P = 0.014), 
with a value significantly above zero only in V3B/KO (Table 1). This 
suggests an area in which improved decoding performance may result 
from the fusion of disparity and motion (although this test cannot 
rule out independence).

A possible concern is that there may be a gain change in the fMRI 
response when testing disparity and motion concurrently relative to 
single cues, and this may enhance the classifier’s decoding accuracy (for 
example, in V3B/KO). However, fMRI signals in each region of interest 
(Supplementary Fig. 2a) showed no evidence for reliable differences 
in responsiveness between conditions (F2,38 = 2.51, P = 0.094). Another 
possibility is that fMRI noise may be reduced when cues concurrently 
signal depth, supporting better decoding. To assess this possibility, we 
created a composite data set by averaging raw fMRI responses from the 
‘single cue’ conditions. However, prediction accuracies were lower for 
this composite data set than for the concurrent condition in V3B/KO, 
indicating that a simple noise reduction did not explain the result 
(Supplementary Fig. 2b; F4.9,93.8 = 3.74, P = 0.004).

Congruent versus incongruent cues
To provide a stronger test for integration, we manipulated both dis-
parity and motion, but placed these cues in extreme conflict (that is, 
an exaggerated conflict over our ‘single cue’ conditions). For each 
stimulus, one cue signaled ‘near’ and the other ‘far’ (Fig. 1d). If depth 
from the two cues is independent, this manipulation should have no 

(2)(2)
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Figure 3 Representative flat maps showing the left and right visual 
regions of interest from one participant. The maps show the location 
of retinotopic areas, V3B/KO, the human motion complex (hMT+) and 
the lateral occipital (LO) area. Regions were defined using independent 
localizers. Sulci are coded in darker gray than the gyri. Superimposed 
on the maps are the results of a group searchlight classifier analysis 
that moved iteratively throughout the entire volume of cortex measured, 
discriminating between near and far depth positions18. The color code 
represents the t-value of the classification accuracies obtained. This 
analysis confirmed that we had not missed any important areas outside 
those localized independently.
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effect. (Note that the classifier distinguishes the stimulus classes that 
evoked voxel responses; thus, an objectively correct answer exists for 
the learning algorithm).

Consistent with the idea that V3B/KO fuses signals, discrimination 
performance was significantly lower when motion and disparity con-
flicted (Fig. 5a and Table 1), with accuracy falling to that seen with the 
‘single cue’ components. There was a significant difference between 
congruent and incongruent conditions (F1,6 = 7.49, P = 0.034), but 
no significant difference between the incongruent condition and the 
‘single cue’ disparity (F1,6 < 1, P = 0.62) or relative motion (F1,6 = 1.13, 
P = 0.33) conditions. This robust behavior in the face of extreme con-
flicts matches perception: conflicts are accommodated within bounds, 
but thereafter one component is ignored20. Our participants relied on 
disparity when perceiving the incongruent stimulus (Fig. 2c). Other 
visual areas (notably V3v, V3d and V3A), also supported lower pre-
diction accuracies for the incongruent cues (Fig. 5a), although these 
differences were not statistically reliable (Table 1).

Transfer test
To obtain a further test for similarities in responses to the two cues, we 
asked whether depth information provided by one cue (for example, 
disparity) is diagnostic of depth indicated by the other (for example, 
motion). We performed a cross-cue transfer test whereby we trained 
a machine learning classifier to discriminate depth configurations 
using one cue, and tested the classifier’s predictions for data obtained 
when depth was indicated by the other cue.

To accompany this analysis, we used a control condition that 
addressed differences in average velocity that arose from the relative 

motion stimuli. In particular, when we presented motion-defined 
depth, the classifier might have discriminated movement speed rather 
than depth position (this likely explains high accuracies for motion 
in early visual areas; Fig. 4a). To control for speed differences, we 
presented stimuli in which the central target region moved with a fast 
or slow velocity but there was no moving background, meaning that 
participants had no impression of relative depth. We reasoned that 
an area showing a response specific to depth would support transfer 
between relative motion and disparity, but not between the motion 
control and disparity.

We observed a significant interaction between accuracy in the trans-
fer tests across regions of interest (Fig. 5b; F9,63 = 3.88, P = 0.001). In 
particular, higher responses for the depth transfer (disparity–relative 
motion) than the control (disparity–control) were significant in areas 
V4, V3d and V3B/KO (Table 2). To assess the relationship between 
transfer classification performance ( ′dT) and the mean performance 
for the component cues (that is, ( )/′ + ′d dD M 2), we calculated a boot-
strapped transfer index, 

T
d

d d
= ′

′ + ′
2 T

D M

This suggested that transfer test performance was most similar to 
within-cue decoding in area V3B/KO (Fig. 5c). Specifically, transfer 
performance was around 80% of that obtained when training and 
testing on the same stimuli. To assess the amount of transfer that 
arises by chance, we conducted the transfer test on randomly per-
muted data (1,000 tests per area). This baseline value (see Fig. 5c) 
indicated that transfer between cues was significant in areas V3d and 
V3B/KO (Table 2). In conjunction with the results presented above, 
this suggests that responses in V3B/KO relate to a more generic rep-
resentation of depth.

Decoding simulated populations
So far, we have considered two extreme scenarios: independence  
versus fusion. However, there are computational and empirical reasons 
to believe that responses might lie between these poles. Computationally, 
it is attractive to estimate depth based on both fusion and independence,  

(3)(3)

Table 1 Significance tests for the integration index (f) and 
congruency results

P-value

Cortical area Integration index above zero Congruent versus incongruent

V1 0.789 0.523
V2 0.799 0.419
V3v 0.150 0.079
V4 0.880 0.486
LO 0.838 0.262
V3d 0.733 0.203
V3A 0.265 0.148
V3B/KO 0.001 0.004
V7 0.915 0.247
hMT+/V5 0.479 0.499

Probabilities associated with obtaining a value of zero for (i) the fMRI integration 
index, and (ii) the prediction accuracy difference between congruent and incongru-
ent stimulus conditions. Values are from a bootstrapped resampling of the individual 
participants’ data. Underlining indicates Bonferroni-corrected significance (P < 0.05). 
LO, lateral occipital cortex; hMT+, human motion complex.
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to determine whether or not cues should be integrated21. Empirically, 
it is unlikely we sampled voxels that respond only to fused signals, 
as our region of interest localizers were standardized tests that do 
not target fusion. Thus, it is probable that some voxels (even within 
V3B/KO) do not reflect integrated cues. To evaluate how a popula-
tion mixture might affect decoding results, we used simulations to 
vary systematically the composition of the neuronal population. We 
decoded simulated voxels whose activity reflected neural maps on 
the basis of (i) fused depth, (ii) interdigitated, independent maps for 
disparity and motion and (iii) a mixture of the two.

First, to characterize how different parameters affected these simu-
lations, we tested a range of columnar arrangements for disparity and 
motion, different amounts of voxel and neuronal noise, and different 
relative reliabilities for the disparity and motion cues (Supplementary 
Figs. 3 and 4). We chose parameter values that matched our fMRI 
data as closely as possible (for example, signal-to-noise ratio) and 
corresponded to published data (for example, spatial period of 
disparity representations17). These simulations demonstrated the 
experimental logic, confirming that fused cues surpass quadratic 
summation (Supplementary Fig. 3b) and that independent represen-
tations are unaffected by large conflicts and do not support transfer 
(Supplementary Fig. 4c). Second, we explored the composition of the 
neuronal population, comparing our simulation results to our empiri-
cal data (Fig. 6). We found a close correspondence between the fMRI 
decoding data from V3B/KO and a simulated population in which 
50–70% of the neuronal population fuses cues (50% for strict fusion, 
70% for robust fusion, on the basis of minimizing the χ2 statistic).

Control analyses
During scanning, we took precautions to reduce the possibility of  
artifacts. First, we introduced a demanding task at fixation to  
ensure equivalent attentional allocation across conditions 

(Supplementary Fig. 5). Second, measurements of functional signal- 
to-noise ratio for each area (Supplementary Fig. 2c) showed that dif-
ferences in prediction accuracy related to stimulus-specific process-
ing rather than the overall fMRI responsiveness. That is, functional 
signal-to-noise ratio was highest in the early visual areas rather than 
higher areas that showed fusion.

Finally, eye movements are unlikely to account for our findings. 
First, although we could not measure eye vergence objectively in the 
scanner, the attentional task22 showed that participants maintained 
vergence well (Supplementary Fig. 5) with no reliable differences 
between conditions. Second, our stimuli were designed to reduce ver-
gence changes: a low spatial frequency pattern surrounded the stimuli, 
and participants used horizontal and vertical nonius lines to promote 
correct eye alignment. Together with previous control data using simi-
lar disparities23, this suggests vergence differences could not explain 
our results. Third, monocular eye movement recordings suggested 
little systematic difference between conditions (Supplementary  
Fig. 6). Moreover, we found that an SVM could not discriminate near 
versus far positions reliably on the basis of eye position, suggesting 
that patterns of eye movement did not contain systematic information 
about depth positions (Supplementary Fig. 6).

DISCUSSION
Estimating three-dimensional structure in a robust and reliable manner 
is a principal goal of the visual system. A computationally attractive 
means of achieving this goal is to fuse information provided from two or 
more signals, so that the composite is more precise than its constituents. 
Despite considerable interest in this topic, comparatively little is known 
about the cortical circuits involved. Here we demonstrate that visual area 
V3B/KO may be important in this process and propose that fusion is an 
important computation performed by the dorsal visual stream.

Table 2 Significance tests for the between-cue transfer results
P-value

Cortical area
Difference between transfer  

and control accuracies Transfer index from chance

V1 0.273 0.279
V2 0.068 0.168
V3v 0.024 0.061
V4 0.002 0.102
LO 0.778 0.758
V3d 0.001 0.002
V3A 0.121 0.012
V3B/KO <0.001 <0.001
V7 0.590 0.141
hMT+/V5 0.815 0.302

Probabilities associated with obtaining zero difference between (i) decoding perform-
ance in the disparity-to-relative motion and disparity-to-motion control transfer tests, 
and (ii) the value of the transfer index in the disparity-to-relative motion condition 
compared to random (shuffled) performance. These P-values are calculated using boot-
strapped resampling with 10,000 samples. Underlining indicates Bonferroni-corrected 
significance (P < 0.05). LO, lateral occipital cortex; hMT+, human motion complex.
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Figure 6 fMRI decoding data from V3B/KO adjacent to results from 
simulations. (a) Simulation results show decoding performance of a 
simulated population of voxels where the neuronal population contains 
different percentages of units tuned to individual versus fused cues. 
The χ2 statistic was used to identify the closest fit between empirical 
and simulated data from a range of population mixtures. (b) fMRI 
decoding data for the transfer tests adjacent to the simulation results. 
(c) Performance in a transfer test between data from the motion 
condition and the consistent and inconsistent cue conditions.  
Error bars, s.e.m.
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First, we showed that fMRI signals from area V3B/KO were more 
discriminable when two cues concurrently signaled depth, and this 
improvement exceeded the minimum bound expected for fusion. 
Second, we showed that improved performance was specific to con-
gruent cues: presenting highly inconsistent disparity and motion 
information did not improve discriminability. This follows the predic-
tions of integration, and it matched perceptual judgments, but is not 
expected if disparity and motion signals are colocated but independ-
ent. A potential concern is whether the discrimination of brain signals 
relates to depth per se, or to low-level stimulus correlates (for example, 
speed of movement). We showed that although information about 
relative motion is diagnostic of depth from disparity, these cross-cue 
transfer effects are not found between perceptually flat motion and 
disparity-defined depth. These results suggest a potential neural locus 
for interactions between disparity and motion depth cues demon-
strated in threshold13 and suprathreshold psychophysical tasks14,15. 
More generally, they highlight V3B/KO as an area that may integrate 
a range of different signals to estimate depth.

Although our results pointed clearly to area V3B/KO, our quad-
ratic summation, congruent versus incongruent and transfer test 
analyses all suggested responses in other areas (namely, V3 and V3A) 
that, although not significant, might also relate to fusion. It is pos-
sible that our tests were not sufficiently sensitive to reveal fusion in 
these (or other) areas for which we have a null result; for instance, 
decoding accuracies for the motion condition were high in some 
areas, so responses in the congruent condition may have been near 
ceiling, limiting detection. However, an alternative is that responses 
in these earlier areas represent an intermediate depth representation 
in which links between disparity and motion are not fully estab-
lished. Previously it was suggested that the kinetic occipital (KO) 
area is specialized for depth structure24 and is functionally distinct 
from V3B. Using independent localizer scans, we do not find a reli-
able means of delineating V3B from KO. However, to check that 
we were not mischaracterizing responses, we examined the spatial 
distribution of voxels chosen by the classifier. We found that chosen 
voxels were distributed throughout V3B/KO and did not cluster into 
subregions (Supplementary Fig. 7).

Relation between psychophysical and fMRI results
Although results in V3B/KO are consistent with behavioral evidence 
for fusion, there is a difference in that sensitivity to the ‘single’ cues 
differs at the behavioral level (Fig. 2) but not at the decoding level 
(Fig. 3). From psychophysical results13, higher sensitivity to disparity- 
defined depth is expected. However, this would not necessarily 
translate to decoding differences. Specifically, our behavioral task 
measured increment thresholds (sensitivity to small depth differ-
ences), whereas fMRI stimuli were purposely18 suprathreshold (the 
difference between near and far stimuli was very apparent). Thus, 
although clear parallels can be drawn between tests for integra-
tion at the psychophysical and fMRI levels, necessary differences 
between paradigms make it difficult to compare the magnitude of 
the effects directly.

Further, multisensory integration effects for single unit record-
ings are reported to be highly nonlinear near threshold25, but more 
additive or subadditive with suprathreshold stimuli11,26,27. Our use of 
suprathreshold stimuli makes it unsurprising that we did not observe 
significant changes in overall fMRI responses (Supplementary Fig. 2).  
Moreover, we have not attempted to ‘add’ and ‘subtract’ cues (for 
example, our ‘single cue’ relative motion stimulus contained dispar-
ity information that the viewed display was flat). Our manipulation 
purposely changes the degree of cue conflict between cues, thereby 

establishing a minimum bound for fusion. Although useful, testing 
against this bound alone cannot preclude independence. Specifically, 
fused cues should have reduced neuronal variability28; however, 
fMRI measures of this activity aggregate responses and are subject to 
extra noise (for example, participant movement and scanner noise). 
Depending on the amount of noise, decoding independent represen-
tations can surpass the minimum bound (Supplementary Fig. 3). The 
subsequent tests we developed (incongruent cues and transfer test) 
are therefore important in confirming the results.

Finally, we outlined two variants for the fusion of strongly conflict-
ing cues: strict or robust (Fig. 1d). Behaviorally, we found evidence for 
robust fusion: sensitivity in the incongruent cue condition matched 
the disparity condition, and perceived depth relied on disparity. This 
was compatible with fMRI results in V3B/KO, where performance 
dropped to that seen with ‘single’ cues. However, we developed a 
further test of robust fusion: if responses in V3B/KO reflect robust 
perception, the classifier’s predictions might reverse for incongruent 
stimuli. That is, if depth is decoded at the perceptual level, training the 
classifier on ‘near’ motion may predict a ‘near’ perceptual interpreta-
tion of the incongruent stimulus, even though motion signals ‘far’. 
We did not find a reversal of discrimination performance (Fig. 6c);  
however, performance was considerably reduced, suggesting an atten-
uated response. Although this result per se does not match robust 
fusion, it is compatible with a population mechanism for robust per-
ception. In particular, depth estimation can be understood as causal 
inference21 in which the brain computes depth both ways—that is, 
there is a mixed population that contains both units tuned to inde-
pendent and to fused cues. A readout mechanism then selects one 
of the competing interpretations, using the relative reliabilities of 
the fused and independent models. This idea is compatible with our 
simulations of a mixed population in V3B/KO, and previous work 
that suggests V3B/KO is important in selecting among competing 
depth interpretations23.

Cortical organization for depth processing
While there is comparatively little work on neural representation of 
depth from integrated visual cues, individual cues have been studied 
extensively. Responses to binocular disparity are observed through 
occipital, temporal and parietal cortices29,30, and there are links 
between the perception of depth from disparity and fMRI responses in 
dorsal and ventral areas18,31,32. Similarly, responses to motion-defined 
depth have been observed in ventral, dorsal and parietal areas33–35. To 
link depth from disparity and motion, previous work has highlighted 
overlapping fMRI activations24,36–38. This suggests widespread corti-
cal loci in which different cues converge; however, this does not imply 
the shared organizational structure that we demonstrate here.

Our tests of cue fusion reveal V3B/KO as the main cortical locus 
for depth cue integration. However, tests of motion parallax process-
ing in the macaque have highlighted area MT (also known as V5) 
(ref. 8). Given well-established disparity selectivity in MT (ref. 17), 
this suggests a candidate for integrating depth cues. We observed 
discriminable fMRI responses for both disparity and relative motion 
in the human MT+ (V5) complex but did not obtain evidence for 
fusion. While it is possible this represents a species difference39, the 
difference may relate to different causes of motion. In particular, we 
simulated movement of a scene in front of a static observer, whereas 
previous work8 moved the participant in a static scene. Thus, in our 
situation, there was no potential for vestibular signals to contribute to 
the estimation of ego movement by mediotemporal cortex10,11.

In interpreting our results, it is important to consider that the 
MVPA approach we used is generally understood to rely on weak 
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biases in the responses of individual voxels that reflect a voxel’s 
sample of neuronal selectivities and vasculature40,41 (although 
see refs. 42,43). By definition, these signals reflect a population 
response, so our results cannot be taken to reveal fusion by single 
neurons. For instance, it is possible that depth is represented in area 
V3B/KO in parallel for disparity and for motion. However, if this 
is the case, these representations are not independent: they must 
share common organizational structure to account for our findings 
that prediction accuracy falls to single-component levels for incon-
gruent stimuli and that training the classifier on one cue supports 
decoding of the other. It has been suggested that MVPA decoding 
of stimulus orientation relies on univariate differences across the 
visual field43. Such spatial organization for disparity preferences 
has not been identified in the human or macaque brain; however, 
this is a matter for further investigation. Our previous work18 and 
ongoing investigations have not provided evidence of retinotopic 
disparity organization.

Independence versus fusion
Previously, we tested cue combination by relating psychophysical and 
fMRI responses44. This highlighted the role of ventral lateral occipital 
cortex in cue combination, which is not the main locus observed here. 
Differences in stimuli may be responsible: we previously used slanted 
planes defined by disparity and perspective cues. Thus ventral areas 
may be more selective for ‘pictorial’ cues and/or be more selective 
for slanted surfaces than flat planes. Second, here we used a coarse 
task, whereas previously44 we used a fine judgment task that may 
require greater ventral involvement30. However, next we discuss the 
possibility that the different cortical loci (dorsal versus ventral) point 
to different types of computation.

In the introduction, we presented two scenarios for optimal judg-
ments: fusion versus independence. Independence increases the sepa-
ration between classes (for example, ‘near’ and ‘far’) but does not 
reduce variance, whereas fusion reduces the variance of estimates, but 
leaves separation unchanged. We suggest these two modes of opera-
tion may be exploited for different types of task. If a body movement 
is required, the brain is best served by fusing the available informa-
tion to obtain an estimate of the scene that is unbiased and has low 
variance. Such a representation would be particular to the viewing 
situation (that is, highly specific) and variant under manipulation 
of individual cues. In contrast, recognition tasks are best served by 
maximizing the separation of objects in a high-dimensional feature 
space while ignoring uninformative dimensions. Such a mecha-
nism would support invariant performance by discarding irrelevant 
‘nuisance’ scene parameters, yet may be highly uncertain about the 
particular structure of the scene45. To illustrate the distinction, con-
sider a typical desktop scene. If the observers’ goal is to discriminate 
a telephone from a nearby book, information about the three- 
dimensional orientation on the tabletop is uninformative, so it should 
be discounted from the judgment (that is, the telephone’s features 
should be recognized while ignoring location). In contrast, to pick 
up the telephone, the brain should incorporate all the information 
relevant to the location from the current view.

Our previous tests of disparity processing18 suggest differences 
between the visual pathways: dorsal areas appear selective for metric 
disparity (that is, the precise location of a plane), whereas ventral lat-
eral occipital cortex represents depth configuration (that is, whether 
the stimulus is near or far, but not how near or how far). The current 
findings bolster this suggested distinction by providing evidence for 
fusion in the dorsal pathway. We propose this provides the best metric 
information about the scene that is specific to the current view.

METHODS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
observers. Twenty observers from the University of Birmingham participated in 
the fMRI experiments and thirteen in the psychophysical experiments. Observers 
had normal or corrected-to-normal vision and were screened for stereo deficits. 
Experiments were approved by the University of Birmingham STEM ethical 
review committee; all observers gave written informed consent.

Stimuli. Stimuli were random patterns of black and white dots18. A fixation 
marker was presented at the center of a 1° circular hole in the stimulus and con-
sisted of a square (0.5° on a side) with horizontal and vertical nonius lines (length 
0.375°). The random dot region was surrounded by a grid of black and white 
squares that provided an unambiguous background reference.

We used four different conditions: depth defined by disparity, by motion, by 
disparity and motion consistently with each other, and by disparity and motion 
inconsistently with each other. In addition, we created a motion control stimulus. 
In all cases, a central square (10 × 10°) target plane was presented. The central 
target was surrounded by a larger rectangle (18 × 14°) of black and white dots 
(the ‘background’) for all conditions except in the motion control stimulus, where 
no background was presented (except for the mid-gray screen). To depict depth 
from relative motion, the background and target planes moved horizontally fol-
lowing a sinusoidal velocity profile with a period of 1 s (Fig. 2b). The background 
plane movement had amplitude 0.9°, while the target moved with an amplitude 
of either 1.32° (near) or 0.29° (far). Thus, the relative motion of the target and 
background gave rise to a pattern of deletion and accretion of the background 
(near stimuli) or target (far stimuli) dots as the targets and background translated 
back and forth across the screen. To depict depth from disparity, the central tar-
get plane was given a horizontal binocular disparity of ±6 or 9 arcmin while the 
background was presented in the plane of the screen. For the disparity-defined 
depth stimulus, the whole stimulus (target and background) moved rigidly with 
a sinusoidal horizontal movement (amplitude 0.9°, period 1 s). In contrast, for 
stimuli depicting disparity and motion-defined depth, the central target plane 
had ±6 or 9 arcmin disparity and a movement amplitude of either 1.32° or 0.29°. 
Differences in motion amplitudes for motion-defined depth produced a differ-
ence in mean speed for near and far depth positions. To assess the impact of this 
speed difference, the speed control stimulus contained only the central square 
(no random dot background) moving with an amplitude of either 1.32° or 0.29°. 
Without movement of the background, this stimulus yielded no impression 
of depth. Stereoscopic presentation and display parameters matched previous 
work18. To control for attention and promote proper fixation, observers per-
formed a subjective assessment of eye vergence22. Vernier targets were flashed 
for 250 ms at either side of the desired fixation position, and a logistic function 
was fit to the proportion of “target on the right” responses as a function of the 
vernier displacement.

Psychophysics. Behavioral tests were conducted in the lab using a stereoscope in 
which the two eyes viewed separate CRTs (ViewSonic FB2100x) through front-
silvered mirrors. Stimulus parameters were equivalent (in terms of visual angle) to 
those used for scanning. Participants judged which of two, sequentially presented 
stimuli had the greater depth (presentation time, 1 s; interstimulus interval, 1 s).  
A standard stimulus (depth specified by ±6 arcmin and/or movement amplitude of 
1.32° or 0.29°) was presented on every trial. The other stimulus contained a depth 
increment (disparity and/or motion) relative to the standard, whose magnitude 
was controlled by a staircase algorithm. Participants judged “which was closer” for 
near targets and “which was farther” for far targets. Four conditions were randomly 
interleaved during each experimental run: motion, disparity, congruent cues, 
incongruent cues. In the incongruent case, disparity specified near and motion 
far, or vice versa. The increment applied to the stimulus was therefore an increase 
in depth away from the fixation plane, but in opposite directions for the two cues 
(for example, ∆disparity was nearer, and ∆motion was farther). Just noticeable 
difference thresholds were estimated from 60 staircase trials per condition. There 
were 480 trials per run (60 trials × 4 conditions × 2 depth positions: near or far). 
Each participant’s thresholds were measured 2–4 times and then averaged. In a 
separate experiment, we measured the perceptual interpretation of the stimuli by 
presenting near or far stimuli from each condition 20 times and asking participants 
to indicate whether the stimulus was near or far. The informative result was that 
participants relied on disparity when judging the inconsistent-cue stimulus (100% 
reliance on disparity for every participant).

Imaging. Data were acquired at the Birmingham University Imaging Centre 
using a 3-tesla Philips MRI scanner with an eight-channel head coil. Blood oxygen 
level–dependent signals were measured with an echo-planar sequence (TE,  
35 ms; TR, 2,000 ms; 1.5 × 1.5 × 2 mm, 27 or 28 near coronal slices) for both 
experimental and localizer scans. A high-resolution anatomical scan (1 mm) was 
also acquired for each participant. Four separate experiments were run (eight, 
seven, four and five participants, respectively); each had four stimulus types 
(a subset of the following conditions: disparity, relative motion, disparity and 
motion consistent, disparity and motion inconsistent or motion control) in two 
configurations (near and far) and a fixation baseline condition.

Stimuli were presented in blocks of 16 s (blocked fMRI design). In each block, 
stimuli were picked randomly from a set of 24 example stimuli (per subject) that 
differed in the random placement of dots making up the stereogram. Individual 
stimuli were presented for 1 s, followed by a 1-s fixation period. Three blocks of 
each stimulus type were presented during an individual run in a counterbalanced 
randomized order, and the scan started and ended with a 16-s fixation interval. 
Scans lasted a total of 416 s. Eight runs were collected for each observer.

For each observer, regions of interest (ROIs) in visual cortex were defined using 
standard retinotopic mapping procedures (described elsewhere18). Area V3B/KO 
(ref. 46) was defined as the set of contiguous voxels located anterior to V3A, 
inferior to V7 and posterior to the human motion complex (human MT+/V5) 
that responded significantly more highly (P < 10−4) to kinetic boundaries than 
to transparent motion of a field of black and white dots.

We used BrainVoyager QX (BrainInnovation B.V.) to transform anatomical 
scans into Talairach space, inflate the cortex and create flattened surfaces of both 
hemispheres for each subject. Each functional run was preprocessed using three-
dimensional motion correction, slice time correction, linear trend removal and 
high-pass filtering (three cycles per run cut-off). No spatial smoothing was per-
formed on the functional data used for the multivariate analysis. Functional runs 
were aligned to the subject’s corresponding anatomical scan and transformed 
into Talairach space.

multi-voxel pattern analysis. Within each ROI, we sorted gray matter voxels 
according to their response (t-statistic) to all stimulus conditions in comparison 
to fixation baseline across all experimental runs. This procedure resulted in the 
selection of 250 voxels per ROI18. We normalized (z-score) the time course of 
each voxel separately for each experimental run to minimize baseline differences 
between runs. Test patterns for the multivoxel analysis were generated by shift-
ing the fMRI time series by 4 s to account for the hemodynamic response lag. 
To control for the possibility that classification accuracy was due to a univariate 
response to a particular volume, we normalized the mean of each data vector for 
each volume to zero by subtracting the mean over all voxels for that volume47. 
In this way the data vectors for each volume had the same mean value across 
voxels and differed only in the pattern of activity. We used a linear support vector 
machine (SVMlight toolbox) for classification and performed an eightfold leave-
one-out cross validation in which data from seven scans were used as training 
patterns (21 patterns, 3 per run) and data from the remaining run was used as 
test patterns (3 patterns). For each subject, we took the mean accuracy across 
cross-validations. We converted prediction accuracies into units of discrimina-
bility (d′) using the formula 

′ = × −d p2 2 1erfinv( )

where erfinv is the inverse error function and p the proportion of  
correct predictions.

To conduct the transfer test analysis, we used a recursive feature elimination 
method48 to detect sparse discriminative patterns and define the number of vox-
els for the SVM classification analysis. In each feature elimination step, a small 
proportion of voxels was discarded until there remained a core set of voxels with 
the highest discriminative power. To avoid circular analysis, the recursive feature 
elimination method was applied independently to the training patterns of each 
cross-validation, resulting in eight sets of voxels. This was done separately for 
each experimental condition, with final voxels for the SVM analysis chosen on 
the basis of the intersection of voxels from corresponding cross-validation folds. 
A standard SVM was then used to compute within- and between-cue prediction 
accuracies. This feature selection method was required to provide robust evidence 
of transfer, in line with previous evidence that it improves generalization48.

(4)(4)
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Statistical analysis was performed in SPSS (IBM Corporation), and 
Greenhouse-Geisser correction was used when appropriate.

Simulations. Using Matlab (Mathsworks Inc.), we simulated a population of 
‘depth columns’, each of which had a mean depth preference and Gaussian tun-
ing profile. These maps had a sawtooth structure whose phase progression was 
randomly perturbed to create jittered maps49. The cycle width of depth repre-
sentation was set at 3 mm (scaling by a factor of 2 from the macaque17), although 
we tested for generality with other scales (Supplementary Fig. 4). We consid-
ered two main population models: fusion and independence (separate maps 
for disparity and motion). Under independence, maps for disparity and motion 
were assumed correlated, but with some jitter, and were sampled irregularly by 
each voxel (see Supplementary Fig. 4 for an investigation of these parameters). 
We also considered mixed populations by varying the proportion of columns 
responding to fused versus single cues (Fig. 6). Column tuning width was set at 
σd = σm = 12 arcmin for single cues (σd, s.d. for disparity; σm, s.d. for motion) 
and the integrated response followed maximum likelihood estimation (s.d.,  
σi = 8.49), although we tested generality using other values (Supplementary 
Fig. 3c). We convolved the stimulus (Gaussian, σ = 0.2 arcmin) and the column 
tuning profile to calculate the pattern of neuronal activity evoked by the stimu-
lus. This response was subject to a compressive nonlinearity and added noise  

(Supplementary Fig. 3). To calculate voxel responses, we averaged the responses 
of individual columns that were sampled by a coarser scale voxel grid. These aggre-
gated column responses were then subjected to ‘voxel noise’ (Supplementary 
Fig. 3). We investigated the contribution of different signal-to-noise ratios for 
neural (0.4 to 4.5) and fMRI (0.6 to 1.5) responses (Supplementary Fig. 3) and 
chose a value for the functional signal-noise-ratio that matched the empirical 
data from V3B/KO (0.93). We used the same SVM analysis tools to decode the 
simulated data as were used for the empirical data. We simulated 250 voxels 
with 8 runs of 24 patterns for both near and far presentations for each condition 
(that is, the dimensionality of the empirical study). The SVM classifications were 
repeated for each of the 20 participants in the fMRI experiment, and we then 
calculated the between-subjects average and s.e.m.

46. Dupont, P. et al. The kinetic occipital region in human visual cortex. Cereb. Cortex 7, 
283–292 (1997).

47. Serences, J.T. & Boynton, G.M. The representation of behavioral choice for motion 
in human visual cortex. J. Neurosci. 27, 12893–12899 (2007).

48. De Martino, F. et al. Combining multivariate voxel selection and support vector 
machines for mapping and classification of fMRI spatial patterns. Neuroimage 43, 
44–58 (2008).

49. Kamitani, Y. & Tong, F. Decoding the visual and subjective contents of the human 
brain. Nat. Neurosci. 8, 679–685 (2005).
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