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Population Coding of Object Contour Shape in V4 and Posterior 
Inferotemporal Cortex

Anitha Pasupathy and Scott L. Brincat

In primates, visual object perception and recognition is based on information pro-
cessing within the ventral visual pathway (Ungerleider and Mishkin, 1982; Felleman 
and Van Essen, 1991). This multistage, hierarchical network runs from area V1 to 
V2, V4, and finally to the posterior and anterior subregions of inferotemporal (IT) 
cortex (Felleman and Van Essen, 1991). In each of these processing stages, visual 
information is encoded in the patterns of activity across populations of neurons. The 
neural code reflected in these activity patterns is gradually transformed across the 
ventral pathway into a representation thought to be optimized for robust object 
recognition, association, and memory. The nature of the neural code in the lowest-
level stage, V1, is now relatively clear. Research over the last half-century has iden
tified local orientation and spatial frequency as the basis dimensions of V1 form 
representation (Hubel and Wiesel, 1959, 1965, 1968; Baizer, Robinson, and Dow, 
1977; Burkhalter and Van Essen, 1986; Hubel and Livingstone, 1987). Specifically, 
each small patch of the retinal image is represented by a local population of V1 
neurons tuned to different orientations and narrow spatial frequency (scale) bands. 
The distribution of activity within these local V1 populations encodes the local 
orientation and scale of image features, and the full retinal image is represented by 
a tiling of the visual field with thousands of such local populations. Representation 
in terms of local orientation and spatial frequency first arises in V1, and these rep-
resentational bases are fundamental to our understanding of what V1 does.

The bases of representation in subsequent processing stages are less clear, though 
past results suggest that activity in higher-level neurons reflects a progressively more 
nonlinear and complex function of the retinal image. V2 neurons, like their V1 
inputs, are tuned for local orientation and spatial frequency, but also show some 
selectivity for line conjunctions (Ito and Komatsu, 2004, Hegde and Van Essen, 
2000), orientation combinations (Anzai, Peng, and Van Essen, 2007), and illusory 
contours (von der Heydt and Peterhans, 1989). V4 neurons show selectivity for 
radial or concentric gratings and moderately complex shapes (Gallant, Braun, and 
Van Essen, 1993, Kobatake and Tanaka 1994). And in IT, many neurons exhibit 
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strong, position-invariant selectivity for complex objects like faces, hands, and bodies 
(Gross, Rocha-Miranda, and Bender, 1972; Perrett, Rolls, and Caan, 1982; Desimone 
et al., 1984; Tanaka et al., 1991). But a comprehensive understanding of neural 
coding in these areas—identification of the representational basis dimensions and 
the nature of the population code, as in V1—has not yet emerged. Quantitative 
analysis of higher-level object coding has been frustrated by (1) the high-
dimensionality of “shape space,” (2) the nonlinearity of response properties beyond 
V1, and (3) the practical constraints of neurophysiology experiments.

The ideal approach to investigating the basis of shape representation in any 
neuron would be to study its responses to a large set of complex naturalistic stimuli 
that uniformly sample the space of all possible object shapes. Naturalistic stimuli 
approximate the milieu in which visual neurons have evolved and developed, and 
are therefore likely to probe those shape dimensions most relevant to their complex 
response selectivities. Unbiased sampling would allow the use of analytical 
approaches with minimal assumptions—such as spike-triggered covariance—to 
extract the shape dimensions along which the responses vary maximally. However, 
since object shape varies along an extremely large number of dimensions, even a 
coarse sampling of shape space would require thousands of stimuli. Such an approach 
is impossible due to the time constraints on maintaining neuronal isolation and 
animal alertness during neurophysiological experiments, although advances in effi-
cient stimulus sampling (Yamane et al., 2008) and long-term chronic recording 
(Tolias et al., 2007) may eventually make this approach more feasible. Several alter-
natives have been tried; white noise and natural stimuli define the two extremes. 
White noise stimuli have optimal sampling properties—they are completely unbi-
ased and uncorrelated in visual image space—but are ineffective at evoking activity 
in neurons beyond V1. In contrast, arbitrarily chosen natural stimuli can often drive 
robust responses in higher-level neurons but tend to sample object shape space 
unevenly and with strong correlations between different stimulus dimensions, 
making quantitative determination of basis dimensions difficult (Rust and Movshon, 
2005).

An intermediate alternative is to explore shape space in a limited, but systematic 
fashion in order to investigate a specific neural coding hypothesis. With this  
approach, stimulus sampling is targeted to the subregions of shape space relevant 
to a hypothesis of interest. Potential conclusions are limited to this subspace, but 
the advantages of such an approach are that it allows for (1) designing stimuli that 
are effective at driving neurons in high-level visual areas (unlike random white noise 
stimuli) and (2) the controlled variation of one dimension at a time, while holding 
all other variables constant (unlike arbitrary natural stimuli). Further, targeted 
stimulus design can provide a dense, unbiased sampling of the region of interest 
making it amenable to quantitative characterizations. We will describe our successful 
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use of this approach to discover relevant shape dimensions in V4 and posterior IT 
cortex.

A Hypothesis-Driven Approach to Identifying Basis Dimensions in V4

Our first task was to identify a plausible candidate hypothesis of what basis 
dimension(s) might be represented in area V4. For this purpose, we considered 
available evidence from theoretical work, psychological findings, and preliminary 
experiments from our lab. Several modern shape theories and computational models 
achieve object recognition by hierarchical feature extraction—objects are first 
decomposed into simple parts that are pooled at subsequent stages to form progres-
sively larger and more complex parts. This approach has been reasonably successful 
and is broadly consistent with what is currently known about shape processing in 
the primate brain. Inspired by physiology, most shape models invoke local edge 
orientation as the first level feature. Higher-level primitives are based on either  
(1) object contour features, such as two-dimensional angles and curves and three-
dimensional corners, curved surface patches, and indentations (Attneave, 1954; 
Milner, 1974; Ullman, 1989; Poggio and Edelman, 1990; Dickinson et al., 1992), or 
(2) volumetric primitives, including simple three-dimensional shapes such as cylin-
ders, cones, and spheres, defined by the orientation of their medial axes and cross-
sectional attributes (Biederman, 1987; Pentland, 1989).

Pilot physiological studies from our lab pointed to contour features as a candidate 
dimension for shape representation in area V4. In these exploratory experiments, 
we studied the responses of V4 neurons to a large set of simple shapes such as 
rectangles, squares, diamonds, triangles, crescents, ellipses, and circles, presented at 
multiple orientations (unpublished data). Most V4 neurons did not show selectivity 
to a particular shape or its area. Rather, cells typically responded to a variety of 
shapes that all contained a consistent contour characteristic at a specific position, 
such as a sharp convex point to the right. In a second study, V4 neurons showed 
strong systematic tuning for contour features, that is, angles and curves, presented 
in isolation in the receptive field of the cell (Pasupathy and Connor, 1999). Psycho-
logical findings also imply specialized mechanisms for the perception of contour 
features: angle perception acuity is higher than that predicted by component line 
orientation acuity (Heeley and Buchanan-Smith, 1996; Chen and Levi, 1996; Regan, 
Gray, and Hamstra, 1996), the detection thresholds for curvilinear glass patterns is 
much lower than that for radial glass patterns (Wilson, Wilkinson, and Asaad, 1997; 
Andrews, Butcher, and Buckley, 1973), and detection of curved targets among 
straight distractors is faster than that for straight targets among curved distractors 
(Treisman and Gormican, 1988; Wolfe, Yee, and Friedman-Hill, 1992). Thus,  
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psychophysical and preliminary physiological studies suggested that intermediate-
level primitives are likely to relate to object boundary curvature.

We therefore set out to test whether contour curvature serves as the basis of 
representation in area V4. If a stimulus dimension is a basis of a given cortical area’s 
representation, then the area’s neural population should encode every visual stimu-
lus in terms of that dimension. Second, within every patch of cortex representing a 
small region of the visual field in the area, neuronal tuning should span the full 
range of possible values along the dimension. In V1, for example, each visual stimu-
lus is represented in terms of its local orientation and spatial frequency, and the 
neural population within each topographical patch (hypercolumn) contains cells 
tuned to all orientations and the full range of perceivable spatial frequencies. To 
investigate whether contour curvature meets these criteria in area V4, we asked 
whether (1) single V4 neurons encode complex shapes in terms of their contour 
curvature; (2) V4 neurons represent all possible curvature values; and, therefore,  
(3) a population of such V4 neurons provides a complete and accurate representa-
tion of all shapes in terms of their boundary conformation.

To test the hypothesis of curvature coding in V4, we designed a set of complex 
shape stimuli based on systematic sampling and combination of contour curvatures. 
We started with a set of five different contour segments: three convex (sharp, 
medium, and broad; see enlarged stimulus 2 in figure 7.1) and two concave (shallow 
and medium). We then created closed shapes based on all geometrically feasible 
combinations of four to eight of these contour segments separated by 90°, 135°, or 
180°. Each of these shapes was presented at eight global orientations, separated by 
45° intervals. The resulting stimulus set (figure 7.1) consisted of 366 complex shapes 
that vary systematically in boundary contour shape. This set represents a dense, 
unbiased sampling of the subregion of shape space defined by solid silhouette 
shapes that radiate out from the center of the object. Of course, other stimulus 
attributes, such as 3D-depth, texture, shading, color, or more complex contour topol-
ogies (e.g., holes or folds) are not sampled in this set—these attributes are not 
directly relevant to the hypotheses being tested here, and we leave it to future work 
to explore how they might also modulate V4 responses.

Shape Representation in Terms of Contour Curvature in Area V4

We studied 109 V4 neurons using this set of parameterized shape stimuli. Figure 7.1 
shows the responses of a typical V4 cell. The background grayscale of each icon 
reflects the neuron’s average response to the overlaid stimulus object. This neuron 
responded strongly to a wide variety of shapes containing a sharp convexity in the 
lower left corner of the object (angular position 225°) with an adjoining concavity 
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Figure 7.1
Example V4 neuron whose responses are dictated by curvature of the bounding contour at the lower-left 
corner and bottom of the object. The background grayscale of each icon shows the average response of 
the cell to the overlaid stimulus object. Each stimulus (shown in white) was presented in the optimal 
color for the cell, in the center of the receptive field (represented by the surrounding circle which was 
not part of the visual display). This neuron responds preferentially to shapes with a sharp convexity at 
the lower-left corner adjoined by a concavity at the bottom of the object. Numbers (1–4) pertain to refer-
ences in text. Modified from Pasupathy and Connor (2001).
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at the bottom (270°) of the object. Stimuli with a medium convexity at 225° elicited 
a weaker response (e.g., compare responses 1 vs. 3 or 2 vs. 4 in figure 7.1, whose 
shapes differ only in the 225° position). Stimuli with a broad convexity or a concavity 
at this position failed to drive the cell. Contour curvature values at other positions 
along the boundary (from 0° to 180°, right, top and left) varied widely across stimuli 
evoking strong responses, and they did not modulate the neuron’s activity. These 
results suggest that V4 neurons are tuned for contour curvature, and that curvature 
values at specific positions along the boundary strongly dictate neural responses to 
complex shapes.

To rigorously evaluate how object contour characteristics influence responses of 
V4 neurons, we sought to derive a quantitative relationship between the two. To do 
this, we needed to describe our stimuli in a parametric “shape space,” and we chose 
curvature and angular position as the defining dimensions. The stimuli in our experi-
ments can be uniquely represented in terms of a continuous curvature × angular 
position function. (This is not the case for all two-dimensional closed contours. For 
a general unconstrained two-dimensional closed contour, unique representation 
would require additional dimensions such as radial position relative to the center 
of the stimulus and local tangential orientation. Here, since several of these dimen-
sions co-vary, representation in terms of just curvature and angular position is 
unique). Because of how the stimuli were originally constructed (a smooth curve 
drawn through 4–8 constant curvature segments), we could simplify the representa-
tion of each shape down to 4–8 discrete curvature × angular position values along 
the contour. This discretized representation was less cumbersome and captured all 
the information in the continuous curvature function. Therefore, each shape in our 
set could be uniquely represented using four to eight points in the curvature × 
angular position space. For example, stimulus 2 (figure 7.1) is represented by  
six points: one for each of the sharp convex points at 0° and 225°, one for the medium 
convexity at 135°, and one for each of the intervening concavities. We modeled  
the neural response as a 2D Gaussian function (product of two 1D Gaussians  
with no correlation terms) of contour curvature and angular position. A neuron’s 
response to a stimulus was modeled as the maximum of the responses predicted  
by its component contour segments (cf. Riesenhuber and Poggio, 1999). By this 
scheme, if a cell were strongly driven by a particular boundary element, the tuning 
function would predict high responses to all shapes containing that element,  
independent of other stimulus characteristics. Parameters (Gaussian amplitude,  
and peak position and standard deviation for each of the two dimensions) were 
estimated by minimizing the sum of squared errors between predicted and observed 
responses.

Figure 7.2 shows the best-fitting curvature × position tuning surface for the figure 
7.1 example neuron. The horizontal axes represent angular position (0° to 360°) and 
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contour curvature (ranging from –0.31 to 1.0; negative, zero, and positive values 
correspond to concave, flat, and convex curvatures, respectively). The Z axis and 
surface shading represent the predicted normalized response. The peak of the 
Gaussian surface (contour curvature = 1.0 and angular position = 229.6°), predicts 
the strongest responses to stimuli with a sharp convex projection near the lower-left 
corner (~225°) of the object, consistent with the observed responses for this cell. 
Tuning along the angular position dimension was narrow (Gaussian standard devia-
tion of 27°) indicating that only a small range of positions of the sharp convexity 
evoked strong responses. The model accurately predicted responses close to zero 
for stimuli with broad convexities and concavities at the lower left. Overall, there 
was an excellent correlation (r = 0.7) between the observed and predicted responses 
across the full stimulus set.

A large fraction of V4 neurons that we studied showed similar systematic shape 
responses that could be well described by a 2D Gaussian tuning function. Figure 
7.3A shows a distribution of the goodness of fit values (correlation between observed 
and predicted responses) for the best fitting 2D Gaussians for the entire population. 
The predictions of the 2D model are significantly improved if the curvatures of two 
adjoining segments are also included in a 4D Gaussian model of curvature × angular 
position (Pasupathy and Connor, 2001). These results strongly suggest that many  

Figure 7.2
2D Gaussian tuning function that best describes responses in figure 7.1. Horizontal axes represent 
angular position and contour curvature. Vertical axis represents normalized response predicted by the 
tuning function. This tuning function (mean: contour curvature = 1.0; angular position = 229.6°) predicts 
strongest responses to sharp convexity at the lower left corner of the object consistent with the response 
pattern in figure 7.1. Modified from Pasupathy and Connor (2001).
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V4 neurons encode complex shapes in terms of the contour curvature at specific 
locations along the bounding contour of the object. Extensive analyses also revealed 
that, for a large majority of V4 neurons, responses could not be explained in  
terms of stimulus edge orientation, contrast polarity, or the orientation of the  
axis of elongation and aspect ratio of the stimulus (Pasupathy and Connor,  
2001).

Another important requirement for a basis dimension is that neural tuning peaks 
span the entire range of possible values of the dimension, at every location in the 
visual field. The distributions of tuning peaks across our studied population of V4 
neurons suggest that this criterion may also be met for the curvature and angular 
position dimensions (figure 7.3B,C; tuning peaks collapsed across receptive  
field locations). The tiling of tuning peaks along the angular position dimension 
(figure 7.3B) is not significantly different from uniform. While there is a strong  
bias toward representation of sharp convex curvatures—perhaps reflecting the 
enhanced perceptual salience of convexities relative to convexities and straight 
edges (Kanizsa and Gerbino, 1976; Subirana-Vilanova and Richards, 1996)—all 
tested curvature values are represented. However, since most of the recorded 
neurons had receptive fields in the 3°–6° range, we cannot assess whether the obser-
vations made here hold at other visual field locations. Second, since our stimuli 
effectively sampled only five points along the curvature axis (three convex and two 
concave), further experiments with denser sampling along the curvature axis are 
required to draw strong conclusions about tiling densities. Nevertheless, given the 
observed distribution of tuning peak locations and breadth of tuning (Pasupathy 
and Connor, 2001), it seems likely that V4 neurons span the curvature and angular 
position dimensions.

Figure 7.3
V4 population results: goodness of fit and tuning parameters. (A) Goodness of fit for the 2D Gaussian 
model. Distribution of coefficient of correlation values between observed and predicted responses for 
the 109 V4 neurons. (B, C) Distributions of the mean parameters for the angular position (B) and 
curvature (C) dimensions of the 2D Gaussian model.
Modified from Pasupathy and Connor (2001).
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Ensemble Representation of 2D Contours in Area V4

We have demonstrated that single V4 neurons encode complex shapes in a piece-
wise fashion—some neurons encode information about a sharp convexity off to the 
left, others about a concavity at the bottom, etc. An obvious next step is to ask how 
such piecewise information is distributed across the V4 population: do V4 neurons, 
as a population, provide a complete and accurate representation of the entire shape? 
If so, this would be another strong indicator that piecewise contour curvature and 
angular position serve as a basis dimensions in V4.

We assessed the completeness and accuracy of shape information across the V4 
population by deriving a population code for each stimulus object from the responses 
of all studied single neurons and their tuning functions, using a linear basis function 
decoding method. This method estimates a population code for a given stimulus as 
a weighted sum of basis functions, where the bases are the set of single-neuron 
tuning functions (in this case, 2D Gaussian functions on the curvature × angular 
position domain, as in figure 7.2), and the weights are each corresponding neuron’s 
response to the stimulus in question. The method assumes that the neurons that 
make up the population are independent processes, but the tuning functions can be 
of any arbitrary shape. The well-known population vector decoding method  
(Georgopoulos, Schwartz, and Kettner, 1986) is a special case of basis function 
decoding (Zhang et al., 1998).

Mathematically, if fi(θ,c) represents the ith neuron’s tuning function in the angular 
position (θ) × curvature (c) space and rij represents its response to a specific object 
j, then the population reconstruction of that object, pj(θ,c), is given by:

p c r f cj ij
i

iθ θ, ,( ) = ( )∑
	

(7.1)

pj, is a probabilistic surface in the 2D angular position × curvature space and its 
local maxima represent the locations of the most probable features of the given 
object in this space. Thus, pj, represents the population code for a given object and 
its peaks provide a decoded estimate of the object’s shape.

Figure 7.4 (plate 4)shows the resulting population code for an example stimulus 
object (figure 7.4A) as a pseudocolor surface (figure 7.4B)—colors closer to red 
reflect stronger evidence for the presence of shape features with the corresponding 
curvature/angular position combinations within the object. The population surface 
contains peaks (red) corresponding to the major boundary features of this object: 
the sharp convexity at 90°, medium convexities at 0° and 180°, broad convexity at 
270°, and concavities at 45° and 135°.

We obtained similar results for all shapes in our stimulus set—the V4 population 
code had peaks associated with all of their major boundary features (Pasupathy and 
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Figure 7.4 (plate 4)
Reconstruction of V4 population code for a given stimulus object. (A) The stimulus object is shown in 
the center. The surrounding white line plots boundary curvature (radial dimension) as a function of 
angular position (angular dimension). (B) Estimated population code across the curvature × angular 
position domain (colored surface); true curvature function superimposed (white line) for comparison.  
X axis represents angular position; Y axis represents curvature. Color scale runs from 0.0 (blue) to 1.0 
(red). Peaks in the population code (red) correspond quite well with the peaks and troughs in the cur-
vature function. Reproduced from Pasupathy and Connor, 2002.
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Connor, 2002). This was confirmed by quantitative comparisons showing that the 
peaks in the population code matched up remarkably well to the extrema in the 
corresponding true curvature × position function (compare to the white curve in 
figure 7.4B). Thus the V4 population code provides a complete and accurate repre-
sentation of 2D object shapes in terms of contour curvature and angular position.

Shape Coding in Posterior Inferotemporal Cortex

The majority of area V4 outputs project to the next stage in the ventral pathway, 
posterior inferotemporal cortex (PIT), which in turn projects to the highest level of 
form processing, anterior IT. Though PIT therefore sits at a key point in the trans-
formation from intermediate-level to high-level shape processing, it has received 
scant experimental attention (Kobatake and Tanaka,1994). We therefore adapted 
our experimental paradigm to examine the shape selectivity of PIT neurons (Brincat 
and Connor, 2004). Neuronal activity was measured in response to a large set of 
parametrically defined shapes that expanded on the stimulus set used in our V4 
experiments. Though this set sampled exact contour-curvature magnitudes more 
sparsely than the previous one, it featured a much larger array of more complex 
contour configurations (see figure 7.5A,B for a subset of the full stimulus set), 
reflecting our a priori expectation that PIT cells would exhibit selectivity for more 
complex object structure.

The example neuron in figure 7.5A shows exactly this expected pattern—it responds 
robustly to shapes containing a combination of concave contour segments pointing 
to the lower left and lower right (figure 7.5A, bottom). Objects containing only one 
of these contour segments, however, elicited virtually no response (figure 7.5A, top). 
This neuron is therefore highly selective for a specific configuration of contour seg-
ments, which together define a curved “v”-like shape. Many other PIT neurons, such 
as the one in figure 7.5B, were not such an obvious match with our expectations. This 
cell also responded optimally to shapes with a similar combination of concave 
contour segments to the previous example. However, unlike the first neuron, shapes 
containing only one component of the optimal combination also evoked moderately 
strong responses. Thus, while the first example neuron approximates a “logical AND” 
computation, responding only when an object contains a specific combination of 
contour segments, the second cell exhibits a much less specific, more distributed, 
response profile around the preferred contour segment combination.

We found that a single class of tuning function models could parsimoniously 
explain both types of observed PIT neural response patterns. The models consisted 
of one or more excitatory or inhibitory Gaussian tuning peaks on a 4D contour 
shape (curvature and orientation) × object-relative position (x, y relative to the 
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Figure 7.5
Example neurons illustrating PIT linear and nonlinear response patterns. (A) Neuron with linear tuning 
for two types of contour parts. Left: Subset of shape stimuli used to study this cell that contain contour 
fragments (dark gray) most closely matching its shape-space tuning peaks. Right: Averages across 
example stimuli of observed neural responses (gray histogram), and responses predicted by linear (gray 
dotted line) and nonlinear (black solid line) components of fitted models. Light gray shading denotes 
stimulus presentation period. (B) Neuron with nonlinear tuning for a specific multipart configuration 
(same conventions as in A). Modified from Brincat and Connor (2006).
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object center) domain. (Because of the added complexity of this stimulus set, two 
object-relative position dimensions, as well a local contour orientation dimension, 
were necessary to fully describe object shape). Each distinct peak in this space can 
be thought of as a subunit of a complex, high-dimensional PIT receptive field, and 
may correspond to distinct V4 inputs. The full model (equation (7.2)) contained 
terms that combined the responses (Rs) of multiple subunits either through simple 
linear summation (first term) or by a multiplicative interaction that captured non-
linear, logical-AND-like selectivity for specific contour combinations (second term).

Response w R     w Roverall s s NL s
s

excitatory
 subunits

s

al

= ( ) + ( )∏
ll subunits

 ∑ +














+

b0

	

(7.2)

Least-squares model fits to the responses of each PIT neuron across ~1,000 
stimuli yielded optimal values for the baseline response (b0), for the mean (center) 
and standard deviation (tuning width) of Gaussian subunits, and for weights on the 
linear (ws’s) and nonlinear (wNL) terms, whose relative magnitude reflects a cell’s 
degree of contour-combination nonlinearity. The optimal number of subunits was 
determined through a model selection procedure that required the nth model subunit 
to explain a criterion additional fraction of response variance over the optimal 
model with n – 1 subunits (this procedure was considerably more conservative than 
other common model selection criteria, such as the partial-F test, AIC, or BIC).

As in V4, most of the 109 PIT neurons we studied displayed graded, systematic 
tuning for contour shape and object-relative position, which was well characterized 
by our tuning function models (average cross-validated correlation between pre-
dicted and observed responses of 0.7). Across the sampled population, PIT tuning 
functions collectively covered essentially all contour curvatures, orientations, and 
object-relative positions (figure 7.6). These results suggest that PIT neurons, similar 
to V4, encode the shape of complex objects in terms of basis dimensions related to 
local contour shape (curvature and orientation) and object-relative position.

However, PIT appeared to be selective for more complex object structure on 
average than V4—the majority of cells were tuned for ~2–4 distinct contour segments 
along object boundaries, and many were also significantly inhibited by specific 
contour segments. With respect to their degree of contour-combination nonlinearity, 
our sample of PIT neurons split into two fairly distinct subpopulations. One group 
of neurons, like the one in figure 7.5B, showed almost purely linear summation 
across contour segments (wNL ≈ 0 in equation 7.2). These cells act as complex, 
multimodal linear filters on the contour shape × object-relative position domain. As 
such, they are sensitive to specific patterns of contour segments within objects, but 
not exclusively so—moderate responses could correspond to either an off-optimal 
pattern of contours or to only a single near-optimal contour segment. Another 
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group, exemplified by figure 7.5A, showed varying degrees of nonlinear AND-like 
selectivity for specific contour combinations (wNL > ws in equation 7.2). Unlike the 
linear subpopulation, these neurons respond almost exclusively to specific configu-
rations of contour segments, and can be thought of as either low-order nonlinear 
filters in shape × relative position space, or equivalently, as unimodal filters in a 
high-dimensional “contour-configuration space.” This type of nonlinear summation 
is essential for generating complex shape selectivity in a hierarchical system, since 
a series of linear transforms can be reduced to a single linear transform. As elabo-
rated later herein, linear cells may simply act as an intermediate computational stage 
in the biological instantiation of this nonlinear transform. In summary, individual 
PIT neurons represent object shape in terms of configurations of specific contour 
segments at multiple positions along the object boundary, either via nonlinear AND-
like combination or via linear summation across contour segments.

Population Coding of 2D Contours in PIT

Though we studied neurons sequentially across recording sessions, as in V4, we  
can infer the basic structure of the PIT population code for contour shape based 
on single-neuron tuning properties. Our results show that PIT cells represent 
contour-segment configurations within whole objects, and that their tuning functions 

Figure 7.6
Distributions of tuning peaks indicate that all contour curvature, orientation, and object-relative position 
values are represented in PIT. (A) Distribution of all PIT tuning peaks (all subunits of all neuronal tuning 
functions) on the contour shape dimensions (curvature × orientation), and marginal histograms. (B) 
Distribution of all PIT tuning peaks on the object-relative position dimensions (X × Y). Peak positions 
are normalized to the length of the longest object in the stimulus set used to study each neuron, and are 
plotted in units of object lengths relative to the object center. A symmetric object would therefore maxi-
mally extend from –0.5 to +0.5 on these axes. Modified from Brincat (2005).
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cover essentially all contour curvatures, orientations, and object-relative positions. 
Whole-object shape must therefore be represented by an ensemble of neurons 
coding for overlapping combinations of contour segments. Each contour-segment-
combination within an object would be represented in a graded fashion by a sub-
population of neurons with nearby configural tuning peaks. These neurons effectively 
comprise a local Gaussian-like bump of activation in a high-dimensional contour-
configuration space. The peak location of this activation bump codes for the com-
bined shape and relative positions of the actual stimulating configuration, while its 
width reflects the tuning widths of the contributing single units. An entire object 
will be represented by several such local population activity bumps, each coding  
for a distinct, though overlapping, combination of contour segments within the 
object. Such a population code would have several computational advantages—it 
could flexibly encode a large number of objects with a limited vocabulary of features 
(cf. Marr and Nishihara, 1978; Biederman, 1987; Edelman and Intrator, 2003), but 
since the features are fairly complex, objects could be represented with a relatively 
sparse code that is efficient for recognition and memory storage (Rolls and Treves, 
1990).

If this characterization of the PIT population code is correct, we should be able 
to accurately decode the shape of an object from the PIT population responses 
evoked by it, as we did in V4. This task is considerably more difficult here, however—
the stimulus shapes and neural tuning functions are more complex, and the stimuli 
used to study different neurons were not identical (the global shapes were the same, 
but the sampling of exact convex and concave curvature magnitudes was optimized 
for each neuron). Nevertheless, we attempted to decode population responses with 
a basis function method similar to that used in our V4 work. To reconstruct the 
population response to a given object, we performed a weighted summation of the 
tuning functions of all recorded PIT neurons, with the weight on each neuron’s 
tuning function ( fi(θ,c,x,y), in equation 7.3) given by its response (rij) to the object. 
Because of the strongly combinatorial nature of most PIT cells’ responses, each 
neuron’s full, multipeaked tuning function was used for this decoding analysis, with 
the nonlinear terms split evenly among the n constituent tuning peaks to simplify 
the computations (equation 7.3, top, second term), and the resulting full function 
normalized to a unit integral to make it a proper probability distribution (equation 
7.3, bottom).
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The result of this decoding analysis was a complex, multipeaked function pj(θ,c,x,y) 
on the 4D contour shape (orientation θ, curvature c) × object-relative position (x,y) 
domain that represents the PIT population code for a given object j (figure 7.7), in 
terms of the probability of object features at locations within this space. A peak-
finding algorithm was used to extract local maxima in this function (figure 7.7, black 
squares), representing the decoded estimates of the most probable shapes and  
positions of this object’s constituent contour segments (figure 7.7, white circles).  
As was the case for many stimuli, these estimates were reasonably close to the  
actual values. Although the spread of the local peaks in these functions suggests 
 that part shape and (especially) position are coarsely coded in PIT neural responses, 
they demonstrate that 2D object structure can be accurately recovered from the 
PIT population code.

Transformation between V4 and IT Representations

Our work has contributed to at least a first-pass understanding of how single 
neurons and neural populations encode object shape within two intermediate-level 
ventral pathway areas. A critical next question is how coding transformations across 
successive processing stages are actually generated by networks of neurons. Theo-
retical work suggests two broad classes of potential mechanisms. One possibility is 
that more complex selectivity is generated at each hierarchical level by selective 
feedforward convergence of simpler inputs from the previous stage. This scheme 
was originally proposed to explain the generation of V1 orientation selectivity from 
thalamic afferents (Hubel and Wiesel, 1962), and was later suggested as a general 
mechanism for all ventral pathway shape transformations (Riesenhuber and Poggio, 
1999). Alternatively, feedforward processing may provide only a coarse, weak rep-
resentation that is amplified and refined by recurrent processing within each ventral 
pathway area (Douglas et al., 1995; Salinas and Abbott, 1996; Chance, Nelson, and 
Abbott, 1999). Parsimony and the speed of object category perception (Thorpe, Fize, 
and Marlot, 1996) have tended to favor feedforward models, and few results have 
been produced that they have not been able to accommodate (Sugase et al., 1999).

To distinguish between these alternatives, we examined the time course of shape 
coding in PIT neurons. We found that, in the PIT population, the transformation 
from linear contour-segment summation to an explicit nonlinear code for contour 
configurations develops gradually over a duration of ~60 ms following stimulus 
onset. This is partially due to a ~20 ms lag in response onset between neurons 
exhibiting predominately linear and nonlinear responses, which might be accom-
modated in an elaborated feedforward model. However, there are also many indi-
vidual PIT neurons that initially show linear summation but gradually evolve 
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Figure 7.7
Reconstruction of PIT population code for a given stimulus shape. Each pseudocolor plot is 2-dimensional 
projection of a 4-dimensional (orientation × curvature × x,y position relative to object center) function 
representing the activation of the PIT neural population in response to the shape depicted at the lower 
left. Center: orientation × curvature domain activation averaged across all object-relative positions. 
Periphery: object-relative position domain activations taken at locations of local peaks in reconstruction 
function. White circles indicate actual locations of stimulus contour fragments within 4D space (curvature 
values are the median values used across the population), and black squares indicate population recon-
struction estimates of these points based on the locations of local peaks within the 4D reconstruction 
function. Note that these reconstruction peak points closely match the actual shape space locations of 
the stimulating object’s parts.
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nonlinear selectivity over tens of milliseconds (e.g., responding at short latency to 
either of a pair of optimal contour segments, but with a sustained response only to 
shapes containing their combination, as in figure 7.8). It is not obvious how purely 
feedforward models could account for these results, though such complex dynamics 
arise naturally in recurrent networks (Pugh et al., 2000).

To illustrate how such a process might work, we built a simple recurrent network 
model of the V4 to PIT transformation (figure 7.9A) with an architecture based on 
previous models of cortical processing (Salinas and Abbott, 1996; Chance, Nelson, 
and Abbott, 1999). Each model PIT unit received both feedforward inputs (model-
ing V4 afferents), which conferred additive selectivity for two Gaussian ranges of 
contour segment shapes, and recurrent inputs from other PIT units. The recurrent 
connection weights were structured such that units with similar contour-combination 
tuning were mutually facilitative, while those with dissimilar tuning were mutually 
suppressive. Recurrent processing therefore effectively made comparisons across 
populations of active neurons to infer the presence of multicontour-segment con-
figurations. The relative weights of feedforward and recurrent inputs were varied 
continuously across units independently of their shape-tuning properties (figure 

Figure 7.8
Example neuron illustrating PIT linear to nonlinear transitioning response pattern. Same format as figure 
7.1. At short latencies (< 180 ms), this neuron’s response to multipart stimuli (bottom; gray histogram: 
observed response, gray dashed line: linear component) can be predicted from the sum of its responses 
to each optimal part in isolation (top). At later time points, the cell responds only to the full optimal 
part configuration. Modified from Brincat and Connor (2006).
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Figure 7.9
A recurrent network model can explain observed PIT response dynamics. (A) Illustration of network 
architecture. Left: Each model unit receives Gaussian-tuned feedforward inputs (light gray curves at left 
and bottom) for two ranges of object parts (in this model, concave contour fragments differing in orienta-
tion). The population of model units spans all combinations of tuning for two parts (black illustrations). 
The black curves (top and right) represent strength of recurrent inputs to a unit at the center of the 
model tuning grid. The difference-of-Gaussians or “Mexican-hat” profile of recurrent connection weights 
produces mutual excitation between active units with similar tuning and mutual suppression between 
units with dissimilar tuning. Right: The relative strengths (arrow thickness) of feedforward (gray) and 
recurrent (black) connections vary continuously across the population of model units. (B, C) Average 
temporal profiles of linear (gray dotted line) and nonlinear (black solid line) response components  
across the populations of model-simulated (B) and actual (C) PIT units. The recurrent network model 
accurately captures the delayed, gradual onset of the nonlinear signal observed in the PIT population. 
Modified from Brincat and Connor (2006).
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7.9A, right). Model unit responses were probed by activating feedforward inputs 
representing one or both of their optimal segments, with the temporal profile of 
linear responses measured in the actual PIT population. Unsurprisingly, units with 
predominately feedforward inputs retained this rapid-onset linear representation in 
their responses. However, units with strong recurrent inputs developed a delayed 
nonlinear contour-configuration selectivity (similar to the actual neuron in figure 
7.5A), and units with balanced feedforward and recurrent inputs exhibited a clear 
linear to nonlinear temporal shift (similar to the figure 7.8 cell). The time course of 
nonlinear selectivity averaged across the entire set of model units (figure 7.9B) 
closely matched the gradual temporal profile observed in the actual PIT population 
(figure 7.9C).

These simulations demonstrate that our data are at least consistent with a simple 
recurrent network mechanism for generating complex shape selectivity, though our 
results alone cannot be interpreted as conclusive evidence in favor of this particular 
model or against other recurrent or feedback architectures. More fundamentally, 
our data indicate that the transformation to an explicit PIT population code for 
complex contour configurations does involve a gradual, dynamic network process. 
This poses a serious challenge to purely feedforward models of ventral pathway 
transformations, but it is consistent with the increased processing time required for 
configural perception (Wolfe and Bennett, 1997; Arguin and Saumier, 2000) and 
with the gradual transformations to more complex representations observed in 
other brain areas (Pack, Berezovskii, and Born, 2001; Smith, Majaj, and Movshon, 
2005).

Conclusion

Our results in V4 and PIT provide the first quantitative evidence for contour cur-
vature as a basis dimension in the intermediate processing stages of the ventral 
shape–processing pathway. Single neurons encode complex shapes in terms of the 
curvature at a specific boundary location in V4, and in terms of configurations of 
contour curvatures at multiple locations in PIT. In both areas, neural tuning spans 
the entire range of possible contour curvature values and object boundary locations, 
making possible a complete and accurate population representation of a variety of 
complex shapes. This was confirmed by decoding a reasonably accurate estimate of 
object shape from the pattern of neural population responses in each area. Finally, 
we have shown evidence that the transformation between the V4 and PIT popula-
tion codes is a gradual, dynamic process that may involve recurrent processing, in 
addition to classical feedforward circuitry.

These findings provide a preliminary understanding of object shape coding within 
intermediate ventral pathway stages, and will serve as a starting point for future 
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investigations into the representation of more complex shape properties, multiple 
overlapping objects, and, eventually, entire complex natural scenes. Ultimately, a 
central goal of visual neuroscience is to understand the neural codes for object 
shape—and the transformations between them—through the entire object vision 
system. We expect that the methods and concepts we have described in this chapter 
will also serve as a basis for extending our current understanding to the transforma-
tion between low-level (V1/V2) edge orientation signals and intermediate-level 
curvature selectivity, and to the transformations that take place in the highest pro-
cessing stages in anterior IT.
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