Prof. Dr. (apl.)

Knut Drewing

Prof. Dr. (apl.) Knut Drewing

Prof. Dr. Knut Drewing (apl.)

Contact details
Justus-Liebig University Giessen
FB 06 Psychology and Sports-Sciences
Otto-Behaghel-Str. 10F
35394 Giessen, Germany
+49 (0)641 99 26 104
+49 (0)641 99 26 119
e-mail
website

  • Drewing, K., Weyel, C., Celebi, H., & Kaya, D. (2018). Systematic relations between affective and sensory material dimensions in touch. IEEE Transactions on Haptics. find paper
  • Lezkan, A., & Drewing, K. (2018). Processing of haptic texture information over sequential exploration movements. Attention, Perception, & Psychophysics, 80(1), 177-192. find paper
  • Billino, J., & Drewing, K. (2018). Age effects on visuo-haptic length discrimination: Evidence for optimal integration of senses in senior adults. Multisensory Research, 31(3-4), 273-300. DOI find paper
  • Cellini, C., Scocchia, L., & Drewing, K. (2016). The buzz-lag effect. Experimental brain research, 10, 2849-2857. find paper
  • Drewing , K. (2018). The extent of skin bending rather than action possibilities explains why holes feel larger with the tongue than with the finger. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 535. find paper
  • Drewing, K. (2018, June). Judged Roughness as a Function of Groove Frequency and Groove Width in 3D-Printed Gratings. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (pp. 258-269). Springer, Cham. find paper
  • Drewing, K. (2016). Low-Amplitude Textures Explored with the Bare Finger: Roughness Judgments Follow an Inverted U-Shaped Function of Texture Period Modified by Texture Type. Haptics: Perception, Devices, Control, and Applications (pp. 206-217). Springer: Heidelberg. DOI find paper
  • Drewing, K., Bruckbauer, S., & Szoke, D. (2015). Felt hole size depends on force and on the pliability of the effector. World Haptics Conference, 2015 IEEE (pp. 100-105). IEEE. find paper
  • Drewing, K., Hitzel, E., & Scocchia, L. (2018). The haptic and the visual flash-lag effect and the role of flash characteristics. PloS one, 13(1), e0189291. find paper
  • Drewing, K., Weyel, C., Celebi, H., & Kaya, D. (2016). Feeling and feelings: Affective and sensory dimensions of touched materials and their connection. World Haptics Conference, 2017 IEEE (pp. 25-30), IEEE. find paper
  • Lezkan, A. & Drewing, K. (2016). Going against the grain – Texture orientation affects direction of exploratory movement. Haptics: Perception, Devices, Control, and Applications (pp. 430-440). Springer: Heidelberg. DOI find paper
  • Lezkan, A. & Drewing, K. (2018). Processing of haptic texture information over sequential exploration movements. Attention, Perception, & Psychophysics, 80(1), 177-192. find paper
  • Lezkan, A. & Drewing, K. (2014). Unequal - but fair? Weights in the serial integration of haptic texture information. Haptics: Neuroscience, Devices, Modeling, and Applications (pp. 386-392). Springer: Heidelberg. DOI find paper
  • Lezkan, A. Manuel, S.G. Colgate, J.E., Klatzky, R.L,. Peshkin, M.A. & Drewing, K. (2016). Multiple Fingers – One Gestalt. IEEE Transactions on Haptics 99. DOI find paper
  • Lezkan, A., & Drewing, K. (2015). Predictive and sensory signals systematically lower peak forces in the exploration of softer objects. World Haptics Conference, 2015 IEEE (pp. 69-74). IEEE. DOI find paper
  • Lezkan, A., Drewing, K. (2018b). Interdependences between finger movement direction and haptic perception of oriented textures. PLoS ONE 13(12): e0208988.
  • Lezkan, A., Metzger, A., & Drewing, K. (2018). Active Haptic Exploration of Softness: Indentation Force is Systematically Related to Prediction, Sensation and Motivation. Frontiers in Integrative Neuroscience, 12, 59
  • Metzger, A. & Drewing, K. (2016). Haptic aftereffect of softness. Lecture Notes in Computer Science. Haptics: Perception, Devices, Control, and Applications (pp. 23-32). Springer: Heidelberg. DOI find paper
  • Metzger, A., & Drewing, K. (2015). Haptically perceived softness of deformable stimuli can be manipulated by applying external forces during the exploration. World Haptics Conference, 2015 IEEE (pp. 75-81). IEEE.DOI find paper
  • Metzger, A., & Drewing, K. (2019). Effects of Stimulus Exploration Length and Time on the Integration of Information in Haptic Softness Discrimination. IEEE transactions on haptics. find paper
  • Metzger, A., Drewing, K. (2017). The longer the first stimulus is explored in softness discrimination the longer it can be compared to the second one. Worldhaptics Conference 2017, IEEE, in press. DOI find paper
  • Metzger, A., Lezkan, A., & Drewing, K. (2018). Integration of serial sensory information in haptic perception of softness. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 551. DOI find paper
  • Metzger, A., Mueller, S., Fiehler, K., & Drewing, K. (2019). Top-down modulation of shape and roughness discrimination in active touch by covert attention. Attention, Perception, & Psychophysics, 81(2), 462-475. find paper
  • Metzger, A., Toscani, M., Valsecchi, M., & Drewing, K. (2018, June). Haptic Saliency Model for Rigid Textured Surfaces. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (pp. 389-400). Springer, Cham.
  • Straube, B., Schülke, R., Drewing, K., Kircher, T., & van Kemenade, B.M. (2017). Hemispheric differences in the processing of visual consequences of active vs. passive movements: a transcranial direct current stimulation study. Experimental brain research, 235(10), 3207-3216. find paper
  • Wolf, C., Tiest, W. M. B., & Drewing, K. (2018). A mass-density model can account for the size-weight illusion. PloS one, 13(2), e0190624. find paper
  • Zöller, A. C., Lezkan, A., Paulun, V. C., Fleming, R. W., & Drewing, K. (2018, June). Influence of Different Types of Prior Knowledge on Haptic Exploration of Soft Objects. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (pp. 413-424). Springer, Cham. find paper

former project-related publications

  • Bresciani, J.P., Ernst, M.O., Drewing, K., Bouyer, G., Maury, V., & Kheddar, A. (2005). Feeling what you hear: auditory signals can modulate tactile taps perception. Experimental Brain Research. 162, 172-180.
  • Drewing, K. (2008). Shape Discrimination in Active Touch: Effects of Exploratory Direction and Their Exploitation. In M. Ferre (Ed.) Haptics: Perception, Devices and Scenarios. Lecture Notes in Computer Science, 5024 (pp. 219-228). Springer: Heidelberg.
  • Drewing, K. (2012). After experience with the task humans actively optimize shape discrimination in touch by utilizing effects of exploratory movement direction. Acta Psychologica 141, 295-303.
  • Drewing, K. & Aschersleben G. (2003). Reduced timing variability during bimanual coupling: a role for sensory information. The Quarterly Journal of Experimental Psychology. A 66(2), 329-350.
  • Drewing, K. & Ernst, M. O. (2006). Integration of force and position cues for shape perception through active touch. Brain Research, 1078, 92-100.
  • Drewing, K. & Kaim, L. (2009). Haptic Shape Perception from Force and Position Signals Varies with Exploratory Movement Direction and the Exploring Finger. Attention, Perception & Psychophysics 71(5), 1174-1184.
  • Drewing, K., Lezkan, A., & Ludwig, S. (2011). Texture Discrimination in Active Touch: Effects of the Extension of the Exploration and their Exploitation. In C. Basodogan, S. Choi, M. Harders, L. Jones, & Y. Yokokohji (Eds.) Conference Proceedings – IEEE World Haptics Conference 2011 (pp. 215-220), The Institute of Electrical and Electronics Engineers (IEEE) Catalog Number CFP11365-USB.
  • Kaim, L. & Drewing, K. (2010). Exploratory pressure influences haptic shape perception via force signals. Attention, Perception & Psychophysics 72, 823-38.
  • Kaim, L. & Drewing, K. (2011). Exploratory strategies in haptic softness discrimination are tuned to achieve high levels of task performance. IEEE Transactions on Haptics 4. 242-252.
  • Reuschel, J., Drewing, K., Henriques, D.Y.P., Rösler, F., & Fiehler, K. (2010). Optimal integration of visual and proprioceptive movement information along angular trajectories. Experimental Brain Research, 201, 853-862.