Prof. Dr. Endres, Prof. Dr. Schütz

Wahrnehmung modularer BewegungsprimitiveC6

Projekt C6 wird sensomotorische Primitive (SMP) untersuchen, anhand derer die Wahrnehmung, Planung und Kontrolle von Bewegung in einem  Modellierungsframework vereint werden sollen, welches in langsamer neuronaler ‚Wetware‘ berechnet werden kann. Wir werden Bayes‘sche Modelle sensomotorischer Primitive auf der Grundlage von ökologisch validen Daten trainieren und anschließend psychophysisch testen. Zur Bewegungsausführung verknüpfen diese Primitive die kategoriale und diskrete, internale Repräsentation von Bewegung mit dem kontinuierlichen motorischen Output. In der Literatur wurde eine große Anzahl von Modellen für Bewegungsprimitive definiert. Wir wollen untersuchen, ob diese Definitionen auf sensomotorische Primitive erweitert werden können,  deren messbare Wahrnehmungskonsequenzen von den Modellen vorhergesagt werden. 

Neue Projektrelevante Veröffentlichungen

  • Junker, M., Endres, D., Sun, Z. P., Dicke, P. W., Giese, M., & Thier, P. (2018). Learning from the past: A reverberation of past errors in the cerebellar climbing fiber signal. PLoS biology, 16(8), e2004344. find paper
  • Chiovetto, E., Curio, C., Endres, D., & Giese, M. (2018). Perceptual integration of kinematic components in the recognition of emotional facial expressions. Journal of vision, 18(4), 13-13. doi:10.1167/18.4.13. find paper
  • Clever, D., Harant, M., Koch, K. H., Mombaur, K. and Endres, D. (2016). A novel approach for the generation of complex humanoid walking sequences based on a combination of optimal control and learning of movement primitives. Robotics and Autonomous Systems, Volume 83, 287–298. find paper
  • Clever, D., Harant, M., Mombaur, K., Naveau, M., Stasse, O. and Endres, D. (2017). COCoMoPL: A Novel Approach for Humanoid Walking Generation Combining Optimal Control, Movement Primitives and Learning and its transfer to the real robot HRP-2. IEEE Robotics and Automation Letters ,2(2):977 – 984. find paper
  • Mukovskiy, A., Taubert, N., Endres, D., Vassallo, C., Naveau, M., Stasse, O., Souères, P. and Giese, M. A. (2017). Modeling of coordinated human body motion by learning of structured dynamic representations. In J.-P. Laumond, N. Mansard, and J.-B. Lasserre, editors, Geometric and Numerical Foundations of Movements, volume 117 of STAR Series, pages 1–26. Springer. find paper
  • Quaglio, P., Yegenoglu, A., Torre, E., Endres, D. M., & Grün, S. (2017). Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE. Frontiers in Computational Neuroscience, 11, 41. find paper
  • Schubert, M., & Endres, D. (2018). Empirically Evaluating the Similarity Model of Geist, Lengnink and Wille. In International Conference on Conceptual Structures (pp. 88-95). Springer, Cham. find paper
  • Velychko, D., Endres , D., Taubert, N., and Giese, M. A. (2014). Coupling Gaussian process dynamical models with product-of-experts kernels. In Proceeding of the 24th International Conference on Artificial Neural Networks, LNCS 8681, pages 603–610. Springer. find paper
  • Velychko, D., Knopp, B. and Endres D. (2017). The coupled variational Gaussian process dynamical model. In Proceedings of the 27th International Conference on Artificial Neural Networks,pages 1–9. DOI find paper
  • Velychko, D., Knopp, B. and Endres, D. (2016). The variational coupled Gaussian process dynamical model (Abstract). NIPS Workshop on Neurorobotics. DOI find paper

Ältere projektrelevante Veröffentlichungen

  • Endres , D., Christensen, A., Omlor, L., and Giese, M. A. (2011a). Emulating human observers with Bayesian binning: segmentation of action streams. ACM Transactions on Applied Perception (TAP), 8(3):16:1–12. find paper
  • Endres , D., Neumann, H., Kolesnik, M., and Giese, M. A. (2011b). Hooligan detection: the effects of saliency and expert knowledge. In Proceedings of the 4th International Conference for Imaging in Crime Detection and Prevention (ICDP 2011), pages 1–6. IET, ISBN-978-1-84919-565-2. find paper
  • Endres, D., Chiovetto, E. and Giese, M. A. (2013a). Model selection for the extraction of movement primitives. Frontiers in Computational Neuroscience , 7:185. find paper
  • Endres, D., Meirovitch, Y. Flash, T. and Giese M. A. (2013b). Segmenting sign language into motor primitives with Bayesian binning. Frontiers in Computational Neuroscience , 7:68, 2013. find paper
  • Taubert, N., Christensen, A., Endres, D. and Giese, M. A. (2012). Online Simulation of Emotional Interactive Behaviors with Hierarchical Gaussian Process Dynamical Models. Proceedings of the ACM Symposium on Applied Perception (ACM-SAP 2012), pages 25–32. find paper
  • Taubert, N., Löffler, M., Ludolph, N., Christensen, A., Endres, D. and Giese M.A. (2013). A virtual reality setup for controllable, stylized real-time interactions between humans and avatars with sparse Gaussian process dynamical models. Proceedings of the ACM Symposium on Applied Perception (ACM-SAP 2013), pages 41–44, 2013. find paper