
TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Bayes Pose Estimation
by Modeling Color Distributions

Diplomarbeit

Dirk Neumann

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN
UNIVERSITÄT MÜNCHEN

e e e e
eee eee eee ee

e
e e ee

Forschungs- und Lehreinheit IX
Bildverstehen und Wissensbasierte Systeme

Bayes Pose Estimation
by Modeling Color Distributions

Diplomarbeit

Dirk Neumann1

Lehrstuhl : Prof. Bernd Radig

Betreuer : Dipl.-Inf. Thorsten Schmitt

Abgabedatum : November 2003

1Email: dirk@caltech.edu

Hiermit versichere ich, dass ich diese Diplomarbeit selbständig verfasst und nur
die angegebenen Quellen und Hilfsmitteln verwendet habe.

Pasadena, 10. November 2003

(Dirk Neumann)

Abstract

Bayes filtering techniques have been successfully used for a variety of

tasks, for instance to navigate a robot through a museum [27] or to track di-

verse objects [10]. Many of these probabilistic search techniques are based on

Markov and Monte-Carlo methods and allow the robust tracking of multiple

hypotheses.

The basis of every Bayes-based filtering technique is its likelihood model.

For vision based based tracking, it computes for an image and for each vector

in the state space the probability that the image could have occurred in that

state. We here explore the possibility of using the distribution of pixel color

as the only criteria to compute the image likelihood. Thus, we circumvent

the need for classical image processing methods such as color classification,

segmentation, or landmark detection. Instead, a sketch of the expected image

is generated for each pose using a simplified version of a voxel-based render-

ing technique. Based on Gaussian models of the different colors in RoboCup,

the robot’s pose could be evaluated by looking at the current camera image.

Experiments show that the metric is robust to translation, but very sensitive

to the orientation dimension.

A Monte-Carlo-Markov-Chain (MCMC) approach is used to integrate and

track the robot pose distribution over time. The implications of the properties

of the likelihood model for the particle filter will be discussed and in addition

a more robust, conventional landmark-based metric will be suggested.

CONTENTS vi

Contents

1 Introduction 1

2 Related Work 4

3 Color 6
3.1 Bayes Color Model . 7
3.2 Maximum Likelihood Classification 16

4 Voxel-based Image Model 19
4.1 Voxel Map . 21
4.2 Scan Path and Ray Casting . 24
4.3 Image Likelihood . 28

5 Probability and Monte Carlo Methods 34
5.1 Probability Space . 35
5.2 Markov Chains . 38
5.3 Monte Carlo Markov Chain Methods (MCMC) 41
5.4 Sampling Methods . 42
5.5 Sequential Monte Carlo Methods (SMC) 46

6 Implementation 51
6.1 Voxel-based Localization . 51
6.2 Marker-based Localization . 53

7 Localization 55
7.1 Landmark-based MCMC Localization 58
7.2 Image Likelihood Evaluation . 62
7.3 Resampling Evaluation . 68
7.4 Discontinuities of Image Markers . 70
7.5 Convergence of the Voxel-based Localization 71

8 Conclusion 74

1 Introduction 1

1 Introduction

Camera-guided orientation and localization for mobile robots is currently a very

active field of research. Different classes of algorithms were proposed to solve the

navigation problem by using landmarks, by tracking contours, or with statistical

filters for spatial transforms such as Hough transformation. The common precon-

dition of these algorithms is a model of the surrounding that is used to compute

the current position based on the known location of the landmarks or other prop-

erties of surrounding. The necessity of a global model can, to some extend, be

circumvented if the localization algorithm is used to propagate (and thereby pos-

sibly correct) an initial start position. Iterative methods usually search for local

changes of image features and uses this information to constantly update the esti-

mate.

The objective of the algorithm presented here was to investigate the possibil-

ity of removing two major constrains from the problem of self-localization: the

sensitivity to changes in illumination, and the dependency on application-specific

features for different surroundings. Instead of using topological or spatial oper-

ators to compute the position information directly, the unprocessed images are

used to localize the robot. For this purpose, the robot possesses a 3-dimensional

model of the RoboCup environment and a fast voxel-based technique is used to

compute expected images for various likely robot poses. These images are then

compared with the current image obtained from the on-board camera. The differ-

ences between the sketch of the expected image and the actual image is modeled

with the help of precise color statistics that are obtained from a sequence of images

at different positions in the environment. The statistical color model describes for

the different objects how likely different color tones occur. The likelihood that an

1 Introduction 2

image corresponds to a sketch can then be computed from the likelihoods of the

single pixels in a straightforward manner.

The center of the pose estimation algorithm is a probabilistic Monte-Carlo-

Markov-Chain (MCMC) algorithm that starts with a random subset of all possible

poses, computes for each pose the sketch of expected environment, and estimates

for each selected pose the likelihood that the sketch is “congruent” with the im-

age. In a second step the current pose subset is reevaluated and the most likely

poses are selected for the next step. The probability that a pose is selected for the

next iteration is thereby proportional to the likelihood of the observed differences

between the sketch and the image.

The odometry information from the robot is used to propagate the pose esti-

mates in accordance with the movements of the robot. In agreement with most

MCMC implementations, additional spatial noise is added to the pose estimates

with each iteration. Thus, the single pose estimates can be seen as representations

for these (randomly generated) paths that best correspond to the observed image

sequence. This MCMC approach and the Kalman filter are optimal for Gaussian

probability distributions (measurements with an observed Gaussian error), but

the Bayesian approach can be seamlessly applied to non-linear problems too (for

a comparison in RoboCup see e.g. [19]).

However, the major drawback of the MCMC algorithms is their dependency

on the smoothness and broadness of the likelihood function used to evaluate the

single estimates. If the likelihood distribution is to narrow or can drastically

change between different iterations, the estimates will not converge, or may even

converge to temporal stable, but non-optimal (and thus incorrect) paths. Unfor-

tunately, the camera images dramatically change with rather small changes in the

orientation of the robot. Hence, the resulting likelihood function is too steep for

1 Introduction 3

the MCMC algorithm and it may only be reliable used to either predict small local

pose changes, or to globally localize the robot if the orientation is known from

other sources (e.g. a landmark).

Therefore, the voxel-based MCMC localization could not be reliably used in

the RoboCup environment. For the application in the RoboCup competition a

simple landmark-based MCMC variant was used instead. It employs classical

color classification and topological image operators to extract the positions of pre-

defined color-based landmarks (corner flag posts and the goals). The differences

between the expected and observed positions of the landmarks are then used to

form the likelihood function in pose space, and best estimates are selected with a

MCMC algorithm. Since this algorithm does not extend the established MCMC

image-processing approaches, it will be discussed here only shortly.

The main emphasis of this thesis is on the one hand to describe the proba-

bilistic color model and the voxel-based world model, and secondly, to give an

overview of the results of the evaluation of the likelihood function. Although the

localization procedure can not be reliable employed in RoboCup, the straightfor-

ward comparison of images with rough sketches based on the color discrepancy

may be adequate for other applications. For most cases it would be sufficient to

estimate the translational coordinates, or to consider small local movements only.

The next chapter will give an overview of different MCMC methods and their

current applications in robotics and self-localization. Chapter 3 explains the statis-

tical model of the color metric. The voxel-based world model and the fast sketch

rendering technique is explained in chapter 4. The image probability metric is de-

scribed in chapter 4.3. Chapter 5 gives an overview of Monte-Carlo and Markov-

Chain methods. An overview of the implementation in C++ is given in chapter 6.

The main properties of the algorithm are evaluated in chapter 7.

2 Related Work 4

2 Related Work

MCMC methods have been previously applied to problems in computational vi-

sion, robotics and to self-localization with great success. The most prominent ex-

amples are presumably the contour tracking algorithm Condensation [10] and the

Minverva museum robot project [28], [29]. Both algorithms use a Monte-Carlo-

Markov-Chain (MCMC) model to track the position, either of a contour in a video

sequence, or of the current position of the robot in the museum. Based on the

most likely current positions, the algorithms use Bayes models to generate the

most likely hypotheses for the next iteration. In the Condensation algorithm a lo-

cal search procedure is used to estimate the agreement of the hypothesis and the

image. For the Minerva robot the likelihood of a possible position is estimated by

comparing the light distribution of the ceiling with the expected values for each

position.

Another often chosen approach is to use local color histograms to track ob-

jects (e.g. [21]). These techniques are commonly utilized to roughly localize satu-

rated color regions (such as faces) in video sequences, but do not provide a pre-

cise and timely estimate of the position since the implicit histogram-based color

classification does not extract reliable region estimates. For mobile robotics self-

localization, Hough transforms has been often used (e.g. [9]). Another prominent

example is the maximum likelihood method developed for the Sojourner Mars

rover [20]. It determines the best predictions based on the previous pose, feature

maps (from vision, sonar or laser range-finder) and a branch-and-bound search

that gradually subdivides the three-dimensional state space into a smaller cubes.

In contrast to the previous approaches, the localization algorithm presented

in this paper does not use high level image features such as contours or Hough

2 Related Work 5

transforms. Instead a probabilistic color metric is used that is generated from

sample image sequences for a particular environment. As it has been shown in

Klinker [12], the primary directions of color distributions of illuminated surfaces

can be interpreted as the combined effects of shading and highlighting and both

can be derived theoretically. In the algorithm presented here, a color-based pixel

likelihood is used to compare the observed color values with the predictions of a

voxel-based world model. In computer vision, voxel-based techniques have been

previously applied for the reconstruction of scenes and objects. Body shapes were

constructed from multiple synchronized video stream in [17], and [26] used it to

reconstruct a photorealistic scene and circumvented the correspondence problem

by the occlusion order of the voxel map.

As Thrun et al. [29] pointed out, MCMC methods are usually simple and as-

tonishingly easy to implement. Good reviews of particle filters are available from

Doucet [6] and Neal [18]. Liu [15] and Pitt [22] discuss problematic issues of

MCMC methods and suggest extensions. Introductory texts to particle filter can

be found in [16] and [1].

3 Color 6

3 Color

The algorithm presented here consists of two major components: an image like-

lihood metric and a Bayes particle filter. The image comparison engine uses an

a-priori model of the RoboCup environment that can generate, for each possible

pose, a rough sketch of what the camera image should look like. Then the actual

image is compared with the generated image and a likelihood value is computed

that indicates how similar they are. The second component, the Bayes-based sam-

pling algorithm chooses at each time step, based on the results of previous ob-

servations, a random subset of likely poses from the infinite space of possible

poses. The selected poses are then used by the image likelihood module to gener-

ate sketches at these positions and to compare the sketches with the current image

from the frontal camera.

The basic idea of this first image comparison step is thereby to overlay the ac-

tual image from the camera with different sketches from various positions, and

to precisely estimate for each of these positions the likelihood that the image may

be taken at that position. This is done on a per-pixel basis. By quantifying for a

particular pixel, how distinct the observed color value is from the expected color

in the generated sketch, the likelihood of each pixel can be calculated. The like-

lihood of the whole image is estimated by averaging the likelihood of the single

pixels. The challenge thereby is that it is not sufficient to take an arbitrary and

simple metric, for instance to classify the colors into ‘white’, ‘green’, ‘red’ etc. and

then compute the number of mismatching pixels, but to get this comparison step,

all the other software layers rely on, as precise and reliable as possible.

In this chapter we will therefore present a method that extracts the correct color

distributions for the different classes (lawn, own/enemy goal, robot, etc.) from a

3.1 Bayes Color Model 7

set of preprocessed images taken on the RoboCup field and characterizes them in

a linear model. For the first step of mapping the image colors to different object

classes, a comfortable manual color labeling program is used that was developed

as part of the RoboCup project at the Munich University of Technology.

3.1 Bayes Color Model

In the following the spatial relationship of pixels is unimportant, and images are

just seen as a stream of (spatially) independent color values. The problem of find-

ing for such a color stream an appropriate color metric can be best visualized by

plotting all the pixels of an image according to their color coordinates in a chart

(see figure 3.1). In the plot the color values of the different objects (e.g. green lawn,

yellowish background, reddish ball) constitute distinct stripes in different regions

of the color space. The stripes are primarily oriented along the red-green-blue

diagonal (intensity axis) and overlap, at least in the 2D representation, to some

extend.

The color model of the algorithm uses for each of the color classes a 9-

dimensional linear transformation (translation, rotation, scaling) to model their

distributions. Each color class is thereby represented by its mean, its unitary ro-

tation matrix and a diagonal scaling matrix. One may think of the model as 3-

dimensional ellipsoids encircling the various color clusters in the RGB color space.

Yet, the notion of fixed-sized ellipsoids is a bit misleading. Contrary to classical

computer vision approaches, with Bayes-based image processing algorithms there

is usually no need to do classification. Rather than having fixed class boundaries,

the model transforms the complete color space into a probability space. Therefore,

it is not interesting whether a particular, e.g. gray, pixel is decided to be black or

3.1 Bayes Color Model 8

image-center.png

(a) Sample image taken on a AGILO
robot.

image-center-RG.png image-center-BG.png

Figure 1: Pixels of the image 1(a) are plotted with respect to their red and green
1(b), and blue and green 1(c) coordinates in RGB color space. If multiple pixels
had the same coordinates in the particular color plane their color values were
averaged.

white. What is important in a Bayes framework, is to estimate the correct like-

lihood that an observed (gray) pixel originally is black (or white). Thus from a

statistical point of view, the information about the uncertainty of the color is not

discarded, but instead is used in the higher levels of processing.

The likelihood model can be directly derived from the empirical color distribu-

tion in the RGB space. The model assumes that the different objects have different

mean colors (e.g. green, yellow or blue) and that the observed color values devi-

3.1 Bayes Color Model 9

ate from the mean color due to random and normally distributed processes. The

major cause of color variation in the RoboCup environment is the illumination.

Different degrees of illumination, e.g. due to shading and inhomogeneities of the

lighting cause variation in the color values. For illuminated matt surfaces, the

reflected color can be computed as the convolution of the reflectance spectrum

of the object and the spectrum of the illumination. This reflectance component

can be modeled as a random distribution having different orientations for dif-

ferently colored objects [12]. Besides illumination, color variation is caused by

inhomogeneities in the painting, local colored shades, or dirt. These influences

are covered by the model’s remaining six degrees of freedom.

In order to extract the parameters from the color distribution it is necessary to

decide first, what color values belong to which class. We tried a variety of cluster

analysis algorithms to automate the process, but then decided to stay with the

current manual color selection procedure. Non of the studied algorithms solved

the problem reliable. The main problem for all algorithms seem to be the different

set sizes of the clusters. For instance the lawn and the background account for

the majority of the pixels, whereas the pixels belonging to the ball or the magenta

and turquoise markers are very rare. With a hierarchical cluster analysis we could

not obtain any reliable separation of the color space, and the best results have

been achieved with a k-means cluster analysis when the number of clusters was

fixed (though the extracted clusters are often inadequate). The outcome could be

enhanced if the (normalized) x- and y-positions of each pixel are included as a

fourth and fifth dimension, in addition to the three color dimensions. This favors

clusters that are coherent in both, the color space and the images. Yet, the k-

means algorithm still tends to separate the large classes (background and lawn)

into a light and a dark component and occasionally drops the smaller classes. For

3.1 Bayes Color Model 10

the application in a RoboCup we consider the results of the algorithms as too

unreliable.

In the current, manual color classification program the user can take pictures

at different positions on the field. In each image the user can draw regions and

identifies to which class they belong to. For each RGB value to program counts

how often it belongs to each class, and a growing operator is used to fill the whole

color space based on the sampled pixels. As a result the program computes a

lookup table that indicates for each value in the RGB16 color space to which class

the color was most frequently assigned to.

We use these lookup tables to estimate the parameters of the color distribu-

tions. First, for each color class the mean RGB value is computed. Then, the single

value decomposition (SVD) of the covariance matrix is used to calculate the eigen

vectors and eigen values of each distribution. We used the fast implementation of

the Lapack library [8]. The SVD decomposes the (covariance) matrix C into two

unitary transformation matrices V and U , and a diagonal matrix S containing the

eigen values in descending order.

cov (X) = U S V t (3.1)

The matrix V transforms the distribution into the corresponding eigen space.

If the transformed color values
(
X − X̄

)
V are further divided by the square root

of the diagonal matrix S, the resulting distribution has then a standard deviation

of 1 along each dimension (thus the covariance matrix of the transformed colors

is the identity matrix). Let X̃ = X − X̄ be the color variation and assume that S

3.1 Bayes Color Model 11

has full rank:

cov (X) = X̃ t X̃ = U S V t (⇒ U = V)

U S V t = X̃ t X̃

⇔ S = U tX̃ t X̃V

⇔ S
1
2 S

1
2 = V tX̃ t X̃V

⇔ I = S− 1
2 V tX̃ t X̃V S− 1

2

⇔ I = cov
(
X̃V S− 1

2

)
�

(3.2)

Two steps in the proof need a further comment. First, since the covariance

matrix is symmetric and S is diagonal, then unitary matrices U and V must be

equal. Second, if the S (and therefore cov (X)) has no full rank, then the above

would not hold. Instead the first d diagonal elements of the resulting covariance

matrix would be one, and the rest zero.

The transformation from the original RGB space to the eigen space is shown

in figure 2. Subtracting the mean shifts the distribution to the center. The unitary

matrix V rotates the cluster such that the main axes are aligned orthogonal. In

the final step the distribution is scaled by the diagonal matrix S− 1
2 resulting in a

distribution that is almost homogenous along all three dimensions.

In the transformed space, it is now possible to compute the probability of

each color value. In the eigen spaces the color clusters are roughly normally dis-

tributed. There may be slight derivations from this assumption since only 9 of the

possible 12 linear transformations were used (shear was not included). Although,

when we manually inspected the color distributions we usually found that the

algorithm aligns the clusters orthogonal along all three dimensions.

The color distributions are assumed to be normally distributed. After trans-

3.1 Bayes Color Model 12

image-lut-RG.png

(a) Distribution of pixels manually
classified as magenta in the red-
green plane of the RGB color space.

image-lut-mean.png

(b) Distribution of the magenta pix-
els if normalized with respect to
their mean.

image-lut-rotated.png

(c) Distribution of the magenta pix-
els if rotated by V . The axes are
the first and the second eigen vec-
tor. The main axis of variance is
now aligned horizontally.

image-lut-scaled.png

(d) Distribution of the magenta pix-
els if scaled according to S

1
2 . The

pixels are now homogenously dis-
tributed along the color space axes.
The plot shows the range from z =
−3 to 3.

Figure 2: Illustration of the effect of eigen space transformation using single value
decomposition (SVD). See text for explanation.

3.1 Bayes Color Model 13

formation into the eigen spaces, the mean and the standard deviation along each

dimension are then 0 and 1 respectively. The likelihood of each color value can

now be easily computed by multiplying the probabilities along each eigen vector.

The basic assumptions is hereby that in the transformed space the distribution is

independent along the coordinate axes ei in eigen space.

x = (r, g, b) (3.3)

zi = 〈x, ei〉 (3.4)

P (x) =
3∏

i=1

N (zi, 0, 1) (3.5)

Thus, the likelihood of an RGB value can be calculated by subtracting the mean

and applying the rotation and scaling matrices obtained by the SVD. In the actual

implementation the linear transformations is summarized in a single affine La-

pack operation (X ← BX + A, B = V S− 1
2 , A = −µ).

P (x) = P
(
(x− µ) V S− 1

2

)
(3.6)

The above formula is the centerpiece of the image comparison module of the

rather simple algorithm. Based on an a-priori color classification, that is currently

done manually, it uses the color space transformation described to decompose

the color values into three independent dimensions. From these (independent)

channels is then easy to compute the likelihood of the original color value (Eq. 3.3).

Another way of thinking of the transformation in equation (3.6) is the often

used Mahalanobis metric. The square of the Mahalanobis distance r is defined as

a bilinear function of the normalized X̃ and the inverse of the covariance matrix.

r2 = x̃ C−1 x̃t =
(
x− X̄

)
C−1

(
x− X̄

)t

3.1 Bayes Color Model 14

image-center.png

(a) Original image

image-center-likelihood.png

(b) Likelihood chart

Figure 3: Liklihood plot of the image for the blue color class. The hue and the
saturation of each point was taken from the original image. The luminance of the
pixels corresponds to the likelihood of the pixel belonging the the blue class.

The equivalence of the Mahalanobis distance and the and the SVD-based trans-

formation can be easily shown:

r2 !
= ||x̃ V S− 1

2 ||

=
(
x̃ V S− 1

2

) (
x̃ V S− 1

2

)t

=
(
x̃ V S− 1

2

) (
S− 1

2 V t x̃t
)

= x̃ V S− 1
2 S− 1

2 V t x̃t

= x̃ V S−1V t x̃t = x̃
(
V S V t

)−1
x̃t

= x̃ C−1 x̃t �

Equipped with the normalizing transformation X̃ V S− 1
2 (or the Mahalanobis

metric), it is therefore possible to state, for each color class and every possible

color value, the likelihood that it belongs to the class. Figure 3(b) illustrates this.

It shows for each pixel the likelihood that it belongs to the blue goal/blue corner

flag post class. The more likely this is, the lighter is the luminance in the chart.

3.1 Bayes Color Model 15

The likelihood transformation can be computed for each class and the color class

parameter can be included into the formula using conditional probabilities. The

Bayes theorem gives then the likelihood of the color classes.

P (class | rgb) =
P (rgb | class) · P (class)

P (rgb)
(3.7)

P (rgb | class) = P
(
(rgb− µclass) Vclass S

− 1
2

class

)
(3.8)

3.2 Maximum Likelihood Classification 16

3.2 Maximum Likelihood Classification

Before we go on with the description of the second part of the algorithm in the

next chapter, we will present a useful application of the Bayes model called maxi-

mum likelihood classification. It uses the Bayes equation (3.7) to choose for every

pixel the class it most likely belongs to. Although classification is here only used

to detect occlusions by opponents or the referee, the maximum likelihood classifi-

cation may be useful in other modules of the RoboCup software too. In addition

it is helpful to examine how well the new color model segmentation compares to

the manually crafted lookup tables currently used.

The idea of the Bayes classification, or maximum likelihood estimation in gen-

eral, is to choose from a parameter space that parameter that maximizes the prob-

ability that the observed value originated from that parameter configuration. In

the context of this RoboCup color model the state space is discreet and very sim-

ple: green, red, yellow, blue, magenta, turquoise, and black. With each class, a set

of transformation matrices is associated that transforms the RGB color space into

probability spaces.

Figure 4 illustrates the classification problem for the magenta cluster. The first

chart 4(a) shows some clusters that are located in the neighborhood of the magenta

colors: the dark pink part of the blue cluster and the yellowish colors. The large

clusters (lawn, white background, ball) are not shown because they fill a large part

of the color space and overlap to a large extend (especially in two dimensions)

with the other clusters. In figure 4(b) the classification for the same section of

the color space is shown. The main size and form (circular in its eigen space) of

the distribution is maintained in the classification (the light pink blob). Nearby

colors, that are more reddish are classified as ball (darker red) and colors in the

3.2 Maximum Likelihood Classification 17

left of the images belong to the large, green lawn cluster. Although the models for

the classes are regular 3-dimensional ellipsoids, a 2-dimensional cut through the

classification space can be quite complex, as in figure 4(b). This is the result of the

tight packing of the color clusters in the RGB space.

Figure 4(c) shows the classification done with the original lookup table. As far

as one can tell it from the little charts, the major organization of the classification

could be reproduced by the 9-dimensional model. Albeit the Bayes model was

obtained from the same lookup table that is used in figure 4(c), the resulting clas-

sification differ in some regions of the color space. The Bayes model assigns more

of the violet pixel to the ball class, and the green cluster is larger in figure 4(b).

Looking into the color space is a rather weak method of evaluating the correct-

ness of the model and the classification results for the actual images are of greater

interest. Yet, if the color model does not seem to be correctly working then it might

image-lut-classes.png

(a) Some of the color
classes nearby magenta.
The heterogenous classes
(lawn, white matter, ball)
are not shown.

image-lut-class-bayes.png

(b) Classification based on
the maximum likelihood
decision using the Bayes
classes.

image-lut-class-lookup.png

(c) Classification based on
the original lookup table.

Figure 4: Illustration of the maximum likelihood classification on a color plane
through the magenta color cluster (z values are in the range of −5 . . . 5 of the ma-
genta eigen space). The jags in the classification charts are due to the conversion
from the 16bit to the 24bit color space. The Bayes model itself is smooth and in
the algorithm no (16bit) lookup table is used.

3.2 Maximum Likelihood Classification 18

be often helpful to generate some classification charts. A sample image that was

classified with either the Bayes model (5(a)) or the original lookup table (5(b)) in

shown below. The Bayes model usually produces a much smoother classification.

image-class-bayes.png

(a) Classified with Bayes classifica-
tor.

image-class-lookup.png

(b) Classified with manually ob-
tained lookup table.

Figure 5: Classified images.

4 Voxel-based Image Model 19

4 Voxel-based Image Model

In the previous chapter we described how the colors and their distributions are

transformed from the original RGB space to the corresponding probability spaces.

In the next chapter this probability metric will be used to compare the actual im-

ages with the model’s prediction. In this chapter we will specify first the world

model, providing the missing link from the robot’s position and orientation to the

camera images.

The world model constist of two parts. The first part is the model of the exter-

nal world containing the information about the structure of the environment: the

form of the objects, their size and location, and their colors. It will be described

in detail below. The second component of the model handles the transformation

from the external world coordinates to the pixel coordinates of the camera. It con-

verts the three-dimensional global coordinates to a robot-centric system, and then

maps these to CCD plane of the camera. The transformation does not only take

the position and rotation of the camera into account, but models the distortion

of the cameras too. The necessary camera parameters for the linear, geometric

projection (f , position, rotation) and the distortion (κ) are estimated once for each

robot in a manual calibration procedure. The transformation function is part of

the AGILO RoboCup software.

To model the external world, an voxel-based visualization algorithm is used.

Voxel-based algorithms are very simple techniques that are popular in games

with a limited degree of freedom, and they are employed for simple rendering

algorithms too. The basic elements of the algorithm are small cubes used to

build up the environment. These cubes are called voxels, in analogy to the two-

dimensional pixels. The implementations of voxel techniques can be very simple

4 Voxel-based Image Model 20

if they have limited degrees of freedom, and if the voxels are allowed to be stacked

only atop of each other. These constrains make the processing and the voxel space

itself very easy. If the degrees of freedom are limited e.g. to translations and one

rotational degree of freedom orthogonal to the ground plane, then the scanpaths

through the voxel space will be very simple too. If furthermore, the voxels are

restricted to lie upon each other, then the three-dimensional voxel configuration

can be fully described by a two-dimensional height map.

Fortunately, RoboCup is perfectly suited for these simplifications. The robot

platform has only 3 degrees of freedom: translation in x and y, and the orien-

ation φ of the vehicle. In addition, the field consists, with one exception, only of

solid and simple objects having the same shape at every height. The exception is

the crossbeam of the goal. As an approximation the crossbeam is modeled as bars

on top of the three goal walls. This is sufficient since the bar would not visible if

the robot is close to the goal, and for the larger distances the error is negligible.

4.1 Voxel Map 21

4.1 Voxel Map

To generate the height map the algorithm needs the parameters of the surround-

ing. The AGILO RoboCup software keeps a single file that specifies the parame-

ters of the current field: its length and width, the length and widths of the lines,

the position and size of the goals, the corner posts, and many more. This file can

be easily edited to adjust the software to variations of the field. Based on these

parameters it is then straightforward to generate to appropriate height map.

fieldmodel-classes.pdf

Figure 6: Field model generated by the algorithm showing the topmost color class
for each voxel column.

Figure 6 shows such a map, that was generated from the parameter file for the

field in Munich. The model includes the four corner posts, the outer lines, the

mid-line and the inner circle. The goals are modeled by a double wall: the inner

walls have the colors of the own and opponent goal respectively, the outer walls

4.1 Voxel Map 22

and the goal posts (not observable in this image) are colored white.

The background is modeled in the map too. The whole field is encircled by

a small “wall” that represents the (unknown) color distribution of the off-field

environment. The reason for this “wall” is that the algorithm only compares the

regions of the image where it expects objects. If there would be other items be-

yond the expected field (e.g. the goal) they would be simply ignored. For that

reason, a pose where the robot is looking towards either side of the field would

almost always match any image. The position can be chosen such that the green

matches perfectly, and a corner posts or a goal in the image would just be outside

of the model, and would be ignored. The background class does not contain an

assumption about the actual color of the surrounding (in the figures, the back-

ground objects are drawn only for illustration purposes in their the average color

tone). Instead, it is solely assumed that the background is neither green, blue, nor

yellow. Thus in Bayes terms, object off the field that are colored green, blue or

yellow speak against the hypothesis that the supposed pose is correct.

In addition to the “background walls”, background objects were inserted on

top of the goals. This allows to model a mismatch in the height of the goal and

increases the accuracy along the x-axis (distance towards the goal). The sample

height map (figure 6) is visualized in figure 7. The background objects around the

field and at the goals are clearly visible.

The field map must encode for each voxel whether it is transparent or solid,

and in the later case which color it has. Normally both kinds of information are

stored in the height map. But unlike the usual mountain environments used in

voxel game engines, the RoboCup environment contains perpendicular objects

(corner posts, goal walls) with different textures at different heights. To include

this information columns are introduced. A column consists of (currently) up to

4.1 Voxel Map 23

fieldmodel-heights.png

Figure 7: Field model generated by the algorithm showing the height of each voxel
column.

three slices that are stacked upon each other. Every slice has a color and stores its

height. The field map itself contains (8-bit) references to the columns. The classical

height and class maps can be generated by taking for each position the height or

color value of the top slice. Figure 6 and 7 show this information.

4.2 Scan Path and Ray Casting 24

4.2 Scan Path and Ray Casting

One method to create the image from the height map is ray casting. Starting at the

position of the robot, it computes the paths of light rays in one direction. When-

ever the light ray hits a new voxel, its three-dimensional position is projected onto

the image plane of the camera. If camera distortion is ignored, all voxels on a ray

will lie on the a straight line in the resulting image. The position on the line is a

function of the height and distance of each voxel. Voxels of greater heights will

appear above lower voxels, and the vertical position steadily increases with dis-

tances. One can therefore think of this rendering as “surfing” along the height

profile of the ray, and voxel ray casting is for this reason often refered to as wave

surfing. With wave surfing computing occluded voxels is very simple. The latest

maximum vertical pixel position is stored, and a new pixel is only drawn if its

position is higher than the previous maximum.

In normal voxel algorithms the points obtained by ray casting are then con-

nected by polygons, and usually multiple filters with different spatial scales are

used to remove the jitter in the positions of polygons between consecutive frames.

In the context of the pixel-based Bayes metric, jitter filtering is not necessary. In

fact, additional spatial noise among the pixels used to compare the images is very

desirable as it removes possible correlation between the color value of proximate

pixels. The interconnection of the voxel positions is not required either, since the

Bayes metric assumes uncorrelated color variations and works best with indepen-

dent pixels.

Figure 8(a) shows a sample image computed from the voxel model. Start-

ing from the origin of the map (0, 0) for each voxel the corresponding pixel was

plotted into the image. This results in a very dense pixel distribution that is fur-

4.2 Scan Path and Ray Casting 25

thermore condensed in the upper (farther) region of the image. In the context of

the Bayes image comparison metric it would be computational too expensive to

use all these pixels, and, as already mentioned, using adjacent pixels increases

the correlation between them which would invalidate the independence assump-

tion of the Bayes metric. Therefore, the standard voxel technique must be further

modified in order to achieve a less dense and more homogenous distribution.

raycasting-all.png

(a) Full raycasting.

raycasting-nodminr.png

(b) Raycasting with larger step size.

Figure 8: Field model at a central position.

A first step would be to use a larger step size by taking only every nth pixel in

each ray and including only every nth rays in the analysis (see figure 8(b)). This

results in a sparser image but does not correct for the inhomogeneity between the

nearer and the distant parts of the model. On the other hand, skipping voxels

creates another problem: objects having a very small footprint may be completely

omitted. This is a serious problem for objects that are elevated with respect to their

surrounding. For instance, it may happen that the corner posts are missed out in

some rays. As a consequence, the lawn and background objects that are normally

occluded would then be visible. To prevent such errors we adopted an adaptive

4.2 Scan Path and Ray Casting 26

strategy. In the beginning, each voxel of a ray is processed, but only when its

position on the screen is at least d pixels apart from the previous plotted pixel it

will occure in the image. Further on, the step size is increased by 1. This results

in a step size that increases adaptively with distance. To prevent the omission

of small, elevated objects, for each skipped voxel in the height map it is checked

whether it has a different color that the previous voxel in the ray path. If this is

the case the step size is reset. This results in an image with a homogenous pixel

distribution as shown in figure 9(a). With this algorithm small objects that are at

the same level with their surrounding, such as the thin lines in the rear of the field,

are still very likely to be skipped. But occulusion errors can not occur.

raycasting-dminr4.png

(a) Ray casting with a minimal pixel dis-
tance of 4.

raycasting-dminr4-rnd.png

(b) Randomized raycasting with a mini-
mal pixel distance of 4.

Figure 9: Field model at a central position.

In the voxel algorithm the pixel density can be scaled by the minimal distance

d between two adjacent pixels within a ray. The angular step size between two

neighboring rays is adjusted with respect to d. We found a factor of d · π/1000

to produces a quite even pixel density. Thus, for the (high) density of d = 4 that

is used in the illustrations the angular step size is π/250. Yet, the resulting pixel

4.2 Scan Path and Ray Casting 27

distribution if not homogenous in the small scale. Pixel positions of adjacent rays

are still correlated since the deterministic step size increment is likely to be the

same between the rays going through similar parts of the map. Increasing the

step size randomly prevents this correlation. We chose a probability of 0.5 that the

step size increases by 1. The results of the randomized version of the algorithm is

shown in figure 9(b) where the constitutive rays are scarcely distinguishable.

As already mentioned, the voxel positions are corrected for the individual

camera distortions using the model of AGILO RoboCup software. In most in-

stances, this correction is only of minor interests, but it is essential for small dis-

tances toward objects. A sample transformation is shown in figure 10. The dis-

tortions are clearly visible. But as one can see from figure 10 clipping is still com-

puted with sufficient precision. The errors that result from the violation of the ray

casting “straight line” assumption, are minimal.

model-corner.png

Figure 10: Field model near the line.

4.3 Image Likelihood 28

4.3 Image Likelihood

To estimate its positions, the robot can take a picture with the frontal camera and

in addition it has access to the odometry information about the recent movements.

With the voxel-based world model described in the previous chapter, a precise

sketch of the expected image can be derived for each imaginable pose, and ad-

ditionally, the Bayes model captures the color variation for each surface class. In

this section these two information sources will be combined into a probabilistic

model. The basic idea of the metric is to superimpose the current camera image

and the voxel-based sketch, and to compute their disagreement with the Bayes

color likelihood model.

Mathematically, one can think of the sketch as a set of 3-dimensional tuples

that map the nine color classes to pixel positions. Such a labeled pixel set is a

strong simplification of the original images. It discards most of the spatial infor-

mation (e.g. correlation of color values among neighboring pixels, information

about homogenous surfaces, etc.) that is usually used in computer vision algo-

rithms (particularly by morphological operators). The reason behind this simpli-

fication is the necessity to assume independence of the color variations in order to

easily compute the compound probabilities from the single pixel probabilities.

image = {(rgb1,1, rgb1,2, . . . , rgb1,h, rgb2,1 . . . rgbw,h)} (4.1)

pixels = {(x, y, rgbx,y)} (4.2)

sketch = {(x, y, class)} (4.3)

But before we continue to derive the model for the sketch likelihood, it is worth

to review the Bayes color model that was presented in chapter 3. There it was

mainly discussed in color space, and less at the level of the actual images. Applied

4.3 Image Likelihood 29

image_opponents.png

(a) Original image

image_opponents_3.png

(b) Green likelihood

image_opponents_5.png

(c) Blue likelihood

image_opponents_9.png

(d) White likelihood

image_opponents_6.png

(e) Magenta likelihood

image_opponents_7.png

(f) Black likelihood

Figure 11: Logarithmic likelihood values for different color classes for the image
on the top left

4.3 Image Likelihood 30

likelihood_opponents.png

Figure 12: Logarithmic likelihood estimates for the image with the two robots.
White circles have a high likelihood in the expected color class, gray and black
indicate mismatches. See figure 11 for likelihood images of the single color classes.

to an image, the problem of probabilistically comparing the camera images with a

generated sketch can be visualized by substituting the pixels of the captured color

image with the corresponding likelihoods. Figure 11 shows such a substitution

for the likelihood of the lawn, blue goal, lines, teammate and for the robots color

class. For better visualization, the probabilities are plotted in a logarithmic scale.

The image sketch, on the other hand, can be viewed as an operator that se-

lects the probability values from the likelihood charts. If the pixel corresponds

with the expected color class, then the likelihood value will be high (white in the

chart). Otherwise, when the pixel has an unexpected color, the likelihood would

be low (dark in the chart). The result of this operation (again in logarithmic units)

is shown in figure 12. Pixels that agree with the expected colors are white, mis-

matches have a low likelihood and are shown in dark gray. In addition to the op-

eration shown in figure 12, an obstacle and enemy detection will be performed to

exclude pixels from the computation that likely belong to other robots, the referee

or other dark obstacles. A RGB value is classified as an obstacle if the likelihood of

one of the obstacle classes exceeds the likelihood any the other non-obstacle class

(maximum likelihood classification; figure 11(e) and 11(f)).

The computation of the Bayes color model was derived in chapter 3. The like-

4.3 Image Likelihood 31

lihood of the RGB color values is assumed to be a 3-dimensional normal distri-

butions and the parameters of the ellipsoids (mean, size and orientation) are de-

termined for the color lookup table. To generate the lookup table, images from

different positions at the field are labeled with an interactive program prior to a

game. Single value decomposition (SVD) is used to compute the optimal param-

eters of the color covariance matrices, and the likelihood of a RGB value can then

be computed by Eigen transformation.

P (rgb | class) = P
(
(rgb− µclass) V S− 1

2

)

The probability of a RGB value is then the sum of the likelihoods in the single

color classes (4.4). Since in praxis, the color distributions often do not signifi-

cantly overlap, the sum could be substituted with the maximum. Since the algo-

rithm uses lookup tables for all probability distributions, the likelihoods have to

be computed only once and therefore in the current implementation the mathe-

matically correct summation is used.

P (rgb) =
∑
class

P (rgb | class) · P (class) (4.4)

≈ max
class

P (rgb | class) · P (class) (4.5)

Based on the RGB likelihoods, the likelihood of an image can then be derived.

Assuming independence of the color variations, the probability of a subset of an

image’s pixels can be stated in terms of the pixels’ color probabilities. The likeli-

hood of a pixel set to have certain RGB values is thus the product of the probabil-

4.3 Image Likelihood 32

ities of the color values.

P (image | sketch) =
∏

(x,y,class)∈sketch

P (rgbx,y | class) , rgbx,y ∈ image (4.6)

For any given image it is hence possible to compute the probability that it

corresponds to the sketch. Using the Bayes theorem, it is easy to compute the

likelihood that the sketch corresponds to a given image too. The required image

probability can be computed with the color model. The assumption is here the

same as for the sketch: that the color variability of the pixels are independent.

Since it is sufficient to consider only the subset of the pixels that are used to com-

pare it to sketch, the independence assumption will be met.

P (sketch | image) =
P (image | sketch)

P (image)
P (sketch) (4.7)

P (sketch | image) =

∏
sketch P (rgbx,y | classx,y)∏

sketch P (rgbx,y)
P (sketch) (4.8)

P (sketch | image) =
∏

sketch

P (rgbx,y | classx,y)

P (rgbx,y)
P (sketch) (4.9)

To localize the robot, it is not sufficient to calculate the sketch likelihood; one

wants to know the likelihood that a given pose corresponds to the image. To

compute this via a Bayes approach it would be necessary to model the sketch

generation process too. But with the independence assumption it is simpler. A

sketch can be seen as repetitions of the same probability experiment: obtaining a

random color variation for a given object. Thus, the likelihood of the sketch is the

likelihood of the pose likelihood to the power of number of pixels in the sketch,

and the pose likelihood is then the nth root of the probability product.

P (pose | image) = n

√ ∏
sketch

P (rgbx,y | classx,y)

P (rgbx,y)
P (pose) (4.10)

4.3 Image Likelihood 33

Optimization Estimating the likelihood of an image – as described so far – will

be very expensive in terms of computational costs. Furthermore, the above for-

mula can be, due to the small probability values involved, numerical instable. The

numerical stability, as well as the computation time, can be improved by comput-

ing the probabilities in a logarithmic scale.

log P (pose | image) =
1

n

∑
sketch

[
log P (rgb | class) − log P (rgb)

]
+ log P (pose)

(4.11)

These computations are done with floating point precision. To further speed

up the processing, the logarithmic rgb likelihoods P (rgb|class) and probabilities

P (rgb) are computed for the complete RGB16 color space (G: 6 bits, R, B: 5 bits)

once during the program startup, and are then accessed via 256 kBytes lookup

tables.

5 Probability and Monte Carlo Methods 34

5 Probability and Monte Carlo Methods

To find out its position, just by looking at the camera images, the robot must pos-

sess a profound model of its environment. Such a model was suggested in the

previous chapter, predicting either a quick, rough sketch or, if one wishes, can

even generate a fine-grain pointillistic image of the expected surroundings. The

voxel-based rendering technique, though a simplistic version, is yet very complex

when it is used inversely, as a probability metric. For most localization problems,

even for the simplest environments, one could not expect to find closed form so-

lutions solving them.

In addition, modeling the progress of image genesis will get even more com-

plex if the robot starts moving or if environment properties change. Currently,

the RoboCup regulations still define the illumination as fixed, but it is planned

to release these restrictions in the next years. Furthermore, changes in the robot’s

position imply changes in the image, and in addition robots and static objects may

occlude each other. At first glance, these problems seems to be easily solvable. Oc-

clusion can be easily modeled and the pose of the robot is a simple 3-dimensional

variable. But in real-world situation it is sometimes, and in RoboCup quite often,

hard to tell where the robot is. The odometry information is imprecise due to fac-

tors such as unequal wheel sizes, slipping or collisions and in a short time scale

such errors makes purely cumulative odometry useless, and the likelihood metric

is neither smooth nor unambiguous.

Therefore, methods that employ only a single estimate can not be robust. If

there is no linear relationship between the error of the estimation and the ob-

served measurements (e.g. for the robot’s orientation), then iterative, local search

algorithms will be of limited use too. In such cases one solution would be to use

5.1 Probability Space 35

multiple estimates, to update them separately, and to choose the best fitting or the

average estimate as the result. Exactly this is the basic idea of particle filters. Math-

ematically, choosing multiple estimates is equivalent to drawing samples from the

theoretic distribution of the estimation error. The theoretic framework for the sam-

pling technique, as well as the underlying probability and Markov chain theory,

will be discussed in the following sections.

Trivially, to draw from a distribution, it must first be known. As already men-

tioned, for complex random sequences (such as images), it is impossible to know

it a-priori. However, it is almost always possible to give a recursive solution for

the problem, where the distribution is a (probabilistic) function of the distribution

at the previous time step. Markov chains are a very powerful class of iterative

probabilistic models that can be applied to finite as well as to countable sets.

Drawing from a Markov chain, thus combining the sampling and recursive

methods, is called a Monte Carlo Markov Chain (MCMC) approach. It will be

used to evaluate the images using a likelihood estimate of the previous chapter

and to combine the resulting pose distribution with prior information together

with the odometry measurements within the same probabilistic model.

5.1 Probability Space

To solve the estimation problem it is necessary to have a probability theory that is

capable to handle infinite sets, since the space of possible poses is infinite X ∈ R3.

Let Ω be a space or set of sample points ω. Ω consists of all possible outcomes of

an experiment. Thus, for each possible result their exists an ω ∈ Ω. A probability

theory must assign probability values to the possible outcomes Ω. But rather than

to assign the values to each single ω it is more useful to assign them to subsets

5.1 Probability Space 36

of Ω. Firstly, assigning a probability value to each single sample point ω is not

always possible for infinite sets. Secondly, if we have theories about measurement

variables we can work with them (and the partition they create) and need not to

care about the underlying set Ω.

Let F be a class of subsets of Ω. F is called a field or algebra if Ω is nonempty, Ω

is contained F and if F is closed for formation of complements and finite unions:

Ω ∈ F (5.1a)

A ∈ F ⇒ Ac ∈ F (5.1b)

A, B ∈ F ⇒ A ∪B ∈ F (5.1c)

A field is called a σ-field if it is closed under the formation of countable unions:

A1, A2, . . . ∈ F ⇒
⋃
i

Ai ∈ F (5.2)

Now it is possible to assign probability values to the elements of F . The set

function assigns to each event A ∈ F a probability value. P is called a probability

measure if:

0 ≤ P (A) ≤ 1 (5.3a)

P (∅) = 0, P (Ω) = 1 (5.3b)

A1, A2, . . . ∈ F ∧
⋂
i

Ai = ∅ ⇒ P

(⋃
i

Ai

)
=
∑

i

P (Ai) (5.3c)

(Ω, F, P) is called a probability space. For the application to Markov chains it

will be handy to define the sample points as countable or finite sequences in a

5.1 Probability Space 37

multidimensional space:

ω = (ω1, ω2, . . .) ωi ∈ S, ω ∈ S∞ (5.4a)

ω1..t = (ω1, ω2, . . . , ωt) ωi ∈ S, ω1..t ∈ St (5.4b)

Up to now, we have only arbitrary events A ∈ F and a measurement func-

tion P assigning probabilities to them. To observe or measure something in the

probability space it is necessary to define (random) variables upon Ω. X is called

a random variable if X is a real-valued function on Ω and X is measurable F . It

assigns to each possible outcome ω a value in the measurement space.

[ω : X (ω) = x] ∈ F (5.5)

For multivariate statistics a n-dimensional random variable or a random vector

can be defined as a mapping from Ω to Rn:

X : ω → X (ω) = (X1 (ω) , . . . , Xn (ω)) (5.6)

A random vector X is equivalent to a n-tuple X = (X1, . . . , Xn) of random vari-

ables, since X is measurable if and only if all Xi are measurable. [2]

Now it is possible to formulate the process of measurement in probability the-

ory. Odometry measurements are random vectors that assign to each realisation

of an experiment and for each time step the distance currently traveled and the

change in heading.

Yt : ω → (dt, ∆φt) (5.7a)

Y : ω → (Y1 (ω) , Y2 (ω) , . . .) (5.7b)

5.2 Markov Chains 38

To actually control a robot with a probability theory, two more concepts are

necessary. First, the distribution function F of a random variable gives the proba-

bility of the internal (−∞, x]:

F (x) = P [X ≤ x] = P [X (ω) ∈ (−∞, x]] (5.8)

F is often called the cumulative density function (CDF). The probability den-

sity function (PDF) is defined as a limit in x. Although the probability measure P

is well designed on F , the PDF may not be defined for each value x.

P (x) = F (x)− P [X ∈ (−∞, x)] (5.9)

The expectation value of a random variable is defined as the convolution:

E [X] =

∫
XP =

∫
Ω

X (ω) P (ω) d ω (5.10)

It is the goal of many statistics and thus robotics approaches to estimate the ex-

pectation value E [X] given a single realization of an experiment ω. The Kalman

filter, for example, is the optimal solution if X is a vector of n uncorrelated, mul-

tidimensional measurements Xi and if all Xi are Gaussian distributions with the

same mean and covariance.

5.2 Markov Chains

Markov chains are a very powerful methods to model probabilistic processes.

They can be easily applied to a wide variety of problems, and when used in con-

nection with Monte Carlo methods they can be applied to complex models and

large state spaces too. In the MCMC localization algorithm, Markov processes are

5.2 Markov Chains 39

used to combine the image likelihood distribution with the a-priori probabilities,

and to propagate the pose estimates when the robot is moving. In the following,

the Markov model will be explained for the odometry propagation.

Let S be a countable or finite set. For the odometry example, S is the set of

possible robot poses. We assume, that its initial pose distribution is known. (It

may be a normal distribution with a mean at the center of the field and a heading

of 0.)

αi = P [X0 = i] , i ∈ S (5.11)

The probability of the next state can then be related to the odometry model. If

the measurement (d, ∆φ) and the constants rd and r∆φ are known, then the PDF

may be calculated.

P [X1 = j |X0 = i] = f (d1, ∆φ1, j − i) = f (y1, j − i) (5.12)

The transition probabilities for the following state are calculated in the same

way. If the transition probability is constant then is it said that the Markov chain

has stationary transition probabilities. Otherwise, as for the odometry problem, the

Markov chain has dynamic transition probabilities.

P [Xn = j |Xn−1 = i] = pij stationary (5.13)

P [Xn = j |Xn−1 = i] = p
(n)
ij dynamic i, j ∈ S (5.14)

pij needs to be nonnegative and the probability to reach any state in S must be 1.

∑
j∈S

pij = 1, i ∈ S (5.15)

5.2 Markov Chains 40

The sequence X = (X0, X1, . . .) is called a Markov chain if the Xn depends only

on the distribution of the previous state and the transition probability.

P [Xn = in |X0 = i0, X1 = i1, . . . , Xn−1 = in−i]

= P [Xn = in |Xn−1 = in−1] = p
(n)
ij

(5.16)

The probability of single sequences is determined by the transition probabili-

ties and the initial probabilities.

P [X0 = i0, X1 = i1, . . . , Xn = in]

= P [X0 = i0] P [X1 = i1] · · · P [Xb = in]

= αi0 p
(1)
i0i1
· · · p(n)

in−1in

(5.17)

Higher order transitions and (unconditional) probability of states can be cal-

culated by averaging over all possible sequences that lead from i to j.

p̂ij = P [Xm+n = j |Xm = i] (5.18a)

=
∑

km+1 ... km+n−1

p
(m+1)
ikm+1

p
(m+2)
km+1km+2

. . . p
(m+n)
km+n−1j (5.18b)

P [Xn = j] =
∑

i0 ... in−1

αi0 p
(1)
i0i1

. . . p
(n)
in−1j (5.19)

Theoretically, we can now derive the ‘banana shape’ of the odometry error

distribution if we use d ∝ N(dt, rddt) and ∆φ ∝ N(∆φt, r∆φ∆φt) to compute p
(t)
ij

and then compute the sum (5.19) or better (5.18b). Fortunately, this will not be

necessary. For the Monte Carlo method used, it will be sufficient if we can draw

samples from the distribution p
(t)
ij to iteratively compute the probability of the

current pose distribution P [Xt].

5.3 Monte Carlo Markov Chain Methods (MCMC) 41

5.3 Monte Carlo Markov Chain Methods (MCMC)

Monte Carlo Methods were first developed to solve pure statistical problems and

have been used for centuries. The name ‘Monte Carlo’ is of newer origin, it was

coined by Metropolis during the Manhattan project in World War II. The name

refers to the similarity to statistical models of games of chance and the famousness

of Monte Carlo for gambling [23].

Suppose, you have a known, non-elemental distribution function P [X] and

want to compute the expectation value E [X]. But it is not possible to solve the

convolution
∫

Ω
XP d ω. The solution is, since it is possible to evaluate P , to draw

some random samples Λ from the distribution such that the likelihood of a drawn

sample to have the value x is equivalent to P [X = x]. 1
n

∑
λ∈Λ X (a) will converge

to E [X] for n = |Λ| → ∞. It depends on P [X] how many samples are needed.

[16] report that about a dozen samples are sufficient in most cases.

Drawing from more complex distributions is not trivial, neither it is compu-

tational inexpensive and there exist a great variety of Monte Carlo methods, that

are either very good approximations of perfect random samplers or very fast. For

the application on Markov chains, it is often better to use a fast, but potentially

inaccurate sampler.

The Monte Carlo Markov Chain (MCMC) methods were first developed to

simulate molecular motion. In such systems each molecule has an inner state,

notably the impulse and the changes of the next state is a stationary probabilistic

function of that state. The task is to find an invariant distribution π with respect to

the transition of the Markov chain.

π [X ′ = j] =
∑
i∈S

P [X ′ = j |X = i] π [X = i] , ∀ j ∈ S (5.20)

5.4 Sampling Methods 42

For Monte Carlo methods it will be required that the Markov chain will con-

verge to its invariant distribution π with n → ∞ regardless of the initial distri-

bution α. Such Markov chains are call ergodic. Per this definition of ergodicity,

ergodic chains have exactly one invariant distribution.

P [Xn]→ π [X] , n→∞ , ∀α (5.21)

Thus, samplers need not to produce exactly random, neither perfectly cor-

rect distribution. But they must not impair the ergodic behavior the Markov

chains. For criteria for good samplers the reader is refered to an introduction

of MacKay [16] and the review of Monte Carlo methods by Radford Neal [18].2

5.4 Sampling Methods

As already mentioned, sampling from an arbitrary distribution can be hard. How-

ever, for simple distributions there is no need for advanced samplers. For uni-

form distributions most programming languages have good implementations of

pseudo-random number generators and if the inverse of the cumulative density

function (ICDF) or a good approximation is known, there is no need for more

advanced sampling algorithms. Fortunately, this is the case for the Gaussian dis-

tribution. Good approximations can be found in the literature, an overview give

[4] and [3].

P [U] =

 1, 0 ≤ U < 1

0, otherwise
(5.22a)

2Both papers are available via CiteSeer.

5.4 Sampling Methods 43

P [N] = P [ICDFN (U)] (5.22b)

For multivariate normal distributions or to generate multiple, correlated ran-

dom variables, first n independent normal derivates are generated with (5.22b).

Then, each variable is multiplied with the square root of the eigenvalues (the stan-

dard deviation of the distribution along each eigen vector). Finally, these indepen-

dent variables are rotated such that they are correlated as specified and the mean

is then added. The necessary parameters can be calculated with a single value

decomposition (SVD) from the covariance matrix.

Σ = U D U t, D is diagonal, Σ is symmetric (5.23)

N (µ, Σ) ∝ µ + UD
1
2 (N1, . . . , Nm)t (5.24)

Importance Sampling

If it not feasible to find a good and easy to compute approximation for the

derivate, then it may be possible to find a fast, bad one. The idea of importance

sampling is then to introduce a weight to each sample. Let X be the wanted distri-

bution and B the approximating function. Then the weight for a sample w(λ) is

the proportion:

w (λ) =
P [X = λ]

B (λ)
, λ ∈ S (5.25)

Correctly, importance sampling is not a general sampling method. Instead, it can

be used to estimate parameters of the distribution or it is used in conjunction

with other sampling techniques. To compute for example the expectation value

each particle would be multiplied with its weight. If B is a good approximation

to P [X], then the weighted sum would be a good estimator for the expectation

5.4 Sampling Methods 44

value E [X].

1∑
w (λ)

∑
λ∈Λ

λ · w (λ)→ E [X] , n = |Λ| (5.26)

Rejection Sampling

For rejection sampling an envelope B for the distribution X is needed. A sample λ

from B will be accepted with the probability w(λ), otherwise it will be discarded

and a new sample is drawn that is tested again. Thus, the probability that an

accepted sample λ has the value x is equivalent to P [X = x] and if drawing from

B is random, then the samples Λ will be independent, too.

The accuracy of importance sampling and the efficiency of rejection sampling

depend on the closeness of the approximation B. If B is badly chosen then small,

but highly probable regions in X may not be considered by importance samplers.

Rejection samplers are extremely inefficient if B(x) is often larger than P [X].

Both problems get worse in higher dimensional spaces when the tails of distribu-

tions are more sparse.

Metropolis Sampler

The Metropolis and the Gibbs sampler are methods that can be applied to any dis-

tribution and they do not require approximation functions as the previous meth-

ods. Both methods instead use the the previously generated samples to generate

new values. Thus, such samplers are often called Monte Carlo Markov Chain

methods. In contrast to the importance and rejection methods, the samples are

correlated.

In a Metropolis sampler for each particle λ a random value from a noise func-

tion N is drawn. The noise function does not need to be related to P [X] and

5.4 Sampling Methods 45

often a normal distribution is chosen. Let N(x) be a noise function function with

the mean x. A new particle λn+1 from N(λn) will be accepted with the probability

p = min

(
1 ,

P [X = λn+1] P [N (λn) = λn+1]

P [X = λn] P [N (λn+1) = λn]

)
(5.27)

If the new state λn+1 is rejected then the old state λn is taken. For symmetric

noise functions equation (5.27) will reduce to the comparison of the two particle

probabilities P [X = λn+1] and P [X = λn].

Gibbs Sampler

The noise function for the Metropolis function, although it is not critical for most

applications, must be chosen for each problem P [X] and will have an influ-

ence on the convergence rate. The Gibbs sampler treats each dimension of a n-

dimensional state λ = (λ1, . . . , λn) separately and uses P [X = (X1, . . . , Xn)] di-

rectly as a ‘noise function’ to generate the new samples Λ′

P [Λ′
1 = λ′1] = P [X1 = λ′1 |λ1, λ2, . . . , λn] (5.28a)

P [Λ′
2 = λ′2] = P [X2 = λ′2 |λ1, λ3, . . . , λn] (5.28b)

P [Λ′
n = λ′n] = P [Xn = λ′n |λ1, λ2, . . . , λn−1] (5.28c)

If the problem allows a decomposition then the Gibbs sampler (or one of its many

variants) is the preferred method.

5.5 Sequential Monte Carlo Methods (SMC) 46

5.5 Sequential Monte Carlo Methods (SMC)

The purpose of MCMC methods is to find the invariant distribution π [X] in the

state space of an ergodic Markov chains. Sequential Monte Carlo (SMC) meth-

ods mainly use the same sampling techiques as MCMC models, but to solve a

completly different problem.

Let S be a state space and X = (X1, X2, . . .) a (dynamic) Markov chain that is

characterized by the inital distribution αi and transition probabilities p
(n)
ij .

P [X0 = i] = αi (5.29a)

P [Xn = j |Xn−1 = i] = p
(n)
ij (5.29b)

At each time step t, the state of the state of the Markov chain can be measured

by a random variable Yt and there exists a probabilistic relationship between the

measurement and the state space P [Xt |Yt]. SMC methods estimate the condi-

tional distribution of the chains X1..t, given the observed measurement vector y1..t.

P [X1..t |Y1..t = (y1, y2, . . . , yt)] (5.30)

The term hidden Markov model (HMM) is used for discrete state spaces when

there is no need for Monte Carlo sampling. SMC methods are often called particle

filters, a term that was introduced by Kitagawa [11] ([6]) which referes to the anal-

ysis (filtering) of nonstationary time series. Two well known SMC applications

are contour tracking algorithm Condensation [10] and the Monte Carlo localiza-

tion algorithm (MCL) for a mobile museum robot [29].

5.5 Sequential Monte Carlo Methods (SMC) 47

Monte Carlo Sampling

In the previous section the sampling techniques were introduced as methods that

can be used to estimate the expectation value of an intractable distribution P [X]

(equation 5.26, p. 44). To estimate the conditional distribution P [X1..n | y1..n]

this can now be expanded to mappings fn from X1..n to R that are integrable

P [X1..n | y1..n].

fn : Sn 7→ R (5.31a)

I (fn) = Ey1..n (fn (x1..t)) =

∫
fn (x1..n) P [x1..n | y1..n] d x1..n (5.31b)

If I(fn) is approximated by m samples λi that are drawn from P [X1..t | y1..t] then

the estimator Îm(fn) will, almost sure, converge to I(fn). [5]

Îm (fn) =
1

m

m∑
i=1

fn (λi) , λi ∼ P [X1..t | y1..t] (5.32a)

Îm (fn)
a.s.→ I (fn) , m→∞ (5.32b)

Since in most cases it is impossible to draw random samples from

P [X1..t | y1..t] almost all particle filter use an importance function B to draw sam-

ples from and weights to correct the sampling error. If B is well chosen (such that

var [wi] is small), the estimators Î ′m(fn) will still converge against the real value

I(fn) when m→∞. (see again [5])

Î ′m (fn) =
1∑

w (λi)

∑
i

w (λi) fn (λi) , λi ∼ B [X1..t | y1..t] (5.33a)

Î ′m (fn)
a.s.→ I (fn) , m→∞ (5.33b)

w (λi) =
P [X1..t = λi | y1..t]

B [X1..t = λi | y1..t]
(5.33c)

5.5 Sequential Monte Carlo Methods (SMC) 48

Importance sampling can be used to estimate some parameter I(fn) of the the-

oretic distribution P [X1..n | y1..n]. But how can P [X1..n | y1..n] be computed? Nor-

mally, it is not possible to find a formula that calculates the likelihood of any

sequence x1..n for a given sequence of measurements y1..n.

Bayesian Filtering

With the Bayes theorem and the Markov assumption P [x1..n | y1..n] can easily

transformed to the recursive formula

P [x1..n | y1..n] =
P [y1..n |x1..n] P [x1..n]

P [y1..n]
(5.34a)

=
P [yn |xn] P [xn |xn−1]

P [yn | y1..n−1]
P [x1..n−1 | y1..n−1] (5.34b)

P [yn |xn] is the sensor model, P [xn |xn−1] the known transition probability of

the hidden Markov chain p
(n)
xn−1xn . P [x1..n−1 | y1..n−1] is recursively defined. Unfor-

tunately, it is almost always impossible to calculate P [yn | y1..n−1]. (Otherwise we

would not need a particle filter.)

P [yn | y1..n−1] does not depend on X . Thus, for a given experiment ω where

Y1..n(ω) = y1..n was observed, P [yn | y1..n−1] is a constant. Therefore, we can com-

pute the weight w(λi) (5.33c) up to a constant and since the weights are normal-

ized by 1P
wi

(5.33a) the convergence behavior of an estimator Î ′m(fn) is not altered.

The distribution of the hidden Markov sequences can therefore be modeled by

P [x1..n | y1..n] ∝ P [x1 | y1]
n∏

t=2

P [yt |xt] P [xt |xt−1] (5.35)

5.5 Sequential Monte Carlo Methods (SMC) 49

Degeneracy

If the likelihood P [x1..n | y1..n] is calculated by (5.35) then it seems to be a good

idea to choose a similar recursive formula for the importance function B.

B [x1..n | y1..n] = B [x1 | y1]
n∏

t=2

B [xt |x1..t−1, y1..t] (5.36)

It had been proven that for such recursive importance functions the variance of

the importance weights will increase stochastically over time ([13]; see [6]).

Sampling/Importance Resampling (SIR)

Ideally, B should be identical to P . Thus, wi would be 1 and var [wi] would

be zero. The SIR algorithmus suggested by Rubin [24] samples from the transi-

tion function P [Xt |Xt−1] and then associates the new samples with the weight

P [yt |xt] (see 5.35)

Λ(t) ∝ P
[

Xt |Xt−1 = λ
(t−1)
i

]
(5.37a)

w
(
λ

(t)
i

)
= P

[
yt |Xt = λ

(t)
i

]
(5.37b)

As the name SIR suggests, after sampling (5.37a) and importance weighting

(5.37b) the samples λ
(t)
i will be resampled. The probability that a sample λ

(t)
i is

selected is proportional to its weights wi. A sample would be inserted multiple

times in the new set if wi is high. After the resampling step the probability of a

5.5 Sequential Monte Carlo Methods (SMC) 50

sample P
[

λ
(t)
i ∈ Λ(t)

]
will equivalent to P [x1..t | y1..t] again.

Λ(t) ∼ w
(t)
i P

[
Xt |λ(t−1)

i

]
(5.38a)

∼ P [yt |Xt] P
[
Xt |Λ(t−1)

]
(5.38b)

∼ P [X1..t | y1..t] (5.38c)

P
[

Xt |λ(t−1)
i

]
is the odometry model. dt and ∆φt are the polar coordinates of

vector λ
(t)
i − λ

(t−1)
i of the first sampling step. P [yt |Xt] is the image likelihood

model.

The big disadvantage of the SIR method is, that it will produce correlated re-

sults. Highly probable samples will occure multiple times in the particle set. The

correlation is normally removed by the sampling (Markov transition) step (5.37a).

If the noise generated by P [Xt |Xt−1] is too small (for example if the robot does

not move) then an extra random noise can be added. Alternatively, the impor-

tance function may always contain a random noise component

B [Xt |Xt−1] = P [Xt |Xt−1] + N (0, Σ) (5.39)

If B is well choosen and if the measurement model P [yt |Xt] is smooth and

not too steep, then Λ(t) will sample high probable regions and thus a parameter

estimator Îm(fn) will converge to the real value I(fn) with m→∞.

6 Implementation 51

6 Implementation

The software architecture follows the general outline of the probabilistic models.

It consists of various objects that live in the C++ namespace ParticleLoc. The objects

were design to be either usable within the AGILO RoboCup framework, and to be

executed (and tested) by small stand-alone command line programs.3 Figure 13

gives an overview of the relationship between the most important classes.

localization.png

Figure 13: UML class diagram for the voxel-based localization

6.1 Voxel-based Localization

At the first level ColorModel, CameraModel, PlaceMap model the color distributions,

the camera distortions and the RoboCup field. If employed within the RoboCup

3By setting the compiler symbol ROBOCUPFREE.

6.1 Voxel-based Localization 52

source, the objects use the standard configuration directory to read the RGB color

class lookup table (rgb16-samples.tiff) or the internal and external camera parame-

ters (Camera1.par, Camera1-intern.par). If compiled without the RoboCup software,

then the program does not use the Halcon library functions. Instead it uses a sim-

ple file format for the configuration files (rgb16-samples.pgm and Camera1.conf).

At the second level the color, camera and place model is combined to gener-

ate the likelihood metric. The most important function of each object is listed in

figure 7. The ImageModel method getLogLikelihood takes a pose and an RGB16 im-

age as parameters, then calls PlaceMap to compute a random voxel subset for the

pose, converts them to pixel coordinates via the CameraModel and then computes

the Bayes likelihood of the pose through the ColorModel. In addition to the func-

tions shown in figure 7, the PlaceMap as well as the ImageModel support functions

that can be called for a set of poses.

The FilterModel organizes a set of particles. Each particle consists of a pose

(x, y, φ) and its weight. The particles can be accessed via the []-operator. In the re-

sample step the particles are propagated by a difference vector (dx, dy, dφ), noise is

added, and the particles are resampled according to their weight. During resam-

pling, the number of particles is allowed to change. In fact, since in every step 15%

uniformly distributed pixels are added, the number of particles usually decreases

during the resample step. After resampling a grid-based estimation of the most

likely pose ranges is computed. For the particles in the most likely pose range, the

average pose is estimated and it can be accessed by the getState function.

The Localization object provides an interface to the functionality of the image

and the (particle) filter model. From the outside, usually measure will be called

to computer the weights of the particles for an image, odoStep to propagate and

resample the particles, and the best estimated can again be obtained by getState.

6.2 Marker-based Localization 53

6.2 Marker-based Localization

The voxel-based localization has a couple of restrictions. As already mentioned,

due to the steep likelihood gradient along the orientation dimension, it may

converge to wrong poses or may not reach convergence at all. Furthermore it

is to slow and consumes too much computing resources for the application in

RoboCup. Therefore a simpler model based on markers is used in the AGILO

software.

localization_marker.png

Figure 14: UML class diagram for the marker-based localization

The MarkerModel uses morphological operators to find the color borders at the

corner flag posts and at the sides of the goal. If at least n borders are found (usu-

ally 3) then for each pose in the particle filter the marker are compared with the

6.2 Marker-based Localization 54

expected positions. The particles are weighted according to the distance of the

observed and expected positions. These computations are executed in the prepro-

cessing function of the MarkerModel. calcLikelihood estimates the pose likelihood

that is passed to the FilterModel by the Localization Marker object. The functions of

Localization Marker are similar to Localization.

ErrorModel The sampling and parameter estimation for 3-dimensional normal

distribution is done by the ErrorModel module. It provides two objects: Gauss

and Gauss3D that can be either feeded with one- or three-dimensional values and

then computes the mean and (co)variance, or it can be used to sample from such

distributions.

7 Localization 55

7 Localization

In the previous chapters the main component of the localization models were

specified: the color model maps the color distributions to probability values, the

world model computes the expected color classes for a subset of the pixels and

the Monte Carlo Markov Chain methods provides a framework to combine the

likelihoods over multiple images (taken along the path the robot is travelling). Al-

though the described models are adequate, for the RoboCup environment it not

necessary clear that the combination is a correct model for the localization process

too. The image model for instance assumes the independence of the of the color

values, which may be violated by the color model (and the color distributions of

the images), or the image likelihood function may not fulfill the smoothness or

monotony requirements of the MCMC methods. Therefore an empirical evalua-

tion and quantification of these properties is necessary.

The first component of the localization model is the color metric. In the

context of the image model two values are important: the likelihood of the

color p (rgb|class) and the (a-priori) probabilities of the color space p (rgb) =∑
i p (rgb|classi). The effect of the models can be visualized by plotting the loga-

rithmic probabilities for each pixel in an image. Figure 11 on page 29 showed these

logarithmic probabilities of the colors in the sample image 11(a). The likelihood

distribution for each color class is characterized by its covariance matrix. The

probabilities of colors belonging to large classes like the gray background colors

are lower than for more narrow classes. In the Bayes equation p(color|class) p(class)
p(color)

, the

likelihoods for each color are normalized by p (color). Thus, the important color

values with narrower covariance matrices (yellow, blue) will be weighted higher

than the larger color classes. Since the smaller areas (goal, corner flag posts) are

7 Localization 56

more homogeneous than the larger green and background class there (mis)match

will be weighted much higher, effectively using these regions as probabilistic land-

marks.

As described in chapter 4.3, the pixel likelihoods are then determined for the

pixels in the sketch, and the pose likelihood is computed in accordance to equation

(4.11). This likelihood, for each possible position at the RoboCup field, is shown

in figure 15. The likelihood value along the z-axis shows the maximum likelihood

along all possible orientations.

image_aug7-standing-0_0_0_60s.jpg
log_center.png

Figure 15: Likelihood distribution in the pose space for the image taken in the
center of the RoboCup field

The likelihood distribution in figure 15 is smooth and seems to be well suited

to be searched by any maximum likelihood methods. Unfortunately, the situation

is different along the orientation dimension. Figure 16(a) shows the likelihood

values at the central position (0, 0) as a function of orientation. It is very narrow

7 Localization 57

and any search probabilistic algorithm must be constructed such that it will find

the narrow region of 3− 4◦ out of 360◦ (compare figure 16(b)). At other positions

at the field the likelihood distribution will be even narrower.

log_phi.png

(a) −180 . . . 180 deg

log_phi_20.png

(b) −20 . . . 20 deg

Figure 16: Likelihood distribution in the pose space for an image 15(a) taken in
the center of the RoboCup field

The tightness of the distribution has far reaching consequences for the MCMC

search method. At first, it will increase the number of particles and the necessary

time until the particle distribution will converge. The second aspect is the intrinsic

noise of the MCMC method that is introduced at the resampling step. During

resampling the particles are chosen according to their probability, and the likely

particles will be repeatedly selected for the next iteration. The noise added will

then move the partly identical samples randomly such that on average the space

between neighboring particles will be filled.4 Therefore, both the steepness of the

likelihood function and the number of particles constitute limiting factors on the

size of a minimum region in state space a MCMC method can converge to.

4Often, the resampling noise is part of a probabilistic forward step (e.g. an odometry model).
But if the robot is robot is not moving, then it is essential to introduce such an artificial noise.

7.1 Landmark-based MCMC Localization 58

log_phi_0_2.png

Figure 17: Likelihood distribution of the orientation at position (0, 2) for an image
15(a) taken in the center of the RoboCup field

7.1 Landmark-based MCMC Localization

The major drawback of the localization procedure described so far it is steep likeli-

hood function along the orientation dimension of the pose space. For many appli-

cation such a narrow function would not be a problem, yet it prevents here the us-

age of the algorithm as a global relocalization procedure and limits the amount of

noise the filter can effectively cope with. For the implementation in the RoboCup

software a far simpler and more robust likelihood function was used. Following

the fundamental idea of the famous contour tracking algorithm “Condensation”

[10], region border information is extracted from the image and a probability met-

ric was defined that compares the predicted with the observed positions.

Two different sets of landmarks were used: the yellow-blue color border of the

corner flag posts, and the border between the goal side posts and the colored goal

background. These markers can be reliably computed with opening-, closing-

7.1 Landmark-based MCMC Localization 59

log_x_phi.png

Figure 18: Likelihood distribution in the pose space for an image 15(a) taken in
the center of the RoboCup field

and intersection-operators on the color-classified image. These image operators

were computed with the proprietary image processing library Halcon [7] that is

widely adopted throughout the AGILO RoboCup software. The yellow and blue

regions (corner flag posts, goal backgrounds) are expanded vertically, whereas the

white regions (goal posts) are expanded horizontally (and constricted vertically).

In the best case, the operations result in six overlap regions, two at each visible

corner flag post, and two at the side posts of the goal. Thereby, the centers of the

intersections correspond to the center of the original color borders.

Occlusions occur in the RoboCup competition very often, mostly because the

opponent players go to the ball or defend the goal. Since the robots are colored

black with attached labels in turquoise or magenta only, the opponents do not lead

to false-positive marker detection. To prevent wrong center detection by partly oc-

cluded posts, plausibility checks are applied to the extracted regions. For instance

7.1 Landmark-based MCMC Localization 60

for the height of the goal posts and the width of the corner flag posts minimum

values are enforced.

The world model of the marker metric consists of the color border positions

in three-dimensional space. For each evaluated pose, these 3D positions are pro-

jected into the image. As for the voxel model, the lens distortions are thereby

taken into account too. The metric works on a set of 0 − 6 labeled centers that

are extracted from the image, and on a set of expected positions of up to 6 color

borders. Due to the camera configuration, it is not possible to see more than two

corner flag posts or more than one goal from any position.

For each of the extracted region centers, the nearest of the expected color bor-

ders is determined. The difference of the positions is then normalized with a con-

stant σ that controls the steepness of the likelihood function. Assuming inde-

pendent normal distributions, the probabilities of the resulting distances are then

multiplied. Since positions that are occluded are not used by the metric (they do

not appear in yimage in the formula below), the likelihood function is quite robust.

For images where only one or two markers can be extracted, no likelihood will

be calculated and the particles would be propagated with the odometry informa-

tion only. This constraints prevents overfitting and wrong peaks if only limited

information is available.

p (yimage|xexpected) =
∏

i

N
[
minj (yimage,i − xexpected,j) · σ−1

]
The above likelihood metric was then used in the described MCMC algorithm

to iteratively estimate the most likely positions. A typical time course of the par-

ticle filter convergence can be seen in figure 19. The robot was placed in front of

the opponent goal and a 60s image sequence was recorded. The plot show the de-

7.1 Landmark-based MCMC Localization 61

velopment of the mean for the first 100 iterations. The orientation and x-position

converge after about 10-20 iterations, whereas the y-position cycles between two

values after about 10 iterations. The more likely y-coordinate of 1.5 is the correct

coordinate, whereas the values between .5 and 1 represent errors from falsely or

undetected markers.

aug7-standing-x_0_0_60s.png

(a) Sample image

particles_x_0_0_markers.pdf

(b) Particle distribution for an image 19(a) taken in front of
the opponent goal. The marker model was used and in each
time step 50 % of the particles were resampled.

Figure 19: Convergence of the landmark-based particle filter for a position in front
of the opponent goal.

7.2 Image Likelihood Evaluation 62

7.2 Image Likelihood Evaluation

As mentioned in the previous chapter the image likelihood metric is sensitive to

orientation changes of one or a few degrees. Such small orientation shifts can al-

ready be generated by the normal oscillations of the robot platform. In addition,

slipping, bumps or collisions can easily generate errors of a much larger magni-

tude. The voxel-based image likelihood function is therefore not very suitable for

the application in RoboCup. Hence, the primary aim of this chapter is not to gen-

erally evaluate the performance of the algorithm, but to pinpoint (and verify) the

important properties of the function that may be of interest for other scenarios.

For the more robust marker model experimental data will be provided too.

To evaluate the localization models, test sequences were recorded at the AG-

ILO RoboCup field in Munich. It is a slightly smaller but otherwise rule-compliant

replica of the environments used in the RoboCup middle size league [14]. 10 one-

minute episodes were recorded for either a moving robot, and for occluded and

non-occluded standstill episodes (figure 20). Each sequence consists of more than

one thousand images, the extracted color regions and marker midpoints and the

general AGILO log file. In addition, the ground-truth position obtained by a cali-

brated ceiling camera [25] was recorded. One data set is about 300 MBytes large.

As mentioned above, to evaluate the likelihood functions the robot was placed

at different positions on the field (sequences 20(c)-20(i)). The first image of each

sequence was used to evaluate the probability function. The general picture is that

at all position the likelihood functions have their maximum at the correct poses in

state space. However, the steepness of the functions vary greatly. The voxel-based

metric is usually very steep. On the contrary, the marker model provides smooth,

wide functions. For the kick-off position at the center the voxel-based likelihoods

7.2 Image Likelihood Evaluation 63

aug7-standing-0_0_0_60s.jpg

(a) Center of the field.

aug7-driving_0_0_0_goal_60s_two_opponents.jpg

(b) Driving through
robots.

aug7-standing-0_0_0_60s_two_opponents.jpg

(c) Center of the field with
robots.

aug7-standing-0_0_x_60s.jpg

(d) Center of the field, ori-
ented sidewards.

aug7-standing-0_0_2x_60s.jpg

(e) Center of the field ori-
ented more sidewards.

aug7-standing-x_0_0_60s_black.jpg

(f) Partial occlusion.

aug7-standing-x_0_0_60s.jpg

(g) Front of the goal.

aug7-standing-x_0_0_60s_two_opponents.jpg

(h) Front of the goal with
robots.

aug7-standing-x_-x_x_60s.jpg

(i) Towards of a corner
post.

Figure 20: First images of the sequences at various positions at the AGILO
RoboCup arena. In the sequences a) and b) the robot was manually driven to-
wards the goal. In the other experiments the data was collected to evaluate the
likelihood metrics. In these cases the robot did not move.

7.2 Image Likelihood Evaluation 64

are shown in figure 21(a). The peak of the probability function is correct, yet very

narrow. For random sampling algorithms, like MCMC, this increases the average

time (or the number of needed particles) until a particle, by change, falls within

the elevated region. This would still be acceptable, but the peak of the likelihood

function will change due to external influences over time. Thus, a product of the

likelihood functions with different peaks would be a random function too and

unusable for localization.

The marker model, on the other hand, is an ad-hoc function, the parameters

were not obtained analytical or experimentally, but chosen such the likelihood

function shows the required properties (figure 21(c)). The prominent MCMC ap-

plications ([10], [27], [29]) employ such ad-hoc models. However, the disadvan-

tage of the marker model is that is uses only very limited proportion of image

information. The two yellow-blue borders at the two corner flag posts and the

midpoints of the goal posts are used as landmarks. This information is sufficient

to determine the position on the field if the orientation if known (in figure 21(c) φ

was set to 0). Yet, the information is not sufficient to uniquely estimate the pose.

The maximum over all orientations in the three dimensional state space is a semi-

circle in the position plane as shown in figure 21(d).

Partial occlusion, as in figure 22(b), does not impair the likelihood function. As

long as at least 4 markers are detected, the algorithm will use them to estimate the

probabilities. The obstacles are detected by Bayes maximum classification as de-

scribed in chapter 3.2. Figure 22(a) and 22(c) show the distributions for an orienta-

tion of φ = 0. The functions are not significantly different from the non-occluded

case. For other positions, the likelihood function are similar. An example for a

position proximal to the goal is shown in figure 23.

7.2 Image Likelihood Evaluation 65

aug7-standing-0_0_0_60s.png

(a) Likelihood distribution in the pose space for an image
21(b) taken in the center of the RoboCup field

image_aug7-standing-0_0_0_60s.jpg

(b) Frontal camera
image

aug7-standing-0_0_0_60s_marker.jpg

(c) Marker model

aug7-standing-0_0_0_60s_marker_max.png

(d) Marker model max

Figure 21: Image likelihood function at the center of the field.

7.2 Image Likelihood Evaluation 66

aug7-standing-0_0_0_60s_two_opponents.png

(a) Likelihood distribution in the pose space for an image
15(a) taken in the (x,0) of the RoboCup field

image_aug7-standing-0_0_0_60s_two_opponents.jpg

(b) Frontal camera
image

aug7-standing-0_0_0_60s_two_opponents_marker.jpg

(c) Marker model

Figure 22: Image likelihood function at the center of the field with occlusion.

7.2 Image Likelihood Evaluation 67

aug7-standing-x_-x_x_60s.png

(a) Likelihood distribution in the pose space for an image
15(a) taken in the (x,-x) of the RoboCup field

image_aug7-standing-x_-x_x_60s.jpg

(b) Frontal camera
image

aug7-standing-x_-x_x_60s_marker.jpg

(c) Marker model

Figure 23: Image likelihood function in front of the goal.

7.3 Resampling Evaluation 68

7.3 Resampling Evaluation

The MCMC algorithm can be described as a Markov process that conducts a ran-

dom walk, gradient descent search on the likelihood functions shown in the previ-

ous charts. To visualize and evaluate the process and the underlying computation,

one MCMC iteration will be split into 4 successive steps. The first step (shown in

figure 24(a) for the landmark-based localization) is the generation of the a-priori

distribution of the particles. In figure 24(a) the a-priori distribution after 3 itera-

tions is shown. At this step a few of the particles have already a good orientation.

The probability that a particle exists at a particular position and with a certain

orientation is equal to the theoretic probability distribution in the state space. As

the next step, the image will be read, the marker position are extracted and the

likelihood of the existing particles is computed. The elevation of the particles in

figure 24(b) corresponds to their (normalized) likelihood p (pose | image). In the

resampling step n particle will be randomly chosen from the existing set. A dis-

creet cumulative probability function over the present particles and binary search

is used to efficiently draw the particles according to their likelihood. Thereafter,

a small amount of noise is added. If the robot has moved since the last measure-

ment, that mean of the noise will be the odometry vector. The result is shown in

24(c): many particles are generated around the likely positions, whereas the par-

ticle density at unlikely positions decreases. This effect can be best seen in 24(d)

when elevation (probability) of the particles is reset. The density in the state space

now corresponds the a-priori probability of the Bayes equation. As a final refine-

ment, 15 % uniformly distributed particles are added to allow for relocalization

after kidnapping or wrong convergence. These particles are raised in 24(d). The

new particle set is then used in the next iteration.

7.3 Resampling Evaluation 69

step1.pdf

(a) Particle distribution after 3 resam-
pling steps.

step2.pdf

(b) Weighting of the particles based on
the marker positions in the 4th image.

step3.pdf

(c) Particles are selected during resam-
pling according to their likelihood. Very
likely particles will be more frequent and
random noise is added to distribute the
particles in the state space.

step4.pdf

(d) As the last step, 15 % particles with a
uniform distribution are added to allow
relocalization after kidnapping or sensor
errors.

Figure 24: Steps of the MCMC algorithm.

By repeatedly folding the likelihood functions with the existing and blurred

particle distribution, the particle filter converges. The (weighted) distribution af-

ter 10 iterations is shown in figure 25(a). If the likelihood function always matches

the a-priori distribution, then the density around the most likely position will in-

7.4 Discontinuities of Image Markers 70

crease with each step and is only limited by the amount of noise added during

resampling. Without lost of convergence behavior, the number of particles can be

safely reduced as a function of the (co)variance of the particles [6].

step_10.pdf

(a) 10 iterations

step_50.pdf

(b) 50 iterations

Figure 25: Distribution of the particles after 10 and 50 iterations. On the z-axis the
normalized p value is shown.

7.4 Discontinuities of Image Markers

The possibility of occasional large sensor errors has not yet incorporated into the

model. In part, error is implicitly modeled in the additional noise of the resam-

pling phase and the uniformly distributed particles that are introduced in each

step. Unfortunately, the true error distribution is unknown and it will be beyond

the scope of this paper to develop a plausible probabilistic model.

The robustness of the particle filter can be increased by decreasing the fraction

of particles the is resampled in each time step. By leaving a proportion of the par-

ticles untouched, well fitting poses will be still available even after one or a few

false sensor readings. The fraction of the particles that is resampled in an itera-

7.5 Convergence of the Voxel-based Localization 71

tion was varied in figure 26 for the landmark-based localization. If all particles

are resampled, the filter will not converge within the first 50 iterations. This sug-

gests that the actual sensor error is at least a magnitude larger than the modeled

color error. Increasing the fraction of non-sampled particles drastically improves

the convergence. The best results could be obtained with a fraction of 50 %. The

true pose of (1.5, 0, 0◦) is reliable found after 20 iterations. Decreasing the frac-

tion further to 33 % impairs the convergence speed, but reduces the frequency of

outliers.

7.5 Convergence of the Voxel-based Localization

The voxel-based localization produces a very steep likelihood function that, if dis-

torted by random shifts, will result in an unpredictable combined probability dis-

tribution. However, if the propagation is precise and there are only a few outliers

in the sensor readings then fast convergence can be obtained with the MCMC

methods.

Exemplarily, the results for one test drive from the center of the field towards

the goal should be reported. For this sequence, the robot was manually moved

and the position was recorded with a ceiling camera. The particle estimates were

updated with the position changes of the ceiling camera. Unfortunately, due to

technical problems no calibration was obtained for the ceiling camera. Instead the

groundtruth estimates were rescaled to match the mean and standard deviation of

the predicted path. The results for the filter prediction with 500 particles is shown

in figure 27. In the beginning the particle filter converges fast, the variance of the

particles decreases in the first 2 seconds and the correct position is then tracked

for the next 15 seconds. After about 18 seconds, the robot is turned to the left.

7.5 Convergence of the Voxel-based Localization 72

aug7-standing-x_0_0_60s_markers_50.pdf

Figure 26: Convergence of the particle filter for the marker model. Shown is the
mean and standard deviation of the particles for the first 50 iterations. The pro-
portion of particles that are evaluated in each iteration was varied among the four
plots.

This increases the standard deviation of the particles along the y axis. Yet the

position is correctly tracked. After 22 seconds, when the robot starts turning to

the right, the particle filter underestimates the y-position. After turning stops at

about 28 seconds, the correct position is found again and tracked until the end of

the sequence. Thus with the exception of a 5 second interval, the position could

be correctly tracked.

7.5 Convergence of the Voxel-based Localization 73

However, it should be re-emphasized that this result is rather atypical. For

other sequences the particle mean does not converge, but rather alternates be-

tween different positions due to the small changes of the pose of robot platform.

loc_voxel_aug8_500.pdf

Figure 27: Convergence of the particle filter for the voxel-based localization.
Shown is the mean and standard deviation of the particle for a test driving se-
quence from the center of the field towards to goal. 500 particles were used. The
variation of the ground truth for the x and y position is shown in black.

8 Conclusion 74

8 Conclusion

Monte Carlo Markov Chain (MCMC) models are a powerful class of methods that

can be flexibly adapted to wide variety of common problems in computer vision.

To globally localize a mobile robot in the RoboCup environment, a precise color

statistic and a simple voxel-based rendering technique was combined using an

importance resampling MCMC method. The basic idea was thereby to compare

the images from the robot’s frontal camera directly with the sketch generated by

the voxel rendering engine in order to estimate the likely robot poses. The Bayes

color statistic is the only criteria used for the comparison step.

The algorithm starts with a uniform distribution of possible poses. For each

pose, a sketch of the image is generated and the color model is used to compute

the disagreement between the sketch and the actual image. The probability distri-

butions of the color classes in RGB space is derived from a set of manually labeled

sample images. The weighted pose estimates are then resampled in accordance to

their likelihoods and the particles are propagated by the current odometry infor-

mation.

The Bayes color model is capable to reliably identify the different object classes

in RoboCup (illustration in figure 11). The computation of the RGB likelihoods is

efficiently implemented as lookup tables for the 16-bit RGB color space. The voxel-

based rendering technique has been modified to compute the pixel color classes

as fast as possible. Randomization was introduced to generate an approximately

equal density of points in the image sketch and lens distortions are modeled with

the camera model of the AGILO RoboCup software.

The voxel-based image model produces very steep likelihood function. These

implicit functions have been calculated for three images taken at the central po-

8 Conclusion 75

sition (figure 21), with partial occlusion (figure 22) and in front of the goal (fig-

ure 23). For a sample test drive, the particle convergence has been reported (fig-

ure 27). However, the very steep likelihood functions are in general very sensitive

to noise in the position and especially along the orientation dimension. In ad-

dition, for the use in the RoboCup competition a more robust, landmark-based

image metric was implemented.

The convergence of the particle filter could be greatly enhanced, if only a frac-

tion of the particles was resampled at every time step. This increases the tolerance

for outliers since in every time step there exist a decaying proportion of estimates

from previous time steps. Yet, the overall convergence of the particle filter is not

satisfying and the use of 500 particles is clearly inefficient. It would be very help-

ful to mathematically formalize and quantify the degree of dependency between

successive iterations since the outliers present a major problem for the current im-

plementation. Further research may investigate the possibility of combining high

level features (such as known landmarks) and the brute force, voxel-based im-

age comparison. Likely regions in state space can be identified by a feature-based

comparison and could then be sampled in finer detail by the voxel algorithm.

REFERENCES 76

References

[1] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle

filters for on-line non-linear/non-gaussian bayesian tracking. IEEE Transac-

tions of Signal Processing, 50:174–188, 2002.

[2] P. Billingsley. Probability and Measure. Wiley, 1995.

[3] P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. Springer, 1987.

[4] L. Devroye. Non-Uniform Random Variate Generation. Springer, 1986.

[5] A. Doucet. On sequential simulation-based methods for bayesian filtering.

Technical Report CUED/F-INFENG/TR. 310, Cambridge University Depart-

ment of Engineering, 1998.

[6] A. Doucet, S. Godsill, and C. Andrieu. On sequential monte carlo sampling

methods for bayesian filtering. Statistics and Computing, 10(3):197–208, 1998.

[7] W. Eckstein and C. Steger. Architecture for computer vision application de-

velopment within the horus system. Electronic Imaging, 6:244–261, 1997.

[8] E. Anderson et al. Lapack users’ guide. Technical report, SIAM, 1995.

[9] Luca Iocchi and Daniele Nardi. Self-localization in the robocup environment.

In RoboCup, pages 318–330, 1999.

[10] M. Isard and A. Blake. Condensation conditional density propagation for

visual tracking. International Journal of Computer Vision, 29(1):5–29, 1998.

[11] Kitagawa. Non-gaussian state-space modeling of nonstationary time series.

J Amer Stat Assoc, 82:1032–1063, 1987.

REFERENCES 77

[12] Gudrun Klinker. A Physical Approach to Color Image Understanding. AK Peters,

1993.

[13] A. Kong, J. S. Liu, and W. H. Wong. Sequential imputations and bayesian

messing data problem. J Amer Stat Assoc, 89:278–288, 1994.

[14] G. Kraetzschmar. Rules for robocup-2000 middle size robot league. Techni-

cal report, 2002. URL http://robocup.elet.polimi.it/MSL-2002/

Rules2002/rules02/rules2002.html .

[15] J. S. Liu and R. Chen. Sequential Monte Carlo methods for dynamic systems.

Journal of the American Statistical Association, 93(443):1032–1044, 1998.

[16] D. J. C. MacKay. Introduction to Monte Carlo methods. MIT press, 1999.

[17] I. Mikic, M. Trivedi, E. Hunter, and P. Cosman. Human body model acquisi-

tion and tracking using voxel data. International Journal of Computer Vision, 53

(3):119–223, 2003.

[18] R. M. Neal. Probabilistic inference using Markov chain Monte Carlo meth-

ods. Technical Report CRG-TR-93-1, University of Toronto, 1993.

[19] D. Neumann. Kalman-filter und partikel-filter zur selbstlokalisation von

robotern. Technical report, Munich University of Technology, April 2003.

[20] C. F. Olson. Probabilistic self-localization for mobile robots. Technical Report

DS-16543, Jet Propulsion Laboratory, California Institute of Technology, 2000.

[21] P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-based probabilistic

tracking. In Proc. European Conf. on Computer Vision, volume 1, pages 661–

675, 2002.

REFERENCES 78

[22] M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters.

Journal of the American Statistical Association, 94(446):590–, 1999.

[23] Computational Science Education Project. Introduction to monte carlo meth-

ods. Technical report, 2002. URL http://csep1.phy.ornl.gov/mc/mc.

html .

[24] D. B. Rubin. Using the SIR Algorithm to Simulate Posterior Distributions. Oxford

University Press, 1988.

[25] T. Schmitt and M. Beetz. Designing probabilistic state estimators for au-

tonomous robot control. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Sys-

tems (IROS), 2003.

[26] S. Seitz and C. Dyer. Photorealistic scene reconstruction by voxel coloring. In

Proc. CVPR, pages 1067–1073, 1997.

[27] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert,

D. Fox, D. Hahnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. Prob-

abilistic algorithms and the interactive museum tour-guide robot minerva,

2000.

[28] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D. Fox,

D. Hahnel, C. R. Rosenberg, N. Roy, J. Schulte, and D. Schulz. MINERVA:

A tour-guide robot that learns. In KI - Kunstliche Intelligenz, pages 14–26,

1999.

[29] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization

for mobile robots. Artificial Intelligence, 2001.

LIST OF FIGURES 79

List of Figures

1 Pixels of the image 1(a) are plotted with respect to their red and

green 1(b), and blue and green 1(c) coordinates in RGB color space.

If multiple pixels had the same coordinates in the particular color

plane their color values were averaged. 8

2 Illustration of the effect of eigen space transformation using single

value decomposition (SVD). See text for explanation. 12

3 Liklihood plot of the image for the blue color class. The hue and

the saturation of each point was taken from the original image. The

luminance of the pixels corresponds to the likelihood of the pixel

belonging the the blue class. 14

4 Illustration of the maximum likelihood classification on a color

plane through the magenta color cluster (z values are in the range

of−5 . . . 5 of the magenta eigen space). The jags in the classification

charts are due to the conversion from the 16bit to the 24bit color

space. The Bayes model itself is smooth and in the algorithm no

(16bit) lookup table is used. 17

5 Classified images. 18

6 Field model generated by the algorithm showing the topmost color

class for each voxel column. 21

7 Field model generated by the algorithm showing the height of each

voxel column. 23

8 Field model at a central position. 25

9 Field model at a central position. 26

10 Field model near the line. 27

LIST OF FIGURES 80

11 Logarithmic likelihood values for different color classes for the im-

age on the top left . 29

12 Logarithmic likelihood estimates for the image with the two robots.

White circles have a high likelihood in the expected color class, gray

and black indicate mismatches. See figure 11 for likelihood images

of the single color classes. 30

13 UML class diagram for the voxel-based localization 51

14 UML class diagram for the marker-based localization 53

15 Likelihood distribution in the pose space for the image taken in the

center of the RoboCup field . 56

16 Likelihood distribution in the pose space for an image 15(a) taken

in the center of the RoboCup field . 57

17 Likelihood distribution of the orientation at position (0, 2) for an

image 15(a) taken in the center of the RoboCup field 58

18 Likelihood distribution in the pose space for an image 15(a) taken

in the center of the RoboCup field . 59

19 Convergence of the landmark-based particle filter for a position in

front of the opponent goal. 61

20 First images of the sequences at various positions at the AGILO

RoboCup arena. In the sequences a) and b) the robot was manually

driven towards the goal. In the other experiments the data was

collected to evaluate the likelihood metrics. In these cases the robot

did not move. 63

21 Image likelihood function at the center of the field. 65

22 Image likelihood function at the center of the field with occlusion. . 66

23 Image likelihood function in front of the goal. 67

LIST OF FIGURES 81

24 Steps of the MCMC algorithm. 69

25 Distribution of the particles after 10 and 50 iterations. On the z-axis

the normalized p value is shown. 70

26 Convergence of the particle filter for the marker model. Shown is

the mean and standard deviation of the particles for the first 50 it-

erations. The proportion of particles that are evaluated in each iter-

ation was varied among the four plots. 72

27 Convergence of the particle filter for the voxel-based localization.

Shown is the mean and standard deviation of the particle for a test

driving sequence from the center of the field towards to goal. 500

particles were used. The variation of the ground truth for the x and

y position is shown in black. 73

Index
algebra, 38

Bayesian filter, 51

camera model

distortions, 28

CameraModel object, 54

cluster analysis, 10

color model

lookup table, 11

physical, 5

probabilistic, 8

probability, 14

transformation, 12

color space, 8

ColorModel object, 54

Condensation, 5

condensation, 49

conditional distribution, 49

correlated samples, 53

degeneracy, 52

dynamic transition probabilities, 41

ErrorModel object, 56

estimator, 50

expectation value, 40

field

σ-field, 38

field, 38

FilterModel object, 55

height map, 22

hidden Markov model (HMM), 49

image

likelihood, 30

ImageModel object, 55

importance function, 50, 53

invariant distribution, 44

likelihood

maximum likelihood classifica-

tion, 17

linear normalization, 8

localization

marker , 61

Localization object, 56

Localization Marker object, 56

marker localization, 61

MarkerModel object, 56

INDEX 83

Markov chains, 37, 41

Markov chains

assumption, 42

chain probability, 43

ergodic, 44

higher order transitions, 42

MCMC, 37

measurement

space, 39

vector, 40

Minerva, 5

Monte Carlo localization (MCL), 49

Monte Carlo Markov Chain, 37

Monte Carlo methods

literature, 44

multiple estimates, 36

noise function, 47

odometry

‘banana shape’, 43

measurement vector, 40

odometry model, 53

particle filter, 49

ParticleLoc namespace, 54

PlaceMap object, 54

probability

dynamic transition, 41

function

CDF, 40

PDF, 40

measure, 38

space, 39

stationary transition, 41

transition, 53

random

variable, 39

vector, 39

ray casting, 25

resampling, 52

resampling correlation, 53

sample point, 37

sampling

Gibbs, 48

importance, 46

Metropolis, 47

rejection, 46

sampling / importance resampling,

52

scan path, 25

Sequential Monte Carlo methods

(SMC), 49

INDEX 84

single value decomposition (SVD),

11, 45

SIR, 52

Sojourner Mars rover, 5

stationary transition probabilities, 41

transition probabilites, 41

voxel map

background class, 23

columns, 23

heights, 22

human body, 5

photorealistic map, 5

randomization, 27

step size, 26

voxel, 20

wave surfing, 25

world model, 20

