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Abstract

Perceived similarity between images is an achievement of com-
plex processes of vision, of cognitions and emotions. It may be
influenced by the context and the content of images, semantic as-
sociations and the intention of the observer, to name a few. But
simple, low-level features are used successfully to compare im-
ages. For instance, color histograms are used in content-based im-
age retrieval (CBIR) systems and frequently result in perceptual
and often semantically similar images.

Our goal was to create an image indexing system based on
some of the known properties of the early stages of human vision.
A color space (DKL) found to underlie human vision (Krauskopf
et al., 1982) was used to create color histograms. In the DKL
space color bins, independent of luminance, were created using
a logarithmic spacing which reflects the granularity of higher or-
der color perception. The frequency and the average luminance
level of the color bins were stored in a chromaticity and a lumi-
nance histogram respectively. A spatial index encodes – in anal-
ogy to transformation in the visual cortex – information about ori-
entation and spatial frequencies of the images. The information
was extracted using a 2-dimensional discrete Fourier transforma-
tion (DFT). The Fourier spectrum was divided into logarithmic-
radial bins representing contrasts of distinct orientation and spa-
tial frequency ranges.

In three experiments we quantitatively measured the relation-
ship between the similarity order induced by the indices (and
index combinations) and perceived similarity in a 2-alternative
forced-choice (2AFC) design. For the experiments we used a large,
commercially available database (Corel Corp., 1990) of 60,000 dig-
itized photographs. In contrast to previous evaluation approaches
we measured the relationship not only for the few best matching
images but for relatively distinct images, too.

Results show that the similarity rank orders induced by the in-
dices are strongly correlated with the human judgments ( ��������� )
and predict perceived similarity even for quite distinct images.
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The highest index concordance was obtained using the chromatic-
ity index. Combining the three information sources improved the
correspondence with the observers by 9%.

Therefore, chromaticity, luminance and the spatial features
contribute to the perceived similarity of images and can be used
to predict the judgments of the observers for very similar and for
relatively distinct images, too.
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1 Introduction

The goal of image indexing systems is to find a set of images that is
similar to the target image the user is looking for. Depending on the
intention of the user, similarity may be defined by objects, configura-
tion, illumination, camera position or zoom, or semantic perception by
the user, or any combination of the above. Preferably, computer vision
algorithms should extract all the relevant features from the image in
the same way a human observer would do. But that is far beyond our
current knowledge of human vision, cognition and emotion.

Most of the current algorithms are quite successful in using low-
level features of the images, as this quite frequently results in seman-
tically related images. Color, in particular, has proven to be very ef-
fective for the calculation of image similarity, since an object’s color is
independent of viewing position or viewing distance. The most promi-
nent color statistics are histograms with equally sized bins in RGB or
HSI color space. In HSI space the luminance (intensity) axis is often
ignored since it is argued that the overall brightness of an image is
irrelevant with respect to image similarity and hence luminance in-
dependent indices should be more robust with respect to different il-
lumination conditions. Other color statistics include correlation or co-
variance coefficients encoding spatial information about the color dis-
tribution (e.g. Huang et al., 1999, Stricker and Dimai, 1997). Features
such as texture and shape are other subjects of current research (e.g.
Flickner et al., 1995).

All these approaches are based on physical, low-level features. But
in the end the similarity of a given image with a target image will
always be judged by a human observer. Therefore, our goal was to con-
struct indices which are based on some of the known properties of the
early levels of the human vision system. Furthermore, we evaluated
the resulting image metric by comparing it with measurements of per-
ceived image similarity.

As the first step of seeing, light is absorbed and converted into neu-
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ral signals by the three different classes of cone photoreceptors in the
retina. The details of the absorption spectra of the cones were well
studied in the past and are known quite precisely by now. While these
cones are often called red-, green- and blue-cones, they all do absorb
light over a wide range of the visible spectrum. Most notably, they do
not have much to do with the RGB-triplets of modern image sensors.
There is no simple transformation converting between the two, and
any such conversion process requires careful calibration of the image
acquisition device (Wandell, 1993).

Still at the level of the retina, the signals from the cones get trans-
formed by a complex network of retinal cells (Wässle and Boycott, 1991)
into color opponent signals. Electrical recordings from single neurons
in the retina and the later geniculate nucleus have shown three dif-
ferent classes of neurons. A “luminance-type” neuron simply takes the
sum of the outputs from all three cone classes. “Red-green” opponent
neurons take the difference between the red- and the green-cone signal.
“Blue-yellow” opponent neurons take the difference between the blue-
cone signal and the sum of the red- and green-cone signal. Incidentally
or not, this basically results in a principal components analysis of the
cone signals (Buchsbaum and Gottschalk, 1983) and thus removes any
correlation between the signal channels, resulting in nearly optimal
information transmission from the eye to the brain.

In the visual cortex, spatial information is extracted from these sig-
nals using an array of linear and non-linear filters tuned to spatial
frequency and orientation (Hubel and Wiesel, 1998). The tuning char-
acteristics of these filters seem to be highly optimized for viewing our
typical visual environment (Field, 1987). The efficiency of these spatial
filters was modeled by Watson (1987). He transformed the grayscale
image using discrete Fourier transformation (DFT) and applied a fil-
ter to the coefficient matrix with the same orientation and bandwidth
properties found in early spatial vision. In a psychophysical experi-
ment he found that a reconstructed image is indistinguishable from
the original at a code size of 1 bit/pixel.
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We tried to use these established coding principles of the human
visual system to construct image histograms optimized to these char-
acteristics. The color space (DKL) proposed by Derrington et al. (1984)
in the CGL of macaques was also found to underlie human color vi-
sion. Krauskopf et al. (1982) showed that the increase of thresholds for
detecting colors after adaptation to isoluminant color changes is inde-
pendent along the color-opponent axes.

We used that color-opponent space to create two color indices using
the method of Krauskopf and Gegenfurtner (1992). A first index en-
codes only chromaticity and is therefore luminance independent. The
second index encodes the mean luminance of the color tones. For the
color bins we did not use a equidistant spacing, the size of the bins re-
flects the granularity of higher order color perception e.g. for saturated
colors the resolution for hue is much finer than it is for unsaturated
colors while the resolution of saturation decreases, in agreement with
Weber’s Law.

To extract the spatial information we used the luminance dimen-
sion, which is, in the DKL color space, orthogonal to the color-opponent
subspace used for the color indices. For each image the Fourier power
coefficients were calculated using DFT. The 2-dimensional power spec-
trum was further segmented into bins representing spatial contrasts of
distinct orientation and frequency ranges. The resolution of the Fourier
index is a function of frequency and orientation, representing orienta-
tion of high frequency contrasts more exactly than of lower frequencies.

The second major aspect of our system is its evaluation. Most of
the earlier search systems were evaluated informally only. The preva-
lent method is to have the experimenter decide which images found
by the search algorithm are similar to the query image. As Cox et al.
(2000) criticize the results obtained by such methods are highly depen-
dent on the strictness of the similarity criteria the observers use, the
homogeneity of the images in the database and the number of images
displayed.

We evaluated the resulting color indexing system based on percep-
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tion (CISBOP) by comparing the similarity judgments made by the al-
gorithm to ratings made by human observers. Unlike Rogowitz et al.
(1998) who calculated a similarity metric for a set of 96 images with
multidimensional scaling technique, we tried to measure similarity di-
rectly. By looking at the degree with which the algorithm correlates
with the observers, we can estimate which feature (index) contributes
to the human observers’ judgments.

For measuring image similarity Cox et al. (2000) propose three
methods. In the ‘absolute-similarity’ configuration a target image is
compared with a test image and subject must judge the degree of sim-
ilarity between the two images. In the ‘relative-similarity’ configura-
tion the target image is shown with two test images below. The subject
could indicate by low values on a 5-point scale that the left image is
more similar to the target image than the right image and by high val-
ues that the right image is more similar. In the ‘2-alternatives forced-
choice’ (2AFC) configuration the user could indicate only which of the
two images he finds more similar to the target image.

We chose the 2AFC configuration for the evaluation of the indices.
The advantage of the 2AFC is that the subjects do not need to calibrate
their scales of similarity judgments. However Papathomas et al. (1998)
report that the 2AFC choices are strongly correlated with the other
choices in the other configurations.

In three experiments we measured the relationship between the
perceived similarity judgments and the computed similarity distance
over a broad range of similarity. The similarity of images was varied
from quite similar best matches to relatively distinct for images with
rank 2000 in the result list.

In a first experiment we investigated the influence of the degree of
similarity between the test images on the similarity judgments. In the
second experiment the three indices were compared to each other to
determine the contribution of each index and in the third experiment
the indices where combined iteratively to measure the improvement of
user prediction when spatial or luminance information considered.
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2 Similarity of Images

Judging the similarity of images could be a difficult attempt. Images
can be 2-dimensional representation of anything: objects, animals or
people, from detailed close-ups to blurred scenes. Furthermore, if two
images are compared it largely depends on the context whether they
are regarded as related. For example, considering two portraits of a
woman and a man: these could be judged to be very similar if the
images in a database usually show landscapes or architecture. In
database of faces, depending on the persons photographed, they may
not appear to have anything in common. Domain knowledge, the in-
tention of the observer, the kind of objects photographed, all could in-
fluence the perceived similarity. Therefore, an empirical approach to
perceived similarity of images is difficult.

Similarity judgments are complex achievements of the human vi-
sion system, of cognitions and emotions. The results obtained by the
MDS analysis for small image sets could not be generalized and there
currently exists no psychological theory of image similarity. Neverthe-
less, it would be useful to have some measure to estimate similarity,
even if it is deficient.

The major applications of similarity measures are image retrieval
systems searching for similar images in databases. Astonishing simi-
lar and often semantically related images could be found by comparing
the images by their low-level features. The similarity information can
be used to predict the judgments of the users. The PicHunter system
(Cox et al., 2000) uses such a model. It shows a set of images to the
user who then indicates which are related to his target image. Based
on pictorial features and the Bayesian user model the algorithm inte-
grates the current with the previous information and selects a new set
of images. In a database of 4522 images single target images can be
found in about 35 iterations using simple pictorial features only.

If low-level features can be used to find similar images then these
features must be related to the perceived similarity, either because the
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concepts of similarity is based on the low-level features or because
there exists a correlation in images, e.g. between the color and the
meaning of objects. In both cases the relationship between the per-
ceived low-level features and the judged similarity would be of high
importance.

With the experiments we could not bridge the “semantic gap”
(Smeulders et al., 2000). But we propose a method how it could be
measured.
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3 Related Work

There currently exists a great variety of content-based image re-
trieval (CBIR) approaches. In currently published review Smeulders
et al. (2000) cite more than two hundred references, the majority pub-
lished in the second half of the last decade. The objective of most stud-
ies is to develop suitable and robust feature sets that could be used to
compare images.

Since the article of Swain and Ballard (1991) color histograms
are standard components for image indexing systems and have been
proven to frequently retrieve a high proportion of the related images in
a database. In addition to simple, low-level features complex features,
for example wavelet transformations, are applied with great success
in CBIR systems, too. Which features are the best suitable in which
contexts is still uncertain. Smeulders et al. (2000) stated that in their
reviewed publication “fair comparisons of methods under similar cir-
cumstances have been virtually absent”.

3.1 Analysis of Human Judgments

For small sets of images the major dimensions of the similarity judg-
ments were investigated using multidimensional scaling techniques
(MDS). Rogowitz et al. (1998) used a set of 96 images that were printed
on cardboard. The subjects judged the similarity of image pairs on a
rating scale. Based on the MDS analysis of the similarity comparisons,
the images were arranged in a 2-dimensional space. The authors de-
scribe the major dimensions as natural vs. man-made and human vs.
animal-like. Its interesting these dimensions are correlated with color.

An even narrower image repertoire was used by Mojsilociv et al.
(2000). They let the subjects compare 20 images of colorful textures
taken from an interior design catalog. In addition to MDS they an-
alyzed the observers’ comparisons in a hierarchical cluster analysis.
With both techniques they found similar grouping criteria: overall
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color, color purity, regularity and placement, and directionality.

3.2 Evaluation

Image indexing techniques are usually evaluated by precision mea-
sures stating the average proportion of similar images in the results
set. Papathomas et al. (1998) criticize the usage of the criterion “sim-
ilar” because it could be understood in various ways by different ob-
servers. Moreover, the precision measure depends on the proportion of
similar images in the database. They suggest using an identical-target-
criterion (“target testing”, Cox et al. (2000)) instead, or to compare the
search length until a similar image is found against search lengths if
the user’s feedback is ignored (random browsing).

Similarity judgments can be given using either an absolute or rela-
tive scale. In their first experiment Papathomas et al. (1998) compared
absolute image comparisons to similarity judgments given on a relative
scale. They found a high correlation between the frequency of prefer-
ring an image in the 2AFC condition and the similarity ratings given
on a scale from -2 to 2. This relationship follows the form of a psycho-
metric function.

3.3 Color and Luminance

Color information is a major aspect of image similarity. Our goal was
to construct color histograms based on some of the knowledge of early
color processing. In CBIR systems color histograms are usually created
in the RGB space using either Cartesian (RGB) or cylindrical (HSI)
coordinates.

Psychophysical uniform color spaces were used to compare single
color values of images, for example the average or the most domi-
nant colors (Mojsilociv et al., 2000). Such indices may be only ap-
propriate for very colorful image with one or a few dominant colors.
For databases with objects photographed under different illuminations,
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color histogram performance can be improved if luminance or illumina-
tion invariant color spaces are used (Funt and Finlayson (1995), Gevers
and Smeulders (1996), Alferez and Wang (1999)).

3.4 Spatial indexing

To include spatial information, extensions to color histograms were
suggested. For instance, Stricker and Dimai (1997) constructed five
histograms for fixed overlapping image regions. Huang et al. (1999)
used the correlation between pixel colors at different distances for in-
dexing (color correlogram).

Besides the new color-spatial histograms genuine spatial features
have been proposed for image index. They include texture features (e.g.
Liu and Picard (1996)) and 2-dimensional decomposition techniques
such as wavelets (e.g. Wang et al. (1997), Liang and Kuo (1999)). Many
texture and wavelet features contain orientation and spatial frequency
information and are therefore related to the Fourier spectrum. Second
order statistics such as periodicity corresponds to the spatial frequency
while directionality is related to the orientation of the Fourier basis
functions.

Orientation and frequency information are often analyzed using Ga-
bor filters. Being a convolution of a sine grating and a Gauss function
they can be used for a local contrast analysis. The resulting coefficients
encode – like the 2-dimensional DFT – orientation and frequency. Ga-
bor filters were used by Itti et al. (1998) in their computational model
for rapid scene analysis. The visual attention model, inspired by the
architecture of the early visual system, consists of maps encoding color-
opponent, center-surround and Gabor features of the image. The dis-
tinction between chromaticity, luminance and spatial features is simi-
lar to the one we used. The model computes the color and spatial fea-
tures for an image and then selects the focus of attention by a winner-
takes-all strategy. Itti et al. report that the model is robust to the in-
troduction of white or colored noise and that for several pop-out tasks
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human performance could be reproduced.
Manjunath and Ma (1996) used Gabor wavelet features for texture

analysis. Comparing the Gabor wavelet approach with other wavelet
transformations, they found retrieval performance using Gabor trans-
formation to be better or at least comparable to the other approaches.
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4 Color and Spatial Indexing

The aim of image indices is to create metrics to estimate the similarity
of images. Such a metric should ideally correspond to the users’ per-
ception of similarity. The idea of our image indexing system based on
perception (IISBOP) was to use some the the established coding prin-
cipals of human vision to compare images.

For each image the distribution of the features hue, luminance and
spatial frequencies were determined. These distributions were summa-
rized into three histograms (feature vectors). The similarity between
two images were then defined as the distance between the feature vec-
tors. In contrast to previous approaches, we normalized the distance
values with regard to the mean and standard deviation of the distribu-
tion of similarity distances. The normalization transformation is com-
puted on a per-image basis and leads to index weights that reflect the
saliency of the corresponding features.

The main focus our research, besides evaluation, was the first step
in similarity metric creation, the modeling of appropriate image fea-
tures. We used the DKL color space (Derrington et al., 1984) that was
found to underlie primate color vision for this purpose. The chromatic-
ity and the luminance information was stored in two separate indices,
the information about the Fourier energy distribution in a third his-
togram.

4.1 Color Transformation

It was mentioned in the introduction that there is no simple transfor-
mation to convert RGB-triplets into human cone photoreceptor exci-
tations. But these receptor excitations are necessary to calculate the
DKL cone-opponent coordinates for these stimuli. We circumvented
this problem by using the photoreceptor excitations resulting from the
display of the images on a standardized and calibrated display monitor
(Sony GDM-F500). Since our observers made their judgments looking

15



a) b)

Figure 1: Color distribution in the DKL space. a) The color distribution
of the image with the hats in the bottom left plotted with respect to
the coordinates at the color-opponent axes in DKL color space. When
multiple pixels had the same position, luminance was averaged. b)
Subdivision of the chromaticity subspace of DKL color space into 127
logarithmic-radial color bins used for the color indices.

at the images displayed on that monitor, it is correct to use these exci-
tations as the basis for the similarity metric. The transformation func-
tion between the RGB channels the DKL color space was determined
using a method of Krauskopf and Gegenfurtner (1992).

The resulting color distribution of an image in the color-opponent
space could be visualized by plotting the pixels of the image with
respect to their coordinates on the red-green and yellow-blue axis
(Fig. 1a). In the chart the pixels of the differently colored hats fall
into separate radial sections.

The Cartesian color-opponent coordinates can be transformed into
the polar coordinates hue and saturation. In the chart hue is the color
angle ( 	�
������������������ �"! #%$ ), saturation is the distance from the neutral
gray ( &�')(*�,+ �-�.�/���0!1#2+ ). The cylindrical hue-saturation coordinates were
then used to define the histogram bins.
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4.2 Chromaticity and Luminance Index

To create the color histograms the chromaticity plane was subdivided
into logarithmic-radial segments (Fig. 1b). The resolution for satura-
tion of these bins decreases with increasing saturation. Six different
rings were used to discriminate saturation; the remaining unsaturated
color tones in the center were summarized into a single, gray bin. The
ring a color tone belongs to can be calculated using the logarithm of
the saturation ( ��� 35476982�*:;&�'2(5< ). For hue the histogram resolution is
lowest for unsaturated, gray colors and doubles with increasing satura-
tion ( =>?�A@CB�D�E >0F ). This yields to 127 bins, 64 bins for the most saturated
colors.

Furthermore, color values exceeding 95% or falling below 5% of the
possible luminance range of RGB space were classified as white and
black. This is essential since the hue resolution of RGB for very dark
and very bright colors is limited.

To calculate the two color indices the color distributions of the im-
ages were mapped into these 129 bins. For each image two vectors were
stored: the frequency of the color tones G and the average luminance
level of the pixels in each bin H . If a bin was empty the luminance level
was set to zero.

G-IKJML � + NO�QP��HR& +S#T�0=U++ NO�QP��HR& +
H9IKJML � VW XZY\[^]`_ba IKJMLa c JMd`e [gfha IKJML aji if G-IKJMLlk�nmm i if G-IKJML��nm

Figure 2a shows the frequency of the color bins for the images with
the hats. The brightness of the segments in the chart is linear to their
frequency. The most frequent segment is white. In Figure 2b the color
tones belonging to each color bin were plotted with the average lumi-
nance of that bin giving an impression of the information stored in the
luminance vector.
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a) b)

Figure 2: Color histograms. a) Frequency of the color bins for the image
with the hats (Fig. 1a). The brightness of the bins is proportional to
their frequency in the image. The most frequent bin is white. b) Mean
luminance in the color bins for the image with the hats. The color tones
belonging to each color bin are plotted with the average luminance level
of that bin.
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4.3 Fourier Index

To determine the proportion of different orientations and contrasts of
different frequencies we used the 2-dimensional discrete Fourier trans-
formation (DFT) to decompose the images. For the decomposition the
luminance dimension of the DKL space was used.

In contrast to the local Gabor transformation, the 2-dimensional
discrete Fourier transformation is a global decomposition determining
the amplitude for a set of 2-dimensional sine waves so that the image
could be reconstructed as a linear combination of these basis functions.
Each basis function could be characterized by a complex parameter.
The polar coordinates of this Fourier parameter are the orientation and
spatial frequency of the 2-dimensional sine waves. The DFT calculates
for each parameter a complex coefficient storing the amplitude and the
phase of the corresponding 2-dimensional sine waves. The image then
could be reconstructed as a linear combination of this basis function.

The squared coefficient – the energy – respectively its distribution,
the Fourier spectrum was used to construct the spatial index. Because
the grayscale values of the transformed images are 1-dimensional the
resulting Fourier spectrum is symmetric and for the index creation only
the upper half of the spectrum was used.

Since even the fast Fourier transformation (FFT) is computational
intensive, the 768x512 sized images were rescaled to 96x64 thumbnails
prior to processing using bilinear approximation. The thumbnails were
projected into the DKL space. The luminance dimension was then used
for the DFT. To correct for artifacts that arise from the rectangular
form of the images, a circular mask was convoluted with the grayscale
thumbnails prior to Fourier transformation. This further reduces the
image size to 64x64 pixels and results in a more even distribution of the
energy along orientation dimension because it removes the artifacts
resulting from the image edges. But orthogonal components are still
most frequent because many images contain objects with vertical or
horizontal orientations.
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The resulting 64x64 Fourier spectrum was divided into radial-
logarithmic bins analogous to the chromaticity segments. The index
contains 126 bins. Each segment represents contrasts of distinct orien-
tation and frequency ranges. The bins at the origin correspond to con-
trasts with very low or zero frequency and store the mean luminance
of the image. Because we wanted to construct a luminance indepen-
dent spatial index we did not used these bins for searching; they were
excluded by a filter prior to searching.

Figure 3: Fourier index for the image with the hats (Fig. 1a). Spa-
tial frequency increases from the center to the edge of the chart. The
central bins containing average luminance information were removed.
The brightness of a bin is proportional to the logarithm of the average
energy within the bin. The segment with the highest energy is white.
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4.4 Distance metrics

To find similar images for a given query image it is necessary to com-
pare the index vectors. Most indexing systems interpret the indices as
points in an Euclidian space and use the Euclidian norm to define the
distance between two images. We used it for comparing the luminance
and the Fourier index.

For the chromaticity frequency index the more intuitive intersec-
tion norm was used. It defines the similarity between two images
by the sum of the minimum of the corresponding bin frequencies
( &oJ f � Y LJqpsr1t �0=u�RPOJ i !vJw$ ). The value can be interpreted as the propor-
tion the two color distributions share. A value of e.g. 0.75 means that
for 75% of the pixels in one image there exist pixels in the other image
which fall into corresponding color bins. Figure 4 shows the percentage
of color concordance for a sample query using the chromaticity index.

For very similar images the intersection norm yields to a value near
one because the sum over the bins of the chromaticity histogram is one.
Images that do not share a single color bin are considered completely
dissimilar. The similarity value would be zero. To use the intersection
norm as a distance measure the similarity value must be negated. The
transformation x2J f �zy{4|&oJ f was used.

21



Figure 4: Sample query results comparing images using the chromatic-
ity histogram and the intersection norm. The number below the images
shows the percentage of pixels the images shares with the query image
at the top left. The query images shares with itself 100% of the color
distribution.
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4.5 Cue Combination

To combine the indices it is necessary to normalize the different dis-
tance functions. This is not only a consequence of using two different
distance functions. Even if different indices are combined using the
same distance function normalization is necessary because the vari-
ances of the indices are quite different.

We used the z-transformation to normalize the distance values. The
use of z-transformation seems reasonable inasmuch as the distance dis-
tributions we inspected manually show the form for a skewed Gauss
density function (Fig. 5). The parameters of the z-transformation are
estimated before each query. For this purpose a set of 1000 random
images } is selected. The mean and the standard deviation of the dis-
tribution of distances between the query image and the 1000 random
images is then estimated ( ~o��� � E*������ ).

It is necessary to estimate the parameters for each query image
again because the (query) images differ in their mean distances to all
images and in the variance of the distance distribution (Fig. 5a and b).
These values can be used to characterize the image. If �x f �R� i�� $ is great
and � f �R� i�� $ is small then the image � would be quite distinct regarding
the similarity metric & used for comparisons. If an image is compared
simultaneous with multiple indices then the means and standard de-
viations characterize the importance of the different features for the
comparison with the image database. The distance of an image to it-
self is zero per definition. Thus the z-value of an image to itself is the
(negative) distance between the mean of the database in terms of the
standard deviation. If the image is quite distinct from the images in
the database then the absolute z-distance would be great.

The distance values of the different indices could then be combi-
nend by averaging the z-values. The z-transformation – calculated for
each index separately – therefore ranks the indices in terms of their
salience. The indices that are more characteristic for an image are au-
tomatically weighted higher than these indices were the images are
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Figure 5: Histograms of distance values from two randomly choosen
image to a set of 1000 randomly selected images using chromaticity
histogram and intersection norm. The distance distributions have dif-
ferent means that will result in different z-values (see text).

alike.
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Figure 6: Sample query results for a combined search using z-
transformation. Below each image the average of the z-values of the
chromaticity, the luminance and the Fourier histogram distances is
shown.
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5 Implementation

The algorithms were implemented into a Java framework. It con-
sists of five modules: database, features, feature combination, filters, a
graphical user interface (GUI) and communication protocols. The im-
age database module is URL based and can be used to address either
image files or images on http or ftp servers. For a query the differ-
ent indices can be selected and combined with filters (e.g. removal of
DC components in the Fourier spectrum) and one of the two distance
metrics (Fig. 7).

Figure 7: Screenshot of the client program running in an internet
browser. The database consists of images taken from the web.

The program can be run either as a standalone program or as a
client-server combination. The clients can be run as applets in internet
browsers which handle the local query definitions and store the query
results. The Java remote method invocation protocol (RMI) is used
for client-server communication. The server receives the hierarchical
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query definitions, searches the feature database for images and returns
the results and the image URLs to the clients. The images are retrieved
by the client applets from the server or the web.

The process of feature creation is script-based. For the 2-
dimensional discrete Fourier transformation and the bilinear rescaling
we used the ‘hips’ image software package (Landy et al., 1984).

The performance of the program depends on the speed of the com-
puter and the implementation of the Java virtual machine. For the
database of 60,000 images used in the experiments it took between one
and two seconds to find the best 100 matches for a given image on a
750 MHz Pentium-III based computer running the standard Java im-
plementation of Linux. When all three indices were combined a query
was processed in less than five seconds. It should be noted that we only
used a linear search strategy not taking advantage of possible bound-
ing assumptions and tree-based data structures. The search could be
further speeded up by reducing the number of bins using primary com-
ponent analysis (PCA).
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6 Psychophysical Evaluation

The purpose of the psychophysical experiments was to measure the
relationship between the similarity norms created by the indices and
the perceived similarity. The similarity between two images was in-
terpreted as a probabilistic function and was measured in a two-
alternative-forced-choice (2AFC) design. The correspondence between
the similarity computations and the judged similarity was measured
for the three indices and three index combinations. In contrast to pre-
vious evaluation strategies histogram-based similarity was not only
evaluated for a few best matches but for relatively distinct images too.

6.1 Measuring Similarity

For precision/recall evaluation methods similarity is implicitly defined
by the judgments of the experimenter. It can be written as a function
defining which images are relevant or similar for each query image:

'�� ������� � m i y��
The precision of a result list � of the t best matching images (im-

ages having a rank below than or equal to t ) can then be simply de-
fined: NO�����`�5&��0��=�� yt �J ��� '��R��$

In contrast, we here define the similarity between two images as a
probabilistic function: Nl� �/��� � ¡ m i yo¢

The perceived similarity can be measured using either an absolute
or relative scale. Both methods are highly correlated; the relationship
between both measures follows the form of a psychometric function (Pa-
pathomas et al., 1998). In the relative case the user indicates the de-
gree of similarity between the query image and the test image on a
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Figure 8: 2AFC display used in the experiments. At the top the query
image is show, below are two test images (target and distractor posi-
tions were randomized).

rating scale. This requires the users to adjust their scale to the content
of the database prior to the experiment, e.g. by seeing a list of random
images. This may increase the standard error of evaluation measure-
ments. A more objective method is the two-alternative forced-choice
configuration (2AFC).

We used a configuration with three images: the query image at the
top together with two test images below (Fig. 8). The task of the user
was to compare the similarity of the test images with the query image
and to select that image that is more similar. We defined the (proba-
bilistic) similarity between the query image and a test image N£�w� i ��$ by
the probability of preferring the image N£�R��$ .

We were interested in comparing the judged image similarity N£��� i ��$
with the similarity order of the indices. In the forced choice configura-
tion the rate of preferring an image is dependent on the degree of sim-
ilarity between the two alternatives. With the exception of experiment
one we kept the similarity of one image, the distractor image, constant.
The similarity of the other image, the target image, was varied.

For a given query image � an image � can be chosen that is either
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relatively similar or quite dissimilar to � , using a similarity metric & . If
the similarity metric & corresponds to the observers’ varying the com-
puted degree of similarity &���� i ��$ should have an influence on the selec-
tion rate. For weak indexing approaches, however, the observed corre-
lation would be low. Therefore, the relationship between the computed
similarity &b��� i ��$ and the rate of preferring the image N£�R� i �5$ can be used
to evaluated the similarity metric & .
6.2 Objectives

Currently, similarity measures were only evaluated for the first best
matching images using precision information. But little is known if
histogram-based indexing can be used to compare the similarity of rel-
atively distinct images, too. In the experiments we varied the similar-
ity between the target and the query images over a broad range, from
best matches to the 2000th image in the result list to test whether the
information stored in the indices can predict the similarity judgments
of the observers for the different levels of similarity.

The advantage of the 2AFC design over a rating scale is its sim-
plicity. The observers do not need to maintain an internal scale but can
directly compare the images. But the disadvantage is that the selection
probability N£����$ is not only dependent on � but also on the alternativex (distractor). If x for instance is a random image the selection rate
should be always greater than m ¤g¥ . If x is a quite similar to � than
achieving a selection rate greater than m ¤g¥ would be a challenge.

The aim of the first experiment was on the one hand to measure
the relationship between preferring one image and the computed sim-
ilarity over a broad range. On the other hand we wanted to explore
how this relationship is modified by varying the similarity of the dis-
tractor image. We used the chromaticity histogram for the similarity
computation.

In a second experiment the three indices were compared. The in-
dices stored distinct information: the chromaticity histogram encodes
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the frequency of the color bins, the luminance histograms stores av-
erage luminance levels but no frequency information, and both color
histograms contain no spatial information. From the Fourier index the
bins containing average luminance information were removed so that
it only stores the orientation and spatial frequency information. We
wanted to known which index would be best suitable for image index-
ing and to what extend the information sources (chromaticity, lumi-
nance, spatial) contributes to the perceived similarity.

In the third experiment the indices’ information were combined. We
wanted to know if the chromaticity histogram can be improved by us-
ing the spatial information and whether the luminance index would
further improve, or worsen the concordance with the observers’ judg-
ments.

6.3 Method

For all experiments a large commercially database (Corel Corp., 1990)
of 60,000 digitized photographs was used. It contains a wide range of
themes. Each theme consists of 100 images. The images show, for ex-
ample, natural and man-made objects, landscapes and close-ups, and
were photographed under natural illumination conditions or under ar-
tificial lighting.

From the database 900 query images were randomly selected for
each experiment. For each of these images the 2000 best matching
images for each relevant index or index combination were retrieved.
The images with the rank numbers 2, 20, 200 and 2000 were selected
for the experiments. In addition, the target image could be a random
image. Using the rank numbers rather than the raw distances allows
comparing the differently distributed distance functions.

To achieve comparability the distractor was always determined by
the color histogram and the intersection metric. With the exception
of experiment one where the influence of the distractor similarity was
investigated, the rank of the distractor image was always 200. In the
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first experiment the similarity of distractor images was varied. The
similarity rank was 1 (best matches), 200 or random.

The position of the target/distractor (left or right), the order of
query images and of the similarity conditions were randomized per
subject (mixed design).

The images were displayed on a 21¨ computer monitor (Sony GDM-
F500) with a resolution of 1280x1024 pixels on a 50% gray back-
ground. The experiments were self-paced without decision time limits
and lasted between 45 and 60 minutes. For one observer the experi-
ment was stopped after 70 minutes. The 600 comparisons made so far
were included in the evaluation. The subjects were undergraduates
of psychology who were obliged to participate in experiments for their
curriculum and were naive to the intention of the experiments. They
were instructed to compare the similarity of the two test images with
the image at the top and to decide which image is more similar. Sub-
jects were told that there is no “true or false” and to judge intuitively
if unsure. The answers were giving by clicking the left or right mouse
button.
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6.4 Experiment 1: Influence of distractor similarity

In the first experiment the relationship between the similarity com-
puted with the chromaticity histogram and the human judgments was
measured. As a second factor, the similarity of the distractor image
was varied to determine how the degree of similarity between the two
test images would influence the rate of preferring the target image.

The image similarities were calculated using the chromaticity his-
togram and the intersection norm. The rank of the distractor image
was either 1 (best match), 200, or random. The rank of the target im-
age was 1, 2, 20, 200, 2000, or random. This results in ¦ � ¥ conditions
because the points of equal target and the distractor ranks were not
measured.

The results show a strong correlation between the logarithmic rank
of the test image and the probability of preferring (Fig. 9). In figure the
similarity rank of the target image is plotted at the x-axis. For each
of the three distractor ranks, the rate of preferring the target is shown
(y-axis). The (theoretic) points of equal similarity between the target
and the distractor image are marked by filled circles. The correlation
coefficient between the logarithmic rank and the percentage of concor-
dance is very high ( ��§¨¤ª©)¥ ) and significant (N7«¬¤gm2¥ ). Table 1 shows the
regression and correlation coefficients.

Distractor Rank b a r
1 -.022 .49 .985
200 -.032 .68 .999
Random -.027 .80 .965

Table 1: Regression and correlation coefficients for the relationship be-
tween logarithmic target rank and concordance for different distractor
ranks.

Changing the distractor similarity does not alter the gradient of the
linear regression and only shifts the functions by a constant amount.
Therefore, the alternative image in the 2AFC design is not a criti-
cally value for the evaluation of the indices. For the following exper-
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Figure 9: Probability of preferring the target image against the distrac-
tor image as a function of similarity between the target and the query
image. The similarity distance was calculated using the chromaticity
index and the intersection metric. The filled circles indicate hypothetic
points of equal similarity of distractor and target image with expected
probability .5 and therefore define the rank of the distractor image.
The standard error is shown for each condition.

iments we kept the distractor similarity constant. We decided to use
the medium distractor similarity (rank 200) optimally using the range
of the scale.
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6.5 Experiment 2: Index comparison

Color is an important feature of images which contributes to image
similarity. But less is known about the importance of the other fea-
tures such as luminance or contrast information. The experiment 2
addresses the problem by measuring the contribution of the index in-
formation to perceived similarity quantitatively.

The image similarity was calculated using the chromaticity his-
togram, the spatial index and the luminance vector. For the chromatic-
ity histogram the minimum norm was used. The distances between the
other vectors were calculated using the Euclidian norm. The distrac-
tor image was determined by the chromaticity histogram and had rank
200. The rank of the target image was 1, 2, 20, 2000, or random.

The results show a strong advantage for the chromaticity his-
togram. For relatively distinct images the luminance and spatial index
show comparable performance (rank 20, 2000). But with the luminance
index the best matches more similar (rank 1, 2).

Index b a r
Color Frequency -.034 .66 .976
Luminance -.025 .52 .978
Fourier spectrum -.019 .47 .989

Table 2: Regression and correlation coefficients for the relationship be-
tween logarithmic target rank and concordance for the different in-
dices.
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Figure 10: Relationship between the probability of preferring the tar-
get image against the distractor image as a function the similarity be-
tween query and target image. The similarity distances were calcu-
lated using the chromaticity, luminance and the spatial index. The
filled circle indicates the theoretic point where the target and the dis-
tractor image are equally similar.
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6.6 Experiment 3: Index combination

The performance of the luminance and spatial index is clearly worse
than of the chromaticity histogram. Therefore, we wanted to know if
the correspondence with the observers’ judgments could be improved if
the spatial or the spatial and the luminance information are used in
addition.

As the similarity function the average of the z-transformed distance
values were used. All other parameters correspond to experiment two.

Figure 11 shows a general improvement of the selection rates of the
image retrieved when either spatial or spatial and luminance informa-
tion is combined with the chromaticity histogram. The correspondence
with the judgments was improved by 5% if the spatial information is
used (Table 3). The luminance information further enhances the con-
cordance by 4%. Therefore, the luminance and the spatial index con-
tribute to image similarity independent of the chromaticity histogram.

The overall improvement of 9% clearly indicates that the z-
transformation can be used to combine index information.

Index Combination b a r
Freq. -.021 .60 .967
Freq. + Fourier -.028 .65 .959
Freq. + Fourier + Lum. -.031 .69 .998

Table 3: Regression and correlation coefficients for the relationship be-
tween logarithmic target rank and concordance for combinations of the
indices.
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Figure 11: Relationship between the probability of preferring the tar-
get image against the distractor image as a function of the similarity
between the query and the target image. The similarity distances were
calculated using the chromaticity, the chromaticity and the spatial and
all three indices. The filled circle indicates the theoretic point where
the target and distractor are equally similar. The standard error is
shown for each data point.
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7 Discussion

The new approach of our CBIR system was the construction of fea-
tures in analogy to some of the properties of the early stages of human
vision. We used a psychophysical color space and divided it into loga-
rithmical bins reflecting the granularity of higher order color percep-
tion. The three information sources chromaticity, luminance and con-
trasts were stored in separate indices. For the spatial index we used
the 2-dimensional DFT to encode the orientation and spatial frequency
information of the images. The index predictions of image similarity
were directly compared with observers’ judgments in a 2AFC design.
We found a high correlation between the logarithmic similarity rank
and the rate of preferring the image. This correlation was observed
for all three indices and for the combination of the index information
using the z-transformation. Furthermore, the results show that color
histogram indexing could be greatly improved if the spatial and lumi-
nance features of images are used in addition.

7.1 Perception Based Image Indexing

Color histograms and their variations are used with great success in
many current CBIR systems. The histograms are typically built in
RGB or HSI space. For objects that are photographed under different
illuminations, color constancy algorithms could improve the retrieval
quality (Funt and Finlayson (1995), Gevers and Smeulders (1996),
Alferez and Wang (1999)). The spatial information of images was en-
coded a variety of ways: by multiple histograms (Stricker and Dimai,
1997), correlograms (Huang et al., 1999), explicit texture statistics (Liu
and Picard, 1996) and by wavelet transformations (Manjunath and Ma
(1996), Wang et al. (1997), Liang and Kuo (1999)).

With the three histograms we tried to use some of the coding princi-
ples of the human vision system for the comparison of images. A great
variety of image features have already been proposed for CBIR. Most
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of these features were constructed to optimally represent some, in most
cases statistical, properties of images. We created a chromaticity his-
togram in analogy to processing of color in the human vision system.
The color-opponent code in the optical nerve is a nearly optimal repre-
sentation of color because it removes the correlation between the chan-
nels (Buchsbaum and Gottschalk, 1983). But optimal representations
for image colors would be better constructed by principal components
or cluster analyses. However, in the end the similarity of the images
is always judged by human observers. Therefore, using a psychophys-
ical color space should result in a metric which better corresponds to
human similarity judgments.

In addition to the frequency encoding chromaticity histogram, we
stored the average luminance levels of the color bins for each image
in a second vector. The separate processing of chromaticity and lumi-
nance (contrast) information is part of various models of visual pro-
cessing. We here used the separation of chromaticity and luminance
information to compare the contribution of both information sources to
the similarity judgments. At first, we found that the luminance index
is correlated with the observers’ judgments, too. The prediction of the
perceived similarity is not as good as with the chromaticity histogram.
But luminance appears to be considered when images are compared,
even if the luminance of the color tones appears not to be as important
as their frequency. Illumination invariant indices may therefore only
be superior if the database contains many similar objects photographed
under various illumination conditions.

The spatial information was extracted using the 2-dimensional
DFT. The index was constructed to represent the distribution of ori-
entation and spatial frequency in the image in analogy to the process-
ing of contrast information in the visual cortex. Though many texture
feature set describe such information too, the Fourier analysis offers
a mathematical profound way to extract the information. The explicit
representation of orientation and spatial frequency in the Fourier spec-
trum allows the simple filtering of these dimensions. In our program
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the user could for example a radial filter to use the Fourier index as an
orientation index only. By averaging the bins of equal frequency ranges
rotation invariant search could be conducted.

7.2 Evaluation

Currently, CBIR systems are evaluated by precision and sometimes re-
call measures. Relevant images are – in the majority of the publication
– defined by similar judgments of a single person deciding whether an
image belongs to the same category as the query image. The image
databases used for evaluation typically contain between hundred and
some thousand images.

A very well evaluated system is the PicHunter system (Cox et al.
(2000), Papathomas et al. (1998)). The system includes simple features
like the image height and width, color histograms, color autocorrelo-
gram, color-coherence vector and – for a subset of the images – seman-
tic annotations. The feature vectors were compared using Ur norm and
the distances are further transformed into probability values using a
sigmoidal function. The features were tested in a forced choice design
similar to one we used and then later compared within the target test-
ing paradigm (Cox et al., 2000).

But the target testing evaluation procedure used in Papathomas
et al. (1998) is limited to relevance feedback systems. It is ideal to
evaluate a complete system but it is less ideal to measure the rela-
tionship between single features and human perception. With target
testing the functional relationship between an index similarity space
and the similarity space of human perception could not determined.

Our evaluation scheme coupled with the large image database al-
lows measuring the relationship between the index similarity and the
probability of user reaction with high precision. The results suggest
that the relationship could be modeled by a logarithmic function be-
tween the similarity rank and the selection probability for 2AFC de-
signs. That relationship holds for all indices and is not impacted by the
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similarity of the distractor image.
For relevance feedback systems measuring the relationship be-

tween the similarity metric and the perceived similarity over the whole
range of similarity, from the most similar image to random images,
is of high importance. Cox et al. (2000) used a sigmoid function to
transform the raw distances to a probabilistic scale. We found in the
experiments a strong logarithmic relationship between the similarity
rank and the probabilistic similarity, for the indices and index combi-
nations. We would suggest that for Bayes relevance feedback systems
a linear transformation of the logarithmic rank should be used rather
than transformations of the raw distances.
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