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Abstract

We created an image indexing system based on some of the known

properties of the early stages of human vision. We used a color space

known to underlie the second stage of human color vision and stored

chromaticity and luminance information in two logarithmic-radial his-

tograms. A third, spatial index encodes – in analogy to the spatial fre-

quency representation in the visual cortex – information about orienta-

tion and spatial scale.

The indices were evaluated by comparing the computed similarity val-

ues with human judgments quantitatively and objectively in a 2AFC de-

sign. For the experiments we used a heterogeneous database of 60,000

digitized photographs.
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1 Introduction

The goal of image indexing systems is to find a set of images that is similar

to the target image the user is looking for. Depending on the intention of the

user, similarity may be defined by objects, configuration, illumination, cam-

era position or zoom, by semantic aspects, or any combination of the above.

Preferably, computer vision algorithms should extract all the relevant fea-

tures from the image in the same way a human observer would do. But that

is far beyond our current knowledge of human vision, cognition and emotion.

Most of the current algorithms are quite successful in using low-level fea-

tures of the images, as this quite frequently results in semantically related

images. Color, in particular, has proven to be very effective for the calculation

of image similarity, since an object’s color is independent of viewing position

or viewing distance. The most prominent color statistics are histograms with

equally sized bins in RGB or HSI color space. In HSI space the luminance

(intensity) axis is often ignored since it is argued that the overall brightness

of an image is irrelevant with respect to image similarity. Hence, luminance

independent indices should be more robust with respect to different illumina-

tion conditions. Other color statistics include correlation or covariance coeffi-

cients encoding spatial information about the color distribution (e.g. Huang

et al., 1999, Stricker and Dimai, 1997). Features such as texture and shape

are other subjects of current research (e.g. Flickner et al., 1995).

All these approaches are based on physical, low-level features. But in the

end the similarity of a given image with a target image will always be judged

by a human observer. Therefore, our goal was to construct indices which are

based on some of the known properties of the early levels of the human vision

system. Furthermore, we used a strictly quantitative and objective approach
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to evaluate the resulting image metric by comparing it with measurements of

perceived image similarity.

As the first step of seeing, light is absorbed and converted into neural sig-

nals by the three different classes of cone photoreceptors in the retina. The

details of the absorption spectra of the cones were well studied in the past

and are known quite precisely by now. While these cones are often called red-,

green- and blue-cones, they all do absorb light over a wide range of the visible

spectrum. Most notably, they do not have much to do with the RGB-triplets of

modern image sensors. There is no simple transformation converting between

the two, and any such conversion process requires careful calibration of the

image acquisition device (Wandell, 1993).

Still at the level of the retina, the signals from the cones get transformed

by a complex network of retinal cells (Wässle and Boycott, 1991) into color

opponent signals. Electrical recordings from single neurons in the retina and

the lateral geniculate nucleus (LGN) have shown three different classes of

neurons. A “luminance-type” neuron simply takes the sum of the outputs

from all three cone classes. “Red-green” opponent neurons take the difference

between the red- and the green-cone signal. “Blue-yellow” opponent neurons

take the difference between the blue-cone signal and the sum of the red- and

green-cone signal (Gegenfurtner and Kiper, in press). Incidentally or not,

this basically results in a principal components analysis of the cone signals

(Buchsbaum and Gottschalk, 1983, Ruderman et al., 1998) and thus removes

any correlation between the signal channels, resulting in nearly optimal in-

formation transmission from the eye to the brain.

In the visual cortex, spatial information is extracted from these signals

using an array of linear and non-linear filters tuned to spatial frequency and

orientation (Hubel and Wiesel, 1998). The tuning characteristics of these fil-
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ters seem to be highly optimized for viewing our typical visual environment

(Field, 1987). The efficiency of these spatial filters was modeled by Watson

(1987). He transformed the grayscale image using the discrete Fourier trans-

formation (DFT) and applied a filter to the coefficient matrix with the same

orientation and bandwidth properties found in early spatial vision. In a psy-

chophysical experiment he found that a reconstructed image is typically in-

distinguishable from the original at a code size of 1 bit/pixel.

We tried to use these established coding principles of the human visual

system to construct image histograms optimized to these characteristics. The

color space (DKL) proposed by Derrington et al. (1984), based on recordings of

single neurons in the LGN of macaques was also found to play an important

role in human color vision. Krauskopf et al. (1982) showed that the increase of

thresholds for detecting colors after adaptation to isoluminant color changes

is independent along the color-opponent axes.

We used that color-opponent space to create two color indices. A first index

encodes only chromaticity and is therefore luminance independent. The sec-

ond index encodes the mean luminance of the color tones. For the color bins

we did not use a equidistant spacing, the size of the bins reflects the granu-

larity of higher order color perception e.g. for saturated colors the resolution

for hue is much finer than it is for unsaturated colors while the resolution of

saturation decreases, in agreement with the results of Krauskopf and Gegen-

furtner (1992).

To extract the spatial information we used the luminance dimension only,

which, in the DKL color space, is orthogonal to the color-opponent subspace

used for the color indices. For each image the Fourier power coefficients were

calculated using DFT. The 2-dimensional power spectrum was further seg-

mented into bins representing spatial contrasts of distinct orientation and

5



frequency ranges. The resolution of the Fourier index is a function of fre-

quency and orientation, representing the orientation of high frequency con-

trasts more precisely than that of lower frequencies.

The second major aspect of our system is its evaluation. Most of the earlier

search systems were evaluated informally. The prevalent method is to have

the experimenter decide which images found by the search algorithm are sim-

ilar to the query image. As Cox et al. (2000) criticize, the results obtained by

such methods are highly dependent on the strictness of the similarity crite-

ria the observers use, the homogeneity of the images in the database and the

number of images displayed.

We evaluated our color indexing system based on perception (CISBOP) by

comparing the similarity judgments made by the algorithm to ratings made

by human observers. Unlike Rogowitz et al. (1998) who calculated a similarity

metric for a set of 96 images with a multidimensional scaling technique, we

tried to measure similarity directly. By looking at the degree with which the

algorithm correlates with the judgments of the observers, we can estimate

how much different features (indices) contribute.

In three experiments we measured the relationship between the perceived

similarity judgments and the computed similarity distance over a broad range

of images. The similarity of images was varied from highly similar best

matches to relatively distinct for images with rank 2000 in the result list.

In the first experiment, we investigated the influence of the degree of sim-

ilarity between the test images on the similarity judgments. In the second

experiment, the three indices were compared to each other to determine their

individual contributions. In the third experiment, the indices where combined

iteratively to measure the improvement in prediction when color, spatial, and

luminance information are considered.
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In brief, we found a good agreement between the images selected with the

perception-based indices and the perceived similarity. The observers’ judg-

ments can be best predicted with the chromaticity histogram. The luminance

and the Fourier histogram both contribute to the similarity judgments and

the percentage of agreement increases considerably if the luminance and the

Fourier information is combined with the chromaticity index. We found that

the percentage of agreement decreases linearly as a function of the logarith-

mic rank position, from the first, best matching image up to the 2000th image

in the result list. The correlation was found for each of the three indices and

for the index combinations.
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2 Color and Spatial Indexing

The aim of an image index is to create a metric for the similarity of images.

Such a metric should ideally correspond to the users’ perception of similarity.

The idea of our color image indexing system based on perception (CISBOP)

was to use some the the established coding principles of human vision to com-

pare images.

For each image the distribution of the features hue, luminance and spatial

frequency were determined. These distributions were summarized into three

histograms (feature vectors). The similarity between two images was then

defined as the distance between the feature vectors. In contrast to previous

approaches, we normalized the distance values with regard to the mean and

standard deviation of the distribution of similarity distances. The normal-

ization transformation is computed on a per-image basis and leads to index

weights that reflect the saliency of the corresponding features.

The main focus of our research, besides evaluation, was the first step in

similarity metric creation, the modeling of appropriate image features. For

this purpose we used the DKL color space (Derrington et al., 1984) that was

found to underlie primate color vision. The chromaticity and the luminance

information was stored in two separate indices, the information about the

Fourier energy distribution in a third histogram.

2.1 Color Transformation

It was mentioned in the introduction that there is no simple transformation

to convert RGB-triplets into human cone photoreceptor excitations. But these

receptor excitations are necessary to calculate the DKL cone-opponent coordi-

nates for these stimuli. We circumvented this problem by using the photore-
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a) b)

Figure 1: Color distribution in the DKL space. a) The color distribution of the
image with the hats in the bottom left plotted with respect to the coordinates
at the color-opponent axes in DKL color space. When multiple pixels had the
same position, luminance was averaged. b) Subdivision of the chromaticity
subspace of DKL color space into 127 logarithmic-radial color bins used for
the color indices.

ceptor excitations resulting from the display of the images on a standardized

and calibrated display monitor (Sony GDM-F500). Since our observers made

their judgments looking at the images displayed on that monitor, it is correct

to use these excitations as the basis for the similarity metric.

The resulting color distribution of an image in the color-opponent DKL

space could be visualized by plotting the pixels of the image with respect to

their coordinates on the red-green and yellow-blue axis (Fig. 1a). In the chart,

the pixels of the differently colored hats fall into separate radial sections.

The Cartesian color-opponent coordinates can be transformed into the

polar coordinates hue and saturation. In the chart hue is the color angle

( �����
	 �
�����������
��������� ), saturation is the distance from the neutral gray

(  "!$#%	'& �(�)�*���+���$& ). The cylindrical hue-saturation coordinates were then used

to define the histogram bins.
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2.2 Chromaticity and Luminance Index

The color histograms were created by dividing the chromaticity plane into

logarithmic-radial segments (Fig. 1b). The resolution for saturation of these

bins decreases with increasing saturation. Six different rings were used to

discriminate saturation; the remaining unsaturated color tones in the center

were averaged into a single, gray bin. The ring a color tone belongs to can be

calculated using the logarithm of the saturation ( �,	 -/.,021
�435 "!$#/6 ). For hue,

the histogram resolution is lowest for unsaturated, gray colors and doubles

with increasing saturation ( 798)	;:)<>=@? 8BA ). This yields 127 bins; 64 bins for the

most saturated colors.

Furthermore, color values exceeding 95% or falling below 5% of the max-

imally possible luminance value of RGB space were classified as white and

black. This is essential since the hue resolution for very dark and very bright

colors is limited.

To calculate the two color indices the color distributions of the images were

mapped into these 129 bins. For each image two vectors were stored: the

frequency of the color tones C and the average luminance level of the pixels in

each bin D . If a bin was empty the luminance level was set to zero.

C�EGFIH 	 & J9�LK��"D� M&N�O�B7P&& J9�LK��"D� M&
D2EGFIH 	

QRRS RRT
UWVYX�Z\[ EGFIH[ ] FI^`_ Vbac[ EGFIH [ed if C�EGFIHgf	ih
h d if C�EGFIHj	ih

Figure 2a shows the frequency of the color bins for the images with the

hats. The luminance of the segments in the chart indicates their frequency.
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The most frequent segment is white. In Figure 2b the color tones belonging to

each color bin were plotted with the average luminance of that bin giving an

impression of the information stored in the luminance vector.

a) b)

Figure 2: Color histograms. a) Frequency of the color bins for the image with
the hats (Fig. 1a). The brightness of the bins is proportional to their frequency
in the image. The most frequent bin is white. b) Mean luminance in the color
bins for the image with the hats. The color tones belonging to each color bin
are plotted with the average luminance level of that bin.
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2.3 Fourier Index

To determine the distribution of Fourier energy across different orientations,

we used the 2-dimensional discrete Fourier transformation (DFT). The decom-

position was performed in the luminance dimension of the DKL space only.

In contrast to the local Gabor transformation, the 2-dimensional discrete

Fourier transformation is a global decomposition determining the amplitude

for a set of 2-dimensional sine waves. These basis functions can be charac-

terized by a single complex parameter. The polar coordinates of this Fourier

parameter are the orientation and spatial frequency of the 2-dimensional sine

waves. The DFT calculates for each parameter a complex coefficient storing

the amplitude and the phase of the corresponding 2-dimensional sine waves.

The image then can be reconstructed as a linear combination of this basis

function.

The squared coefficient – the energy – respectively its distribution, the

Fourier spectrum, was used to construct the spatial index. Because the

grayscale values of the images are real (not complex) numbers, the result-

ing Fourier spectrum is symmetric and for the index creation only the upper

half of the spectrum was used.

Since even the fast Fourier transformation (FFT) is computationally in-

tensive, the 768x512 sized images were rescaled to 96x64 thumbnails using

bilinear approximation. The thumbnails were then projected onto the lumi-

nance dimension of the DKL space. To correct for artifacts that arise from the

rectangular form of the images, the grayscale images were multiplied with

a circular mask prior to Fourier transformation. This leads to a more even

distribution of Fourier energy across orientations because it removes the ar-

tifacts resulting from the image edges. Orthogonal components are still most

frequent because many images contain objects with vertical or horizontal ori-
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entations.

The resulting Fourier spectrum was divided into radial-logarithmic bins

analogous to the chromaticity segments. The index contains 126 bins. Each

segment represents contrasts of distinct orientation and frequency ranges.

The bins at the origin correspond to contrasts with very low or zero frequency

and store the mean luminance of the image. Because we wanted to construct a

luminance independent spatial index we did not use these bins for searching;

they were filtered out prior to searching.

Figure 3: Fourier index for the image with the hats (Fig. 1a). Spatial fre-
quency increases from the center to the edge of the chart. The central bins
containing average luminance information were removed. The brightness of
a bin is proportional to the logarithm of the average energy within the bin.
The segment with the highest energy is white.
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2.4 Distance metrics

To find similar images for a given query image it is necessary to compare the

index vectors. Most indexing systems interpret the indices as points in an

Euclidian space and use the Euclidian norm to define the distance between

two images. We used it for comparing the luminance and the Fourier index.

For the chromaticity frequency index the more intuitive intersection norm

was used. It defines the similarity between two images by the sum of the

minimum of the corresponding bin frequencies (  �F a 	 U HFlk5m�n �B7o��K9F d �pFq� ). The

value can be interpreted as the proportion the two color distributions share.

For example, a value of 0.75 means that for 75% of the pixels in one image

there exist pixels in the other image which fall into corresponding color bins.

Figure 4 shows the percentage of color concordance for a sample query using

the chromaticity index.

For very similar images the intersection norm results in a value near one

because the sum over the bins of the chromaticity histogram is one. Images

that do not share a single color bin are considered completely dissimilar. The

similarity value would be zero. To use the intersection norm as a distance

measure the similarity value must be negated. The transformation rpF a 	tsu.v +F a
was used.
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Figure 4: Sample query results comparing images using the chromaticity his-
togram and the intersection norm. The number below the images shows the
percentage of pixels the images shares with the query image at the top left.
The query images shares with itself 100% of the color distribution.
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2.5 Cue Combination

It is necessary to normalize the different distance functions before combining

the different indices. This is not only a consequence of using two different

distance functions. Even if different indices are combined using the same dis-

tance function normalization is necessary because the variances of the indices

can be quite different.

We used the z-transformation to normalize the distance values. The use

of the z-transformation seems reasonable inasmuch as the distance distribu-

tions we inspected manually show the form of a slightly skewed Gaussian

density function (Fig. 5). The parameters of the z-transformation are esti-

mated before each query. For this purpose a set of 1000 images w is ran-

domly selected. The mean and the standard deviation of the distribution of

distances between the query image and the 1000 random images is then esti-

mated ( x+yz	 y ?|{y}~�� ).

It is necessary to estimate the parameters for each query image again be-

cause the (query) images differ in their mean distances to all images and in

the variance of the distance distribution (Fig. 5a and b). These values can be

used to characterize the image. If �r a ��� d�� � is great and � a ��� d�� � is small then

the image � would be quite distinct regarding the similarity metric  used for

comparisons. If an image is compared using multiple indices then the means

and standard deviations characterize the importance of the different features

for the comparison within the image database. The distance of an image to

itself is zero per definition. Thus the z-value of an image to itself is the (nega-

tive) distance to the mean of the database in terms of the standard deviation.

If the image is quite distinct from the images in the database then the abso-

lute z-distance would be great.

The distance values of the different indices could then be combined by
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Figure 5: Histograms of distance values from two randomly choosen image
to a set of 1000 randomly selected images using chromaticity histogram and
intersection norm. The distance distributions have different means that will
result in different z-values (see text).

averaging the z-values. The z-transformation – calculated for each index sep-

arately – therefore ranks the indices in terms of their salience. The indices

that are more characteristic for an image are automatically weighted higher

than the other indices.

x"����� d ���|	 s& ��&��a�� � r
a ��� d ����.��r a ��� d�� �� a �q� d�� �
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Figure 6: Sample query results for a combined search using z-transformation.
Below each image the average of the z-values of the chromaticity, the lumi-
nance and the Fourier histogram distances is shown.
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3 Implementation

The algorithms were implemented into a Java framework. It consists of five

modules: database, features, feature combination, filters, a graphical user

interface (GUI) and communication protocols.

The image database module is URL based and can be used to address ei-

ther image files or images on http or ftp servers. For a query the different

indices can be selected and combined with filters (e.g. removal of DC compo-

nents in the Fourier spectrum) and one of the two distance metrics (Fig. 7).

Figure 7: Screenshot of the client applet.

The program can be run either as a standalone program or as a client-

server combination. The clients can be run as applets in internet browsers

which handle the local query definitions and store the query results. The

Java remote method invocation protocol (RMI) is used for client-server com-
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munication. The server receives the hierarchical query definitions, searches

the feature database for images and returns the results and the image URLs

to the clients. The images are retrieved by the client applets from the server

or the web.

The process of feature creation is script-based. For the 2-dimensional dis-

crete Fourier transformation and the bilinear rescaling we used the ‘hips’ im-

age software package (Landy et al., 1984).

The performance of the program depends on the speed of the computer

and the implementation of the Java virtual machine. For the database of

60,000 images used in the experiments it took between one and two seconds

to find the best 100 matches for a given image on a 750 MHz Pentium-III

based computer running the standard Java implementation of Linux. When

all three indices were combined a query was processed in less than five sec-

onds. It should be noted that we only used a linear search strategy not taking

advantage of possible bounding assumptions and tree-based data structures.

The search could be further speeded up by reducing the number of bins using

principal component analysis (PCA).
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4 Psychophysical Evaluation

The purpose of the psychophysical experiments was to measure the relation-

ship between the similarity norms created by the indices and the perceived

similarity. The similarity between two images was interpreted as a probabilis-

tic function and was measured in a two-alternative-forced-choice (2AFC) de-

sign. The correspondence between the similarity computations and the judged

similarity was measured for the three indices and three index combinations.

In contrast to previous evaluation strategies histogram-based similarity was

not only evaluated for a few best matches but for relatively distinct images

too.

4.1 Measuring Similarity

For precision/recall evaluation methods similarity is implicitly defined by the

judgments ( ! ) of the experimenter. The precision ( � ) of the result set can be

written as a function defining which images are relevant or similar for each

query image:

!�� ������� � h d s
�
The precision � of a result list � of the n best matching images (images

having a rank below than or equal to n ) can then be simply defined:

�i	 sn �F �"� !���� d �/�
In contrast, we here define the similarity between two images as a proba-

bilistic function:

J�� ���,��� � h d s��
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Figure 8: 2AFC display used in the experiments. At the top the query im-
age is show, below are two test images (target and distractor positions were
randomized).

The perceived similarity can be measured using either an absolute or rel-

ative scale. Both methods are highly correlated; the relationship between

both measures follows the form of a psychometric function (Papathomas et al.,

1998). In the relative case the user indicates the degree of similarity between

the query image and the test image on a rating scale. This requires the users

to adjust their scale to the content of the database prior to the experiment,

e.g. by seeing a list of random images. This may increase the standard error

of evaluation measurements. A more objective method is the two-alternative

forced-choice configuration (2AFC).

We used a configuration with three images: the query image at the top

together with two test images below (Fig. 8). The task of the user was to com-

pare the similarity of the test images with the query image and to select the

test image that is more similar. We defined the (probabilistic) similarity be-

tween the query image and a test image J ��� d �/� by the probability of preferring

the image J¡����� .
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We were interested in comparing the judged image similarity J �q� d �/� with

the similarity order of the indices. In the forced choice configuration the rate

of preferring an image is dependent on the degree of similarity between the

two alternatives. With the exception of experiment one we kept the similar-

ity of one image, the distractor image, constant. The similarity of the other

image, the target image, was varied.

For a given query image � an image � can be chosen that is either relatively

similar or quite dissimilar to � , using a similarity metric  . If the similarity

metric  corresponds to the observers’ varying the computed degree of simi-

larity  \��� d �/� should have an influence on the selection rate. For weak indexing

approaches, however, the observed correlation would be low. Therefore, the re-

lationship between the computed similarity  \��� d ��� and the rate of preferring

the image J¡��� d ��� can be used to evaluated the similarity metric  .
4.2 Objectives

Currently, similarity measures were only evaluated for the first best matching

images using precision information. But little is known if histogram-based

indexing can be used to compare the similarity of relatively distinct images,

too. In the experiments we varied the similarity between the target and the

query images over a broad range, from best matches to the 2000th image in

the result list to test whether the information stored in the indices can predict

the similarity judgments of the observers for the different levels of similarity.

The advantage of the 2AFC design over a rating scale is its simplicity. The

observers do not need to maintain an internal scale but can directly compare

the images. The disadvantage is that the selection probability J¡�q�/� is not only

dependent on � but also on the alternative r (distractor). If r for instance is

a random image the selection rate should be always greater than hM¢b£ . If r
23



is a quite similar to � than achieving a selection rate greater than hM¢b£ would

be a challenge. Therefore, the aim of the first experiment was the determine

how the similiarity judgments J¤����� are influenced by either very similar, less

similar, or completely random distractor images r .
In a second experiment the three indices were compared. The indices

stored distinct information: the chromaticity histogram encodes the frequency

of the color bins, the luminance histograms stores average luminance levels

but no frequency information, and both color histograms contain no spatial

information. From the Fourier index the bins containing average luminance

information were removed so that it only stores the orientation and spatial

frequency information. We wanted to known which index would be best suit-

able for image indexing and to what extent the information sources (chro-

maticity, luminance, spatial) contribute to the perceived similarity.

In the third experiment the indices’ information were combined. We

wanted to know if the chromaticity histogram can be improved by using the

spatial information and whether the luminance index would further improve,

or worsen the concordance with the observers’ judgments.

4.3 Method

For all experiments a large commercially database (Corel Corp., 1990) of

60,000 digitized photographs was used. It contains a wide range of themes.

Each theme consists of 100 images. The images show, for example, natural

and man-made objects, landscapes and close-ups, and were photographed un-

der natural illumination conditions or under artificial lighting.

From the database 900 query images were randomly selected for each ex-

periment. For each of these images the 2000 best matching images for each

relevant index or index combination were retrieved. The images with the rank
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numbers 2, 20, 200 and 2000 were selected for the experiments. In addition,

the target image could be a random image. Using the rank numbers rather

than the raw distances allows comparing the differently distributed distance

functions.

To achieve comparability the distractor was always determined by the

color histogram and the intersection metric. With the exception of experi-

ment one where the influence of the distractor similarity was investigated,

the rank of the distractor image was always 200. In the first experiment the

similarity of distractor images was varied. The similarity rank was 1 (best

matches), 200 or random.

The position of the target/distractor (left or right), the order of query im-

ages and of the similarity conditions were randomized per subject (mixed de-

sign).

The images were displayed on a 21¨ computer monitor (Sony GDM-F500)

with a resolution of 1280x1024 pixels on a 50% gray background. The exper-

iments were self-paced without decision time limits and lasted between 45

and 60 minutes. The subjects were undergraduates of psychology who were

obliged to participate in experiments for their curriculum and were naive with

respect to the experiments. They were instructed to compare the similarity of

the two test images with the image at the top and to decide which image is

more similar. Subjects were told that there is no “true or false” and to judge

intuitively if unsure. The answers were giving by clicking the left or right

mouse button.
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4.4 Experiment 1: Influence of distractor similarity

In the first experiment the relationship between the similarity computed with

the chromaticity histogram and the human judgments was measured. As a

second factor, the similarity of the distractor image was varied to determine

whether the degree of similarity between the two test images would influence

the rate of preference for the target image.

The image similarities were calculated using the chromaticity histogram

and the intersection norm. The rank of the distractor image was either 1 (best

match), 200, or random. The rank of the target image was 1, 2, 20, 200, 2000,

or random. This results in ¥ � £ conditions because the points of equal target

and the distractor ranks were not measured.

The results show a strong correlation between the logarithmic rank of the

test image and the probability of preference. In figure 9 the similarity rank of

the target image is plotted at the x-axis. For each of the three distractor ranks,

the rate of preferring the target is shown on the y-axis. The hypothetical

points of equal similarity between the target and the distractor image are

marked by filled circles. The correlation coefficient between the logarithmic

rank and the percentage of concordance is very high ( ��¦;¢¨§�£ ) and significant

(J�©ª¢¨h�£ ). Table 1 shows the regression and correlation coefficients.

Distractor Rank b a r
1 -.022 .49 .985
200 -.032 .68 .999
Random -.027 .80 .965

Table 1: Regression and correlation coefficients for the relationship between
logarithmic target rank and concordance for different distractor ranks.

Changing the distractor similarity does not alter the gradient of the linear

regression and only shifts the functions by a constant amount. Therefore,

the alternative image in the 2AFC design is not of critical importance for the
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Figure 9: Probability of preferring the target image against the distractor im-
age as a function of similarity between the target and the query image. The
similarity distance was calculated using the chromaticity index and the inter-
section metric. The filled circles indicate hypothetic points of equal similarity
of distractor and target image with expected probability .5 and therefore de-
fine the rank of the distractor image. The standard error is shown for each
condition.

evaluation of the indices. For the following experiments we kept the distractor

similarity constant. We decided to use the medium distractor similarity (rank

200) to allow an optimal use of the range of the scale.

27



4.5 Experiment 2: Index comparison

Experiment 1 showed that the computed chromaticity-based similarity corre-

lates with the observers’ judgments. In experiment 2 we wanted to know, to

what extend the other information sources (luminance, orientation and spa-

tion frequency) contribute to the similarity judgments.

The distractor image was determined by the chromaticity histogram and

had rank 200. The rank of the target image was again 1, 2, 20, 2000, or

random. For the chromaticity histogram the minimum norm was used. The

distances between the other vectors were calculated with the Euclidian norm.

The results show a strong advantage for the chromaticity histogram. For

relatively distinct images the luminance and spatial index show similar per-

formance (rank 20, 2000). For highly similar images (rank 1,2), the luminance

index provided better matches.
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Figure 10: Relationship between the probability of preferring the target im-
age against the distractor image as a function the similarity between query
and target image. The similarity distances were calculated using the chro-
maticity, luminance and the spatial index. The filled circle indicates the the-
oretic point where the target and the distractor image are equally similar.
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Index b a r
Color Frequency -.034 .66 .976
Luminance -.025 .52 .978
Fourier spectrum -.019 .47 .989

Table 2: Regression and correlation coefficients for the relationship between
logarithmic target rank and concordance for the different indices.
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4.6 Experiment 3: Index combination

The performance of the luminance and spatial index is clearly worse than

that of the chromaticity histogram. However, we wanted to know if the corre-

spondence with the observers’ judgments could be improved if the spatial or

the spatial and the luminance information were used in addition to the color

frequencies.

We used the average of the z-transformed distance values as our similarity

function. All other conditions were identical to the ones in experiment two.

Figure 11 shows a general improvement of the selection rates of the image

retrieved when either spatial or spatial and luminance information is com-

bined with the chromaticity histogram. The correspondence with the judg-

ments was improved by 5% if the spatial information is used (Table 3). The

luminance information further enhances the concordance by 4%. Therefore,

the luminance and the spatial index contribute to image similarity indepen-

dent of the chromaticity histogram.

The overall improvement of 9% clearly indicates that the z-transformation

is a good choice for combining index information.

Index Combination b a r
Freq. -.021 .60 .967
Freq. + Fourier -.028 .65 .959
Freq. + Fourier + Lum. -.031 .69 .998

Table 3: Regression and correlation coefficients for the relationship between
logarithmic target rank and concordance for combinations of the indices.
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Figure 11: Relationship between the probability of preferring the target im-
age against the distractor image as a function of the similarity between the
query and the target image. The similarity distances were calculated using
the chromaticity, the chromaticity and the spatial and all three indices. The
filled circle indicates the theoretic point where the target and distractor are
equally similar. The standard error is shown for each data point.
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5 Discussion

5.1 Perception Based Image Indexing

Color histograms and their variations are used with great success in many

current CBIR systems. The histograms are typically built in RGB or HSI

space. For objects that are photographed under different illuminations, color

constancy algorithms can improve the retrieval quality (Funt and Finlayson

(1995), Gevers and Smeulders (1996), Alferez and Wang (1999)). The spatial

information of images was encoded a variety of ways: by multiple histograms

(Stricker and Dimai, 1997), correlograms (Huang et al., 1999), explicit texture

statistics (Liu and Picard, 1996) and by wavelet transformations (Manjunath

and Ma (1996), Wang et al. (1997), Liang and Kuo (1999)).

Most of these features were constructed to optimally represent some, in

most cases statistical properties of images. We created a chromaticity his-

togram in analogy to processing of color in the human vision system. The

color-opponent code in the optical nerve is a nearly optimal representation of

color because it removes the correlation between the channels (Buchsbaum

and Gottschalk, 1983). One could argue that optimal representations for im-

age colors would be better constructed by principal components or cluster

analyses. However, in the end the similarity of the images is always judged

by human observers. Therefore, using a psychophysical color space should

result in an optimized metric which better corresponds to human similarity

judgments.

In addition to the frequency encoding chromaticity histogram, we stored

the average luminance levels of the color bins for each image in a second

vector. The separate processing of chromaticity and luminance (contrast) in-

formation is part of various models of visual processing. We used the separa-
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tion of chromaticity and luminance information to compare the contribution of

both information sources to the similarity judgments. We found that the lumi-

nance index is correlated with the observers’ judgments, too. The prediction

of the perceived similarity is not as good as with the chromaticity histogram.

But luminance appears to be considered when images are compared, even if

the luminance of the color tones seems not to be as important as their fre-

quency. Illumination invariant indices may therefore only be superior if the

database contains many similar objects photographed under various illumi-

nation conditions.

The spatial information was extracted using the 2-dimensional DFT. The

index was constructed to represent the distribution of orientation and spatial

frequency in the image in analogy to the processing of contrast information in

the visual cortex. Although many texture feature sets describe similar infor-

mation, Fourier analysis offers a mathematically profound way to extract the

information. The explicit representation of orientation and spatial frequency

in the Fourier spectrum allows the simple filtering of these dimensions. In our

program the user could for example select a radial filter to use the Fourier in-

dex as an orientation index only. By averaging the bins of equal frequency

ranges a rotation invariant search could be conducted.

5.2 Evaluation

Currently, CBIR systems are evaluated by precision and sometimes recall

measures. Relevant images are – in the majority of the publications – de-

fined by similarity judgments of a single person deciding whether an image

belongs to the same category as the query image. The image databases used

for evaluation typically contain between hundred and some thousand images.

A very well evaluated system is the PicHunter system (Cox et al. (2000),
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Papathomas et al. (1998)). The system includes simple features like the image

height and width, color histograms, color autocorrelogram, a color-coherence

vector and – for a subset of the images – semantic annotations. The features

were tested in a forced choice design similar to one we used and then later

compared within the target testing paradigm (Cox et al., 2000).

However, the target testing evaluation procedure used in Papathomas

et al. (1998) is limited to relevance feedback systems. It is ideal to evalu-

ate a complete system but it is less ideal to measure the relationship between

single features and human perception. With target testing the functional rela-

tionship between an index similarity space and the similarity space of human

perception cannot determined.

Cox et al. (2000) used a sigmoid function to transform the raw distances to

a probabilistic scale. Our results suggest that the relationship could be mod-

eled by a logarithmic function between the similarity rank and the selection

probability for 2AFC designs. That relationship holds for all indices and is

not impacted by the similarity of the distractor image.

For relevance feedback systems it is highly important to measure the rela-

tionship between the similarity metric and the perceived similarity over the

whole range of similarity, from the most similar image to random images.

5.3 Conclusion

In summary, we have shown that the psychophysically motivated indices are

very effective in finding similar images. The indices were constructed in accor-

dance with some of the known properties of the early stages of human vision.

The color codes in the “red-green” and “blue-yellow” channels were modeled

using the color-opponent axes of the DKL color space and a logarithmic-radial

scaling for the histogram bins. The luminance information was stored in a
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separate index. The 2-dimensional Discrete Fourier Transformation was used

to create an orientation and spatial frequency histogram in analogy to similar

representations in the visual cortex. Finally, we evaluated the Color Index-

ing System Based On Perception (CISBOP) with a strictly qualitative and

objective approach using a large, heterogeneous database of 60,000 digitized

photographs.
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