
Abstract. Classical receptive ®elds (cRF) increase in size
from the retina to higher visual centers. The present
work shows how temporal properties, in particular
lateral spike velocity and spike input correlation, can
a�ect cRF size and position without visual experience.
We demonstrate how these properties are related to the
spatial range of cortical synchronization if Hebbian
learning dominates early development. For this, a
largely reduced model of two successive levels of the
visual cortex is developed (e.g., areas V1 and V2). It
consists of retinotopic networks of spiking neurons with
constant spike velocity in lateral connections. Feedfor-
ward connections between level 1 and 2 are additive and
determine cRF size and shape, while lateral connections
within level 1 are modulatory and a�ect the cortical
range of synchronization. Input during development is
mimicked by spike trains with spatially homogeneous
properties and a con®ned temporal correlation width.
During learning, the homogeneous lateral coupling
shrinks to limited coupling structures de®ning synchro-
nization and related association ®elds (AF). The size of
level-1 synchronization ®elds determines the lateral
coupling range of developing level-1-to-2 connections
and, thus, the size of level-2 cRFs, even if the feedfor-
ward connections have distance-independent delays.
AFs and cRFs increase with spike velocity in the lateral
network and temporal correlation width of the input.
Our results suggest that AF size of V1 and cRF size of
V2 neurons are con®ned during learning by the temporal
width of input correlations and the spike velocity in
lateral connections without the need of visual experi-
ence. During learning from visual experience, a similar
in¯uence of AF size on the cRF size may be operative at
successive levels of processing, including other parts of
the visual system.

1 Introduction

1.1 Receptive and association ®elds

The best explored and most accepted concept of visual
processing is that of the classical receptive ®eld (cRF;
Hubel and Wiesel 1962) which characterizes the spatio-
temporal coupling between small visual stimuli and the
spike response of single visual neurons. Less intensely
investigated is the in¯uence of visual context outside the
cRF. Context can modulate the cRF properties strongly
over a broad range in visual space (Allman et al. 1985).
In recent years synchronization ®elds were found in the
lower areas of the visual cortex. Their size has been
de®ned by the cortical extent of coherence among fast
cortical oscillations (35±90 Hz; Eckhorn 1994; Frien and
Eckhorn 2000). According to the cRFs of single
neurons, the projections of synchronization ®elds to
visual space have been termed the association ®elds (AF;
Eckhorn et al. 1990) or context ®elds (Phillips and
Singer 1997) of local groups of neurons. One intensely
discussed hypothesis for the AFs' function is that feature
grouping is supported in their ®eld by synchronizing
those neurons currently representing the same visual
object (reviews in Eckhorn 1999; Gray 1999).

Grouping of features into whole objects may also be
coded by the convergence of their relevant feature de-
tectors (Barlow 1972; Riesenhuber and Poggio 1999). If
convergence is present over all levels of visual process-
ing, it would produce a systematic increase in cRF size
from retina to higher centers. This principle may become
operative during early visual experience if objects to be
learned appear transiently and alone in a scene. The
component feature detectors of an object would be co-
activated, and Hebbian learning could establish stable
convergent connections. However, real visual objects are
parts of complex scenes and their segregation from other
objects is a formidable problem. One potential solution
for scene segmentation is provided by the concept of
transient synchronization within the representational
range of an object. In such a scheme, Hebbian learning
would only stabilize feedforward connections of
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synchronized inputs. In this way, the synchronization
and related association ®eld at a lower level would de-
termine the cRF type and size at the next level of pro-
cessing and hence, cRFs would increase within the
hierarchy of visual cortical areas.

1.2 Input to visual cortex during development

Evidence of cortical plasticity by visual experience is
rarely disputed (e.g., Hubel and Wiesel 1970; Crair et al.
1998). However, many functional units of the visual
cortex emerge before eye opening, demonstrating that
visual experience is not required for initial development
(Crair et al. 1998; Chapman et al. 1999). Spike activities,
already present in the retina before eye opening,
probably provide instructive cues for guiding the
development within the striate cortex (Weliky and Katz
1999). This activity consists of stochastic spike trains,
simultaneously modulated in their rates over large
retinal regions (Meister et al. 1991; Wong and Oakley
1996). For the present model we assume (as a working
hypothesis) precise correlations (2±10 ms) among inputs
to the V1 level over ranges of several hypercolumns. This
seems reasonable because activities in the developing
retina are dominated by tight junctions among neigh-
boring neurons (Penn et al. 1994), which are known to
mediate fast electrical coupling in the millisecond scale.
Precise temporal structuring of cortical input may also
be introduced by rhythmic cortico±thalamic feedback
(5±10 Hz) and via fast intracortical inhibition (20±
30 Hz). Thus, precise correlations in maintained activ-
ities at thalamic and primary cortical levels are probably
present before visual experience and may guide the early
development of connectivity patterns.

1.3 Hebbian learning supports the emergence
of functional cortical units during development

Several correlational properties of a�erent spike trains
to the striate cortex are consistent with predictions of
activity-dependent models of cortical map and cRF
development in V1 before eye opening. One model
proposes that the observed di�erences in correlated
®ring between ON- and OFF-thalamic a�erents can
drive the segregation of a simple cell's cRF subregions
(Miller 1994). Other models show that the competing
requirements of joint ocular dominance and orientation
map development in V1 can be resolved if within-eye
activity is more strongly correlated than between-eye
activity (Miyashita et al. 1997; Stetter et al. 1997), a fact
that has recently been con®rmed experimentally (Weliky
and Katz 1999).

Most models of striate cortical development based on
Hebbian learning use partially synchronized input
activities, while few assume di�erences in delays. For
instance, Gerstner et al. (1996) explain the temporal
precision in auditory direction discrimination by sorting
out axons of di�ering delays by correlation learning,
resulting in coincident spikes. Other recent work

assumes correlation-dependent learning of synaptic de-
lays by a rule decreasing the correlation delays in syn-
aptic signals and generating coincident inputs (HuÈ ning
et al. 1998; Eurich et al. 1999). Finally, Ritz et al. (1994)
demonstrate that the average activation delay among
reciprocally connected excitatory neurons restricts the
size of cortical synchronization ®elds in which zero-
delay phase-locking is possible for a given oscillation
frequency.

In our present model of visual areas V1 and V2, the
main properties are lateral spike conduction delays in-
creasing systematically with distance, in addition to
partial correlations of the external signals. Their rele-
vance is tested for the emergence of functional cortical
units without visual experience (an abstract was pub-
lished in Saam et al. 1999).

2 Methods

2.1 Model neuron

We use pulse coding model neurons with spike inputs,
realistic post synaptic potentials, and an adaptive spike
encoder with dynamic threshold (Eckhorn et al. 1990).
The input part of a neuron ni consists of synapses Sij,
which have an impulse response h�t� and a synaptic
e�cacy wij.

Sij�t� � wS
ijIj�t ÿ Dij� � h�t; sS1; sS2� ; �1�

where � denotes the convolution operator, i is the index
of the postsynaptic neuron ni, Ij the spike output of a
presynaptic neuron nj, and Dij the conduction delay for
spikes between ni and nj. The synaptic response h�t� is
modeled by a second-order leaky integrator:

h�t; s1; s2� � H�t��exp�ÿt=s2� ÿ exp�ÿt=s1�� : �2�
H��� denotes the Heaviside function. Time constants are
chosen such that the excitatory postsynaptic potential
(EPSP) reaches its maximum value at t=1. Two types of
inputs are processed separately: external feeding input
Fij and lateral linking input Lij (Eckhorn et al. 1990).

Si�t� �
X

j

Sij�t� ; �3�
where S may be F or L. While the feeding inputs Fi have
conventional synapses (non-NMDA), the linking inputs
Li exert multiplicative in¯uence on the feeding inputs.
The resulting membrane potential, driving the spike
encoder, is therefore calculated as:

Ui�t� � Fi�t� � �1� Li�t�� ; �4�
which enables the feeding input to drive the spike
encoder even with zero linking input, while the reverse is
not possible. Multiplicative interactions have been
chosen for the following reasons: Lateral interactions
in developing visual cortex area V1 are mainly located in
the upper layers where synapses are dominated by
NMDA channels (Fox et al. 1989). In V1, NMDA
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channels have been reported to mediate gain control,
due to their voltage dependences and the di�erences in
the Hill coe�cients for binding glutamate at the NMDA
receptors. Both properties a�ect the response to a�erent
visual input in a graded multiplicative fashion (Fox and
Daw 1992). Thus, a multiplicative interaction among
forward and lateral connections seems biologically
plausible. In our model, this modulatory action of the
linking on the feeding inputs ensures that the local
coding of single neurons (here the cRF) is not deterio-
rated by lateral connections (Eckhorn et al. 1990).

In the spike encoder, the membrane potential Ui�t� is
compared to a threshold hi�t�. If Ui�t� exceeds hi�t�, a
spike is generated:

Oi�t� � H�Ui�t� ÿ hi�t�� : �5�
The threshold hi�t� has a static o�set value h0 and a
dynamic part, which is an impulse response of two leaky
integrators to the spike output Oi�t�:
hi�t� � h0 � Oi�t�

� ��Vhr exp�ÿt=shr� � Vhs exp�ÿt=shs��H�t�� : �6�
One leaky integrator has an amplitude Vhr and a short
time constant shr modeling fast refractory components,
while the other (Vhs, shs) is slower, mimicking spike rate
adaptation. Additionally, an absolute refractory period
of 1 ms is introduced. The above equations are solved
for di�erent temporal resolutions (Dt � 0:2; 0:5; 1:0).
The higher resolutions are important for realizing
precise distance-dependent delays in the network. A
physiologically realistic time scale is 1 ms for Dt � 1.

2.2 Network topology and signal properties

Level 1 and 2 each consist of 441 neurons arranged on a
two-dimensional Cartesian grid. To avoid artifacts from
boundaries, toroidal boundary conditions are used. All
neurons have the same time constants and threshold
properties (Table 1). We expected complex intermingled
e�ects on the learning process in lateral and feedforward
synapses by the di�erent types of temporal spike
dispersion, including the partial correlation of the
stochastic external inputs and the systematic delay
dispersion in lateral and feedforward axons. In order
to keep these e�ects separate we built and analyzed the
model in three consecutive steps (Fig. 1: scenario A, B,
and C).

2.2.1 Scenario A: Learning the level-1 linking synapses of
lateral connections with distance-dependent delays
(Fig. 1). Lateral axons project to neighbors up to a

distance of 10 neurons. The initial strengths wc of these
linking synapses are low and chosen randomly. The
axons transmit spikes at constant velocity vax (Table 1)
so that delays increase proportional to lateral distance
(for the choice of realistic velocities see the Discussion).
Other delays, including synaptic and dendritic ones, are
assumed to be constant in their average values so that
their sum D0 is also constant and can be compensated in
the present simulations by a temporal o�set D0 in the
learning function (arguments for these simpli®cations
are given in the Discussion).

The external input to level-1 neurons has no spatial
structure in its correlation properties because here we
are interested in the e�ects of lateral transmission de-
lays on the formation of spatially con®ned coupling
structures during learning. Therefore, we composed the
input of the following components: (1) Independent
Gaussian white noise (GWN) is directly superimposed
on the feeding potential with the same mean mGWN and
standard deviation rGWN for all neurons. These con-
tinuous signals resemble the postsynaptic potentials
evoked by a large number of statistically independent
spike trains (Fig. 2a). (2) Correlated spike trains with a
Poissonian interval distribution (mean rate fp) are ap-
plied to a fraction (pp) of all neurons (randomly selected
for each correlated burst of activation). These spike
trains are temporally correlated (Fig. 2b) according to a
common modulation by a Gaussian impulse probability
(SD: rp). Thus, the input has weak paired spike cor-
relations with a peak at zero time shift and a correla-
tion width of 2rp. Despite the presence of the
independent GWN, the input spike trains reproduce
their mutual correlations approximately among the
neurons' outputs (Fig. 2c,d). These are the spike trains

Table 1. Network parameters

Neuron parameters
sf 1 0.2789 ms sf 2 9.0 ms
sl1 0.3866 ms sl2 4.0 ms
h0 0.3 vax 1.0 grid/ms
Vhr 5.0 shr 5.0 ms
Vhs 1.0 shs 80.0 ms
mGWN 1.0 rGWN 0.3

Learning level-1 connections (scenario A)
pp 0.25 fp 10.0 Hz
rp 2.5 ms wc 0.005
sp1 0.3866 ms sp2 4.0 ms
a 0.15 c 0.005

Learning level-1-to-level-2 connections (scenarios B, C)
A12 0.03 r12 6.0 grid units
fb 10.0 Hz vb 1.0 grid/ms
sp1 0.2789 ms sp2 9.0 ms
a 0.25 c 0.005

Fig. 1. One-dimensional sketch of the connectivity scheme for a single level-1 neuron in the three di�erent scenarios A, B, and C. Open arrow
heads: linking synapses; ®lled: feeding synapses
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that a�ect learning in the linking synapses after being
delayed in the lateral axons.

2.2.2 Scenario B: Learning of level-1-to-2 feeding pro-
jections with distance-dependent delays while lateral con-
nections at level 1 are absent (Fig. 1). Here, the e�ect of
delays in feedforward connections is studied in isolation
(without the in¯uence of level-1 delays). Level-1 neurons
project completely onto level-2 neurons. The initial
strengths of the feeding synapses are randomly distrib-
uted around a common mean (Fig. 7a) su�cient for
initiating spikes in level-2 neurons. Level-1-to-2 axons
have the same increase in delays with lateral distance as
in scenario A (i.e., constant axonal velocity). The
interareal delay between all retinotopically correspond-
ing positions is assumed to be equal. A constant delay
does not change the relative timing of incoming spikes at
level-2 neurons, and since there is no feedback in our
simpli®ed model, this additional delay will have no
in¯uence on the learning results. Hence, the e�ective
input spike trains for learning the level-2 synapses have
the same statistical properties as those for learning the
lateral linking connections at level 1 in scenario A
(because they are collaterals of the same layer-1
neurons). This means, that their correlations (Fig. 2d)
are spatially homogeneous.

2.2.3 Scenario C: Learning level-1-to-2 feeding connec-
tions with constant axonal delay and input from the
learned version of level 1 (Fig. 1). Here we test the
temporal e�ects emerging in a learned version of level 1
(scenario A) on feedforward convergent projections to
the next level. To obtain separable e�ects, we kept all
delays from level 1 to 2 identical. Level-1 neurons
project retinotopically to level-2 neurons, initially with a
broad Gaussian weight function (A12, SD: r12), modeling
the large diverging axonal trees present during develop-
ment. To exclude the possibility that learning results
arise from initialization, we trained the network with
independent noise inputs as a control. In these simula-
tions all weights decreased below 10ÿ5, which is three
decades below the e�ects obtained with temporally
correlated input.

If the learned version of level 1 (scenario A) is excited
by a localized activity blob at random positions, damped
traveling waves of laterally propagated activity are
evoked, conducted by the constant velocity connections.
To obtain a more precise control over this wave-like
input to level 2 we replaced the lateral level-1 connec-
tivity and its input spike trains by a simulated version of
the level-1 outputs with a well de®ned ®ring probability:

p�r; t� � exp�ÿr2=�2r2
b��d�vbt ÿ r� : �7�

Here, r denotes the distance of the neuron from the
center of the input blob, vb is the velocity of a wave front
and t the time relative to the occurrence of the blob.
During learning, the centers of these wave-like activa-
tions are uniformly distributed over the neural grid,
chosen in a random sequence with Poissonian interval
distribution at a rate fb.

2.3 Learning

We use a temporal Hebbian learning rule similar to that
of a recent work (Gerstner et al. 1996). The weight
changes exclusively depend on the relative timing of pre-
and postsynaptic spikes in the following way. Each
presynaptic spike initiates a synaptic learning potential

Lij�t� � Oj�t ÿ Dij� � h�ÿt; sp1; sp2� ÿ a : �8�
The time course of Lij in response to a single presynaptic
spike is shown in Fig. 3. If the postsynaptic neuron
generates a spike, the synaptic e�cacies are changed
according to the present values of the learning poten-
tials:

Dwij�t� � maxfcLij�t�Oi�t�;ÿwij�t�g ; �9�

wij�t � Dt� � wij�t� � Dwij�t� ; �10�
where c denotes the learning rate. With this rule, weights
cannot change their sign and it ensures that causality
plays a prominent role. With the parameters given in
Table 1 the e�ective duration of the facilitatory (posi-
tive) part of the learning window is about 10 ms. The
overall learning process lasted 100 000 ms.

Fig. 2a±d. Scenario A, B: Statistical properties of the spike trains at
the output of level 1 that are e�ective during learning. a Lower panel:
spike patterns of level-1 neurons (each dot denotes the occurrence of a
spike) and temporal spike count of all neurons (upper panel), driven
exclusively by the independent Gaussian white noise (GWN) at the
inputs. b Correlated spike patterns and temporal spike count at the
output of level-1 neurons; two events of modulation in spike rate are
shown. c Spike patterns and temporal spike count at the output of
level-1 neurons if GWN (a) and the spike patterns (b) drive their
inputs. Such spike patterns are e�ective during learning of the lateral
linking connections at level 1 and the level-1-to-2 feeding connections.
Note that the statistical properties of these signals are spatially
homogeneous. d Cross-coincidence histogram among pairs of output
spike trains, averaged over all combinations of level-1 neurons
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To measure the signal correlations introduced by the
learned lateral connections of level 1, their neurons are
activated by the same input as during learning. Cycling
artifacts are avoided by open boundary conditions and
the restriction in calculating the cross-coincidence his-
tograms (CCH) to the spike trains of the central neu-
rons. The spatial strength pro®le of signal coupling is
quanti®ed by a single correlation index from CCHs
among neurons of di�erent distances (Juergens and
Eckhorn 1997). This index measures the coupling-relat-
ed area of the central peak and yields values from 0
(uncorrelated) to 1 (completely correlated).

3 Results

3.1 Learning of lateral linking connections (scenario A)

3.1.1 Emergence of lateral coupling kernels. Learning of
the lateral linking connections is achieved with tempo-
rally correlated input, lacking any spatial structure
(Fig. 2c, and see Sect. 2.2). The cross-coincidence histo-
gram among outputs of level-1 neurons (Fig. 2d) shows
an average coupling width similar to that of the inputs
(not shown). With these outputs a�ecting learning of the
lateral connections, several new spatial network proper-
ties emerge.Most important is the laterally restricted cou-
pling kernel with strong weights to direct neighbors and a
monotonous decline with increasing distance (Fig. 4a).
The con®ned coupling structures cause a related spatial
restriction in the correlations of the spike trains (Fig. 4b).
More precisely, the half height width of the spatial
distribution of the correlation index varies proportionally
with the width D of the lateral coupling kernel.

This con®ned coupling emerges due to combined in-
teractions of the distance-dependent spike delays and the
temporal jitter of the input correlations in conjunction
with the learning window. To understand this, consider
the probabilities of relative spike timings at the learned
synapses. Assume for the noiseless case that each neuron
has a temporal Gaussian probability distribution u�Dt�
to ®re with other neurons during the events of simulta-
neous input modulations according to Fig. 2b:

u�Dt� � 1=�
������
2p
p

rp� exp�ÿDt2=�2r2
p�� : �11�

In addition, let us consider the projection from a
presynaptic neuron nj to a postsynaptic one ni. The
spikes of nj need a time interval Dij to reach the synapse;
therefore, ni receives a temporally shifted distribution of
spikes u�Dt ÿ Dij� from nj. Hence, their relative spike
timings (pre- and postsynaptic) are a convolution of the
distributions:

~pij�Dt� � u�Dt� � u�Dt ÿ Dij� �12�
� 1=�2 ���

p
p

rp� exp�ÿ�Dt ÿ Dij�2=�4r2
p�� ; �13�

which is also a Gaussian with shifted mean and
increased standard deviation. This holds only approxi-
mately here because it requires statistical independence,
whereas in our model pre- and postsynaptic activities are
weakly correlated. However, (13) is not used for
simulations, but is introduced for a better understanding
of the simulation results. Weight increase only occurs for
negative Dt (Fig. 3). Thus, the integral

pij �
Z0
ÿ1

~pij�Dt�dDt ; �14�

Fig. 3. Synaptic weight change Dw/c as a function of the relative
timing Dt (in milliseconds) between presynaptic tpre and postsynaptic
®ring tpost

Fig. 4a,b. Scenario A: a Average spatial coupling pro®le between
level-1 neurons after learning. Synaptic strength to neighboring
neurons is maximal and decays with increasing distance. The inset
shows an intensity plot of the same data (grey scale coding; black:
highest coupling strength). b Correlation index of spike output
depends on spatial distance. The average correlation strength
introduced by the input is indicated by the dashed line
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gives the probability for increasing the synaptic strength
between nj and ni. The emergence of the lateral coupling
kernel can now be understood if we look at two neurons
nn and ns with a short axonal delay Dns in their
connection (Fig. 5a). In this case, pns is large so that
the synapse is strengthened quite often. In contrast, a
distant neuron nl has a long delay, so that pnl is low
(Fig. 5a). Since weight increasing events are seldom, the
resulting strength will be small after learning has
converged. Hence, the spatial coupling kernel depends
both on the temporal correlation width among spikes at
the (inputs and thus at the) outputs of level-1 neurons
and the temporal dispersion introduced along the lateral
connections.

3.1.2 Variation in the temporal correlation width of the
external input rp. This variation results in a proportional
change of the spatial width D of the lateral coupling
pro®le. Broader input correlations cause broader cou-
pling pro®les (Fig. 6a). If we look at a broadened
distribution, of relative spike timings (Fig. 5b, dashed
curve), more events comply with the timing condition set
by the learning rule. Even for distant neurons the
synaptic weights grow and therefore the spatial weight
distribution becomes broader.

3.1.3 Variation of lateral conduction velocity. A narrow
coupling width D emerges with a low lateral conduction
velocity, and D increases with velocity (Fig. 6b). To
explain this e�ect, let the distance between two neurons
nn and nl be lnl. As axonal transmission velocity is vax,
the delay between them is Dnl � lnl=vax. Increasing the
velocity vax shifts the distribution of relative spike
timings pnl in (13) nonlinearly towards zero (Fig. 5b,
dotted curve). Thus, the probability of negative time
di�erences, and therefore the number of positive learn-
ing events, increases. In the idealized case of in®nite
conduction velocity, the resulting coupling structure
would exhibit no decay at all.

To summarize, the action of increasing lateral prop-
agation velocity and increasing temporal correlation
width at the inputs both enlarge the spatial size of the
coupling kernel in the lateral network.

3.1.4 In¯uence of the learning function. The convergence
speed of the learning process and the maximal weights
depend on the e�ective duration of the learning
window's strengthening epoch (positive part, Fig. 3). If
this epoch is elongated beyond the width of the relative
spike timings (13), the contribution of random spike
correlations to the synaptic weight change increases and,
therefore, speci®c learning is slowed down. If the epoch
is shortened, the number of positive learning events
decreases (the signal-to-noise ratio for learning e�ects),
so that stable and fast convergence is di�cult to obtain.
However, in a broad range the duration of the
strengthening epoch has no e�ect on the size of the
spatial coupling kernel (Fig. 6c).

3.2 Learning of level-1-to-2 feeding connections
(scenarios B, C)

In scenario B (Fig. 1) the distance-dependent connec-
tions between level 1 and 2 are learned with the same
input as in scenario A, while lateral connectivity among
level-1 neurons is absent. After learning, the following
structures emerge from the randomly chosen weights
(Fig. 7a). The coupling strength of collaterals from the
same level-1 neuron decays with distance (Fig. 7b,c).
This e�ect is comparable to the development of the
lateral weights at level 1 in scenario A. If neurons at

Fig. 5a,b. Probability density functions ~p of the relative spike timings
Dt in the idealized, noiseless case. a Connections with a short delay Dns

have a high probability pns to be strengthened, while long delay
connections have a low probability pnl b p is increased by a broader
temporal input jitter (pr) or a faster axonal velocity (pv)

Fig. 6a±c. Scenario A: The width of the synaptic weight pro®le of the
lateral linking connections depends on the temporal width of the input
correlations (a) and the lateral conduction velocity (b), while the decay

of the learning window plays only a minor role (c). Grey dots indicate
simulations with identical parameters
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level 1 generate a correlated spike packet, action poten-
tials, transmitted with short delays, arrive ®rst at
retinotopically corresponding level-2 neurons. The
evoked EPSPs lead to an increase in the membrane
potential and ®nally, the neuron ®res. Since delays are
distance-dependent on an evenly spaced grid, few
connections with short delays exist. The ®rst EPSPs at
a given target neuron are only small in number and are
generally not su�cient to evoke a postsynaptic spike.
However, additional spikes arriving from more distant
neurons eventually cause the neuron to ®re. The
connections leading to threshold transition are strength-
ened most, while connections with shorter delays have
already ®red and therefore have a negative Dt (Fig. 3).
Thus, the weights of proximal connections are less
strengthened compared to distal ones, which is re¯ected
in the central dip of the weight distribution (Fig. 7c).
This dip resembles the decay in the learning function
(Fig. 3).

After learning, the centers of the coupling kernels in
the neural lattice (corresponding to cRF centers in real
systems) are retinotopically well organized (Fig. 7d).

This retinotopic sorting is due to the systematic distance-
dependent delays in level-1-to-2 connections which de-
®ne a temporal neighborhood detected by the Hebbian
learning function. We would like to note that this reti-
notopic sorting does not require spatially structured
input signals at level 1.

In scenario C (Fig. 1) identical delays in all level-1-to-
2 connections are used, and learning started with a broad
coupling distribution in the feedforward connections.
External inputs are spatially localized blobs of spreading
(wave-like) spike activity presented sequentially at ran-
dom positions (7). After learning, the centers of the
feedforward coupling kernels have maintained their ini-
tialized topography and have increased their spatial res-
olution by reducing their size and, thus, reducing the size
of level-2 cRFs. The cRF size is monotonically related to
the size of the synchronization ®eld and the correspond-
ing AF size at level 1 (Fig. 8).

4 Discussion

We demonstrate how lateral spike propagation velocity
can in¯uence the emergence of spatially con®ned
synaptic weight distributions during Hebbian learning
without visual experience. Essential for mimicking the
developmental phase in visual cortex are also short
(<20 ms) common spike rate ¯uctuations at its external
inputs from the thalamus. As these inputs have no
spatially structured correlations in our model, the
emerging weight distributions are exclusively due to
the temporal dispersion of network spike delays and the
temporal width of input correlations. If we relate our
model structures to visual cortical areas V1 and V2, the
weight distributions of the level-1-to-2 feeding connec-
tions determine the cRF size in V2, while the weight
distributions of level-1 linking connections (V1) de®ne
the potential cortical range of synchronization (its
projection to visual space is called the association ®eld
or AF).

Our learning function is particularly sensitive to
precise spike correlations according to the steep gradient

Fig. 7a±d. Scenario B: Synaptic weight distribution at level-2
synapses of feedforward projections from a single level-1 neuron. a
Example of randomly initialized weights before learning. b Example
of weight distribution after 105 learning steps. c Average weight
distribution of all level-2 neurons. The dip in the center is due to the
decay of the learning window. d Spatial distribution of the centers of
synaptic weight pro®les of level-1-to-2 connections, characterized by
the line crossings. In real visual representations these positions would
de®ne the centers of cRFs. Note that the retinotopic organization
evolves from complete randomness without spatially structured visual
input. Only temporal structure was introduced by distance-dependent
spike delays

Fig. 8 Scenario C: Size of level-1-to-2 connection pro®le is correlated
with lateral synaptic weight pro®le of level-1 neurons (simulations
with constant level-1-to-2 delays and damped spreading wave
activation at level 1, mimicking a learned version of scenario A).
Similar relations are obtained with distance-dependent delays between
level 1 and 2 in scenario B (not shown)
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between the negative (unlearning) and the positive
(learning) epoch and its asymmetric shape (Fig. 3). Re-
cent experimental results support its biological plausi-
bility (Markram et al. 1997). Fast and stable
convergence is obtained when the random temporal
dispersion of the external input correlations and the
systematic dispersion introduced by lateral spike con-
duction are matched to the positive epoch of the learning
function.

Other models applied learning to continuous mean
®ring rates (e.g., Kohonen 1984; Phillips and Singer
1997; Stetter et al. 1997; Wiemer et al. 2000) instead of
using discrete spike patterns. The former is appropriate
if the correlated signals vary slowly. This assumption
does not hold for the temporally precise input correla-
tion in our model, which hardly in¯uences the mean
®ring rate of single neurons (Kempter et al. 1999).
However, models based on mean ®ring rates can, in
principle, also transform temporal dispersion into spa-
tially con®ned coupling structures by learning. Yet, this
is restricted to the slow time scale of rate modulations
(Wiemer et al. 2000) and does not work on a millisecond
time scale as in our model.

Temporal dispersion and variability due to synaptic
and dendritic delays are neglected in our model. Intro-
ducing biologically plausible values for them will
broaden the size of the coupling kernels at level 1 in
scenario A (Fig. 4) and level 2 in scenario B (Fig. 7),
accordingly. However, such a broadening e�ect is
already present in our model and is re¯ected in its re-
sults: maintained stochastic input (GWN) to level-1
neurons introduces large variability in activation delays
because the membrane potential ¯uctuates and the
threshold can be in any state at any moment. This ac-
tivation variability is large (>10 ms, Fig. 2) compared to
what is expected in cortical neurons from synaptic and
dendritic delays (<5 ms) under the conditions of rather
constant spike rates as in our simulations (Agmon-Snir
and Segev 1993).

Lateral conduction delays in the visual cortex (related
to scenarios A and B) have been measured only indi-
rectly. If we ®t the lateral pro®le of signal correlations
(Fig. 4) to the cortically measured coupling pro®les in V1
and V2 (Eckhorn 1994; Frien and Eckhorn 2000) by
changing the lateral conduction velocity and keeping the
temporal jitter of correlated input spikes small
(rin � 2:5 ms), the model proposes a velocity of about
0:7 m/s. This value is di�cult to compare with real ve-
locities, e.g., in the monkey visual cortex, for several
reasons. First, there is a broad distribution of velocities,
according to the di�erent ®ber diameters of lateral con-
nections. Second, no direct measurements of intra- and
interareal conduction delays are available frommonkeys.
Third, the ®tted velocity from the model depends on the
temporal correlation width of its input spikes.

As no direct measurements of lateral intraareal con-
duction velocities (scenario A) have been made in the
monkey striate cortex, they have to be estimated by in-
direct methods, yielding 0.1 to 0.5 m/s for the domi-
nating velocity in V1 in di�erent preparations (review in
Nowak and Bullier 1997).

Interareal delays (scenario B) are also relevant for
our present work. We concentrate here on V1-V2 delays.
They have been measured in monkey revealing delays of
a few milliseconds, mostly due to synaptic delay and
integration times (Nowak and Bullier 1997). Their
shortness is probably related to the myelination between
retinotopically corresponding positions of V1 and V2.
However, each V1-V2 axon sends collaterals to V2 tar-
gets that are generally not myelinated, so that they
conduct as slowly as other lateral intraareal connections
(on average at 0.3 m/s).

Summarizing, we have to realize that the measured
average velocities are too slow by a factor of about two
for directly explaining the above mentioned ®t to the
lateral coupling kernels in V1 and V2. We have to note,
however, that the experimental data were collected from
visually experienced animals. Therefore, a variety of
arguments can explain the di�erences. (1) The e�ective
®bers determining AF and cRF sizes are indeed as slow
as 0.3 m/s. Then we have to assume that the correlation
width (jitter) of the input spike trains is broader by a
factor of about two, because larger temporal jitter also
causes wider coupling pro®les (Fig. 6a). (2) There are
few fast conducting ®bers determining AF and cRF size
while the slower conducting axons play no role in de-
termining size. (3) Visual experience, in particular the
spatial correlation of visual object features, reshapes the
widths of AFs and cRFs on the basis of stimulus-locked
synchronization of the input over the range of average
object sizes. (4) Other static and dynamic network
properties dominate the emergence of spatial structures
of visual function, including dynamics at synapses and
dendrites and their potential adaptability (e.g., Mark-
ram and Tsodyks 1996). These possibilities are not
mutually exclusive and the presently available data are
not su�cient for giving realistic weights to any of them.
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