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The number and nature of the mechanisms for the detection of colored stimuli are still unclear. We use the
paradigm of classification images to investigate the detection of a signal of homogeneous color added to a noisy
texture. Both signal and noise colors were chosen from the isoluminant plane of the Derrington—Krauskopf—
Lennie (DKL) color space. The signal consisted of a square of homogeneous color that was chosen from either
cardinal or noncardinal directions of the DKL color space. The noisy texture consisted of small squares of vary-
ing colors that were chosen randomly across the isoluminant plane. Classification images reveal that (1) the
cardinal axes play no specific role; (2) the widths of the tuning curves vary between 30 and 90 deg, consistent
with the variation of tuning widths of neurons at early cortical stages; and (3) detection is not based on the
whole region covered by the signal but is influenced mostly by a small spot around the fixation point. © 2005

Optical Society of America
OCIS codes: 330.1880, 330.5510.

1. INTRODUCTION

Color vision starts with the transduction of electromag-
netic radiation by three types of photoreceptor in the
retina. On the basis of their peak sensitivities at short,
medium, and long wavelengths the photoreceptors are
commonly denoted as S, M, and L. Already at the level of
retinal ganglion cells, the signals of these three types of
photoreceptor are combined to form three color-opponent
channels: an achromatic channel from pooled L and M
cone input (L+M) and two chromatic channels, one chan-
nel that signals the differences of L and M cone responses
(L-M) and another channel that signals differences be-
tween the S cone responses and the summed L+M cone
responses [S—(L+M)]. The properties of these early
stages have been studied in great detail and are well
understood.'™ However, the properties of subsequent
higher-order stages of cortical processing are less clear
and a subject of intense research.

Chromatic mechanisms are typically characterized by
their number, tuning peak direction, and tuning width. In
neurophysiological studies, a rather consistent scheme
has been found. Subcortical neurons in the retina and the
LGN have a broad tuning with peak sensitivities that
cluster into distinct classes, with preferred modulation
along the cardinal directions in color spau:e.‘i’5 A broad
tuning characterized by a half-width at half-height
(HWHH) of ~60 deg is consistent with a linear transfor-
mation of cone inputs. Cortical neurons, on the other
hand, have a continuous distribution of peak sensitivities
and show a large variety of tuning widths.® For example,
in V1 of the macaque monkey, tuning widths with
HWHHSs ranging from 10 to 90 deg have been found.”
Narrow tuning widths below 60 deg indicate a nonlinear
transformation of cone inputs.

The diversity of tuning widths for cortical neurons and
the difference in the number of directions between corti-
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cal and subcortical levels found in neurophysiological
studies are reflected by a diversity of results from psycho-
physical experiments. Data from chromatic signal detec-
tion experiments have been interpreted to reveal linear,
broadband mechanisms either limited to a few directions

in color spaceg_10 or with a more continuous
distribution''™% as well as multiple nonlinear, narrowly
16,17

tuned mechanisms.

The mechanisms in these studies are typically investi-
gated using the paradigm of chromatic masking. In chro-
matic masking studies, the properties of the noise are var-
ied and the effect on detection threshold is studied.
Recently, the paradigm of classification images has been
introduced by Beard and Ahumada as a psychophysical
counterpart to the reverse-correlation technique.'® The
paradigm of classification images makes very few a priori
assumptions about the nature of the underlying features
that influence the performance in a specific task. In the
paradigm of classification images, the task is run with a
huge number of different realizations of the same noise
process, typically in the range of 2000-5000 trials. The
observer’s response in a particular trial is influenced by
the specific noise pattern used in the trial. By averaging
the noise patterns for each of the possible responses of the
observer, one can determine those features in the image
that influence the observer’s response. Classification im-
ages have been applied, e.g., in Vernier acuity tasks, 1920
to determine perceptive fields of illusory contours?! or to
identify the spatiotemporal features of luminance con-
trast detection.?? More recently, classification images
have been used in a chromatic signal detection task
where a Gaussian pulse has to be detected in chromatic
noise varying at high temporal frequency.11 Here we use
the paradigm of classification images to study the detec-
tion of a homogeneous square embedded in a noisy chro-
matic texture.

© 2005 Optical Society of America



2082 J. Opt. Soc. Am. A/Vol. 22, No. 10/October 2005

2. METHODS

The task of the observers was to detect a signal consisting
of a central square of homogeneous color added to a noisy
texture of isoluminant color patches. The color of the
square was varied systematically, and classification im-
ages were computed for each signal color.

A. Apparatus

Software for the presentation of the stimuli was pro-
grammed in C using the SDL library. The stimuli were
displayed on a Sony GDM-20se II color CRT monitor that
was viewed binocularly at a distance of 0.40 m in a dimly
lit room. The monitor resolution was set to 1280
X 1024 pixels with a refresh rate of 120 Hz noninterlaced.
The monitor was controlled by a PC with a color graphics
board with 8-bit intensity resolution for each of the three
monitor primaries. For each primary, the nonlinear rela-
tionship between voltage output and luminance was lin-
earized by color look-up tables. To generate the three
look-up tables, the luminances of each phosphor were
measured at various voltage levels using a Graseby Op-
tronics Model 307 radiometer with a Model 265 photomet-
ric filter, and a smooth function was used to interpolate
between the measured data. A Photo Research PR-650
spectroradiometer was employed to measure the spectra
of each primary at maximum intensity. The spectra were
multiplied with the Judd-revised CIE 1931 color-
matching functions®>?* to derived CIE x,y,Y coordinates
of the monitor phosphors.25 In the following, luminance
and photometric luminance refer to the V(\) curve as
modified by Judd.?® The x, y,Y coordinates of the monitor
primaries are given by R=(0.613,0.349,20.289), G
=(0.283,0.605,64.055), and B=(0.157,0.071,8.631). Cone
contrasts were computed from the spectral distribution of
the monitor primaries using the cone fundamentals of
Smith and Pokorny.26

B. Color Space

The stimuli are defined within the isoluminant plane of
the DKL color space.*?” The DKL color space is a spheri-
cal color space spanned by three axes, namely, the two
chromatic axes [L—M] and S—(L+M) and the achromatic
axis L+M, corresponding to the three second-order cone-
opponent channels (Fig. 1). The three axes define the car-
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dinal directions of the DKL color space and intersect at
the gray point. The two chromatic axes define the isolu-
minant plane.

The DKL color space is a linear transformation of the
LMS cone contrast spalce.28 Along the L-M axis, the ex-
citation of the S cones is constant whereas the excitation
of the L and M cones covaries such that their sum is con-
stant. Color along the L-M axis changes from blue-
greenish to reddish. Conversely, along the S—(L+M) axis,
only the excitation of the S cones changes whereas the ex-
citation of the L. and M cones remains constant. Color
along the S—(L+M) axis changes from yellow-green to
purplish. Within the isoluminant plane, colors are defined
by their chromatic direction given by the azimuth ranging
from 0 to 360 deg and their chromatic contrast given by
the distance from the white point.

C. Stimuli

The stimuli consisted of a noisy texture of 24 X 24 isolu-
minant square patches. The values of chromatic direction
and chromatic contrast for each patch were drawn inde-
pendently from a uniform distribution. Chromatic con-
trast was limited to 40% of the maximum contrast. Each
individual patch subtended 0.5 deg visual angle.

In half of the trials, a signal made from a square of ho-
mogeneous color, covering 8 X 8 patches, was added to the
noisy texture. The square was centered in the noisy tex-
ture and spatially aligned with the texture patches. Eight
different chromatic directions were employed for the sig-
nal, four along the cardinal directions (with color azimuth
0, 90, 180, and 270 deg) and four along intermediate, non-
cardinal directions (with color azimuth 45, 135, 225, and
315 deg). The chromatic contrast of the signal square was
determined in a pilot session for each subject and each
chromatic direction to yield a detection rate of 75% cor-
rect.

D. Paradigm

We used a yes/no paradigm to study the ability of the ob-
servers to detect the square signal embedded in chromatic
noise. Observers viewed a blank neutral gray screen with
a central fixation point for 1000 ms, followed by the pre-
sentation of the stimulus for 250 ms, and pressed one of
two keys to indicate whether the signal was present. The
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Fig. 1. (Color online) Left: DKL space with the isoluminant plane (filled area). The isoluminant plane is spanned by the L-M and S
—(L+M) axes that together with the achromatic L.+ M axis define the cardinal axes of the DKL color space. Right: Display of the isolu-
minant plane. The chromaticities of the stimuli used in the present experiment are confined to the isoluminant plane.
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fixation point was shown throughout the entire trail. Re-
sponse feedback was given after each trial. For each sig-
nal color, a total of 2000 stimuli with different noisy tex-
tures were presented in four blocks of 500 trials.
According to the response of the subject, the noisy
background texture was sorted into one of four possible
stimulus-response categories (hit, miss, false alarm, cor-
rect rejection). The background textures were then
averaged within each category. The classification image C
was then computed by subtracting averaged background
images B that lead to a “no” response from those resulting
in a “yes” response:

C = u[B(hit)] + u[B(false alarm)]

“yes” responses

— u[B(correct rejection)] — u[B(miss)],

“no” responses ( 1)

where u denotes the mean over all images in the respec-
tive category. This is the standard formula for computing
classification images.18 By first-order statistics (i.e., com-
puting the mean), classification images show those image
features that influence the observers’ decision.

E. Observers

Four observers participated in the study, two male and
two female. One of them was an author (TH), the others
were naive as to the purpose of the experiment. All had
normal color vision and normal or corrected-to-normal vi-
sual acuity. No systematic differences between the observ-
ers were found.

3. RESULTS

A. Classification Images

First, classification images as detailed in Eq. (1) were de-
rived for the eight different signal colors. Classification
images for a single subject (CA) are shown in Fig. 2, top
panel. All images show a strong color-dependent modula-
tion. This modulation is confined mainly to a circular cen-
tral region covered by the signal square, showing that
this part of the signal had the strongest influence on de-
tection performance. Furthermore, the patches at the
background outside the signal region seem to vary at ran-
dom independent of the signal color. Finally, no differ-
ences between signal colors along cardinal versus noncar-
dinal directions were found.

Next we averaged the classification images across all
subjects. The results are shown in Fig. 2, bottom panel.
The resulting classification images are less noisy because
of the large number of samples. Otherwise, the averaged
data do not deviate systematically from the data of a
single subject. The findings from the basic classification
images can be summarized as follows: (1) the central re-
gion shows a strong color-dependent modulation, (2) de-
tection is based on the central part of the signal square
but not on the background, and (3) results do not differ
between cardinal versus noncardinal directions.
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B. Classification Histograms

Classification images show the first-order statistics of the
image features. For a two-dimensional feature such as
isoluminant color (the third color dimension, luminance,
is the same by definition of the stimuli), the classification
images per se cannot tell the tuning width of the detection
mechanisms. For example, a feature pixel in the classifi-
cation image with a chromatic direction of 45 deg may re-
sult from many stimulus colors of exactly 45 deg chro-
matic direction, or, alternatively, from a distribution of
different chromatic directions symmetrically spaced
around 45 deg. Moreover, the width of such a distribution
does sharpen with an increasing number of presentations,
leading to an incorrect estimation of the tuning width of
the detection mechanism.

To estimate the tuning width of the detection mecha-
nisms, we used color histograms. A color histogram shows
for each chromatic direction the summed chromatic con-
trast of the color in the image, normalized by the number
of pixels. From the color histograms of the background
images in the four stimulus-response categories, a color
classification histogram can be computed analogously to
the computation of a classification image. Let H(hit),
H(false alarm), H(correct rejection), and H(miss) denote
the color histograms of a background image in the four
stimulus-response categories, and let u(-) denote the av-
erage of all color histograms in the particular stimulus-
response category. Analogous to the computation of a
standard classification image (Eq. (1)), we suggest that a
color classification histogram H, can be computed as fol-
lows:

H, = p[H(hit)] + u[H(false alarm);I

“yes” responses

— u[H(correct rejection)] — u[H(miss)].

“no” responses ( 2)

From the above definition of a classification histogram
it becomes clear that, unlike a normal histogram, a clas-
sification histogram can take negative values for those
features that result in a “no” response.

A color classification histogram is thus computed from
averaged color histograms. Color histograms show for
each chromatic direction the frequency of occurrence.
Color histograms of an image region are created as fol-
lows: For each pixel within that region, the DKL coordi-
nates in the isoluminant plane are determined, i.e., chro-
matic direction (0 to 360 deg) and chromatic contrast,
and a counter corresponding to the chromatic direction is
incremented by the amount of chromatic contrast. The re-
sulting histograms are smoothed with a Gaussian (o
=10 deg) and normalized by the number of pixels in the
region. Color histograms are generated for two regions of
the stimulus image, namely, the central region where the
signal is presented and the remaining background region.
Color classification histograms for observer CA for each of
the eight different signal colors are depicted in Fig. 3. The
histograms for the signal region have a strong, narrowly
tuned peak whereas the histograms for the background
region remain essentially flat. Results do not vary consid-
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observer CA
270 deg

4 observers
270 deg

Fig. 2. Classification images for observer CA (top panel) and classification images averaged across all four observers (bottom panel). The
images are scaled up to maximum chromatic contrast. The central square in each image outlines the extent of the signal patch. For each
panel, the upper row shows the classification images along the cardinal directions, the bottom row shows classification images along

intermediate, noncardinal directions.

erably between subjects. Peaks of the color histograms
and HWHH values for all observers are listed in Table 1.
Color classification histograms averaged across all four
subjects are shown in Fig. 4.

To determine whether differences exist between signals
presented at cardinal versus noncardinal directions, we
computed the mean and standard deviation of the
HWHHSs for both cardinal and noncardinal signals. Data
pooled across all four observers show a larger mean
HWHH for the cardinal axes (63.5 deg, SD 13.7 deg) com-
pared with the noncardinal axes (51.0 deg, SD 12.8 deg).

The tuning width for signals presented at the cardinal
axes lies more closely along the linear prediction of a tun-
ing width of 60 deg than the intermediate axes. This is
consistent with the idea that sensitivity to intermediate
colors are combined nonlinearly from input along the car-
dinal axes.

Next we plotted a histogram of the distribution of the
HWHH as determined for all subjects and all colors of the
signal. Data are shown in Fig. 5, left plot. The determined
HWHHs show a large variation, ranging from 30 to al-
most 90 deg. A similar range of HWHH distributions was
also found in physiological measurements in macaque V1’
and V2.2 For comparison, these data are shown in Fig. 5.

C. Deviation from Signal Color

The color histograms shown so far have been centered at
their maxima. Generally, the corresponding chromatic di-
rection of the maximum differs from the chromatic direc-
tion of the signal presented. This indicates that the clas-
sification images do not simply replicate the signal color,
but do reveal internal mechanisms for chromatic classifi-
cation.
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Polar plots of the color histograms reveal how each ob-
server’s tuning curves deviate from the signal color (Fig.
6). The polar plots show a certain variation in the devia-
tion between the signal color and the measured peak of
the tuning curves. For some colors (e.g., 45 and 225 deg),
the deviation is rather small, whereas other colors tend to
show a larger variation (e.g., 270 deg).

Instead of considering the whole histogram, it is also
instructive to consider only the distribution of the peak in
the classification histogram for each signal color (Fig. 7).
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The peaks are given by the maxima in the color histo-
grams and thus are independent of any model used to fit
the data. Plotting for each signal color the absolute loca-
tion of the peak of the detected color (Fig. 7, left plot)
shows that peaks tend to cluster at certain chromatic di-
rections such as 110 deg and -20 deg, whereas other
chromatic directions, e.g., 180 deg, are avoided.
Interestingly, a plot of the relative deviation for the dif-
ferent colors reveals a rather consistent pattern between
subjects (Fig. 7, right plot). In particular, color preference

-90 0 90 180 -90 0 90 180

-90 0 90 180 -90 0 90 180

-90 0 90 180 -90 0 90 180

-90 0 90 180 -90 0 90 180

Fig. 3. (Color online) Color histograms for observer CA. The abscissa denotes relative chromatic direction, and the ordinate denotes the
relative contribution of each chromatic direction in the classification histogram in the range [-0.15,0.3]. The horizontal line marks zero,
corresponding to no influence of the color on the detection results. The color histograms for the background (solid black curve) show
almost no color-specific modulation, whereas the color histograms for the signal region (filled area) have a strong modulation depending
on the signal color; the vertical line at 0 deg marks the maximum of the color histogram. The off-center vertical line marks the relative
position of the signal color. Gaussian fits to the data are shown with a dashed curve together with the corresponding HWHH values.

Table 1. Peaks of the Color Histograms and +HWHH for the Four Observers

Observer 0 deg 90 deg 180 deg 270 deg 45 deg 135 deg 225 deg 315 deg
CA 342+60 112+84 123+66 27175 43+46 118+48 235+30 33857
EM 329+47 83+67 149+74 279+34 52+62 113+59 266+35 327+47
MD 338167 119+53 154+50 32660 53+36 153+57 230+31 343+51
TH 338+66 86+60 166+66 298+89 45+68 93+65 205+65 319+72

90 180 -90 0 90 180

-90 0 90 180 -90 0 90 180

-90 0 90 180 -90 0 90 180

-90 0 90 180 -90 O

Fig. 4. (Color online) Color histograms averaged across all four observers.

90 180
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Fig. 5. Distribution of tuning curve widths (HWHH). The dashed lines denotes the tuning width of 60 deg, corresponding to a linear
transformation of cone input. Left, data for all four subjects; middle, data from macaque V1.” Right, data from macaque V2.2
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Fig. 6. (Color online) Polar plots of the color histograms for four observers. Tuning curves are shown for signal color at the cardinal
directions (solid curves) and along intermediate directions (dashed curves).
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Fig. 7. Deviation of the peak of the detected color from the signal color for four subjects. Left, absolute differences; right, relative

differences.

for color presented along the L-M axes seems to be ro-
tated clockwise by ~20 deg, as revealed by the negative
deviation for 0 and 180 deg.

Finally, we verified that the deviation is consistent be-
tween subjects and not due to random variations of color
preference. For this purpose, we determined the deviation

separately for the first block of 1000 trials and the second
block of 1000 trials. In all cases, the first and second block
of trials were completed on different days, sometimes
with a week or two in between. Data are shown in Fig. 8.
All subjects show a high correlation between the two
blocks of trials: When the peaks deviate from the true
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color, this deviation is the same for different trials run by
the same observer. A considerable deviation between the
first and the second block of trials occurs only for the vio-
let at 270 deg (subjects CA, MD, and TH) and for the cyan
at 225 deg (subject TH). For all other colors, the deviation
lies almost perfectly on the main diagonal corresponding
to 100% correlation. The results indicate that the devia-
tion is consistent within subjects.

D. Finer Sampling of the Third Quadrant
The plot of the deviations show an uneven distribution of
the peak sensitivities. In particular, the third quadrant
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Fig. 8. (Color online) Deviation of the peak of the detected color
from the signal color: correlation between blocks of trials. For a
perfect agreement between responses in the blocks of 1000 trials,
all data points would fall on the main diagonal (dashed lines).
Solid squares denote deviations for the cardinal directions, open
squares for intermediate directions. The dotted rectangle marks
a deviation of +45 deg. Except for the purplish color at 270 deg
for subjects CA, MD, and TH and the cyan color at 225 deg for
subject TH, all colors lie almost perfectly on the main diagonal,
showing a high degree of correlation between the deviation in the
two blocks.
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tends to have only a single peak. To test whether these re-
sults reveal a general pattern, we tested color detection in
the third quadrant with a finer sampling of chromatic di-
rections every 15 deg (instead of 45 deg). Data for two ob-
servers are shown in Fig. 9. The data show that the bluish
colors in the third quadrant can be detected with high ac-
curacy as revealed by the small offset between the peak in
the color histogram and the signal color.

4. DISCUSSION

We have used the paradigm of classification images to
study chromatic signal detection. The classification im-
ages show a strong color-specific modulation within a cen-
tral, circular region where the signal is presented. Tuning
widths as determined by classification histograms show a
distribution of tuning widths consistent with the distribu-
tion of tuning widths of cortical neurons at early visual
stages. The results suggest that multiple chromatic
mechanisms with a distribution of tuning widths ranging
above and below the linear predicted width of 60 deg are
involved in higher-order stages in color vision.

The peaks in the color histograms often differ from the
chromatic direction of the signal presented. This indicates
that the classification images do not simply replicate the
signal color, but reveal internal mechanisms for chro-
matic classification. In other words, such a shift of the
peak in the classification histograms reveals a biased ob-
server. This bias can be either due to higher-level, delib-
erate decisions or to properties of the chromatic mecha-
nisms in the early visual pathway. Strictly speaking, the
employed method of classification images cannot rule out
either possibility. However, there are several reasons in
favor of the idea that any bias reflects chromatic mecha-
nisms in the early visual pathway. First, the observer per-
formed a low-level detection task where it is unlikely that
any higher, deliberate decisions are involved. Second, the
shifts of the peaks show a high degree of consistency, as
detailed above (Subsection 3.C, Fig. 8). Deliberate deci-
sions to give more weight to a particular chromatic direc-
tion, which are of no direct relevance to the observer, most

90 180 -90 0 90 180

-90 0 90 180 -90 0 90 180

-90 O

90 180 -90 0 90 180

-90 0 90 180 -90 0 90 180

Fig. 9. (Color online) Color histograms for intermediate directions in the third quadrant (top row, observer CA, bottom row, observer
MD). The bluish colors can be detected with high accuracy as revealed by the small offset between the maximum in the color histogram

(vertical line at 0 deg) and the signal color (off-center vertical line).
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likely show a higher degree of variability. Finally, the ob-
server received response feedback and presumably tried
to optimize performance rather than sticking to any a pri-
ori decisions such as to, e.g., “give more weight to blue
than to red” for a bluish-reddish signal. Therefore it
seems plausible to attribute the observed shifts of the
peak in the classification histograms to the intrinsic prop-
erties of chromatic mechanisms in the early visual path-
way.

The detection of color signals in noise has been investi-
gated by numerous studies in the past using a variety of
paradigms, with a considerable variety of results. One of
the first studies that used a noise-masking paradigm was
by Gegenfurtner and Kiper.16 Using a Gabor pattern as a
signal embedded in spatiotemporal chromatic noise, they
found multiple, narrowly tuned mechanisms.

Giulianini and Eskew!® measured thresholds for de-
tecting Gaussian and Gabor signals in noise made of rings
or lines. Signals and noise were modulated independently
along various directions of color space. Their results ar-
gue for only three mechanisms for chromatic detection.
These mechanisms are strictly linear, i.e., they do not ex-
hibit a narrow tuning in color space. The reason for the
discrepancy of their results with those of Gegenfurtner
and Kiper'® is unclear.

D’Zmura and Knoblauch®® have investigated the sensi-
tivity for detecting a signal consisting of a Gaussian pulse
that was corrupted by chromatic flicker. The flicker was
added to the signal. The color values of the flicker were
chosen from sectors of different width centered at the
color of the signal. The detectability of the signal was un-
affected by the width of the sector, suggesting a linear
processing. Results were consistent with a broadband, lin-
ear mechanism tuned to multiple orientations.

It has been argued by D’Zmura and Knoblauch®® that
the narrow tuning found by Gegenfurtner and Kiper16
may be due to off-axis looking. Off-axis looking assumes
that the observer has multiple broad mechanisms and
that the detection in a particular task is based on mecha-
nisms that are less affected by the noise, leading to a
measurement of narrow tuning curves. Recently, we have
verified in a rigorous analysis by a chromatic detection
model that, depending on the noise characteristic of the
stimuli, multiple broadly tuned mechanisms can indeed
result in narrow-tuned tuning curves.'* In the present ex-
periment, background noise is drawn from all color direc-
tions, such that off-axis looking cannot occur by definition
of the stimulus.

Recently, Bouet and Knoblauch'! have used the para-
digm of classification images to study chromatic signal de-
tection. Their study differs from ours in several ways.
First, they used a temporally modulated Gaussian pulse
that was corrupted by isoluminant noise flickering at a
high temporal frequency of 50 Hz. The distribution of
noise colors was averaged over time, and a classification
image was computed showing the regions in the isolumi-
nant plane (segmented into 9 X 9 bins) most likely leading
to a “present” or “absent” response. The images show a
narrow peak in the signal direction flanked by regions
with a broader selectivity. In contrast to the results by
Bouet and Knoblauch,!* we found smooth, Gaussian-
shaped tuning curves of different widths for different
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chromatic directions, but no singular narrow peak in the
signal direction. The differences in our findings may be
caused by the different time course at which a color is
present in the stimulus (for 20 versus 250 ms) and the
method used to determine the tuning widths. While Bouet
and Knoblauch used weighted profiles, we determined
tuning widths based on classification histograms.

McKeefry and colleagues®® have used an adaptation
paradigm in a Vernier alignment task to measure chro-
matic tuning widths. After adapting for 5 s to two flank-
ing peripheral stimuli that varied in chromaticity, sub-
jects judged the position of a central Gaussian blob in
relation to two identical Gaussian blobs that appeared at
the same position as the adapting stimuli. McKeefry and
colleagues found that the perceived offset of the central
stimuli varied as a function of the separation of the target
and the adapting stimuli in DKL color space: Offset was
maximal if both stimuli were varied along the same axis
and minimal if the stimuli were presented at orthogonal
directions. The tuning widths depend on the adaptation
axis: Broad, linear tuning was found for adapting stimuli
at the L+M axis, whereas smaller tuning occurred at the
S—(L+M) axis. Furthermore, the effect appeared only at
high contrast. At low contrast, broad tuning occurred for
all adapting axes. In contrast to their results, we have
found no particular narrow tuning at the S—(L+M) axis,
but did on intermediate axes such as 225 deg (Fig. 3) or
255 deg (Fig. 9). In Refs. 7 and 29 no particular correla-
tion between chromatic bandwidth and chromatic direc-
tion has been reported. In particular, for the unique hues,
no clustering of either narrowly or broadly tuned cells
was found.?

In a pilot study we have also determined classification
images for low-contrast background noise (20% and 12%
contrast instead of 40%) and found no contrast-dependent
effect of the tuning widths. The discrepancies between
our findings and those of McKeefry and colleagues may
occur because the positional judgments necessary in the
McKeefry study might be mediated by a different popula-
tion of cells than the chromatic detection capabilities
studied in the present work.

To sum up, we have used the paradigm of classification
images to study the properties of chromatic detection
mechanisms. The classification images reveal that the
cardinal axes play no specific role in the chromatic detec-
tion task. Furthermore, we found tuning widths that vary
between 30 and 90 deg, consistent with physiological find-
ings. Finally, detection is not based on the whole image
but influenced mainly by a small spot around the fixation
point.

ACKNOWLEDGMENTS

We thank an anonymous reviewer whose suggestions
helped to improve the paper. We further thank Brian J.
White for helpful comments on the manuscript. This re-
search was supported by the German Science Foundation
grant Ge 879/5-1.

The authors’ e-mail addresses are Thorsten.Hansen
@psychol.uni-giessen.de and Karl.R.Gegenfurtner
@psychol.uni-giessen.de.



T. Hansen and K. R. Gegenfurtner

REFERENCES

1.

10.

11.

12.

13.
14.

15.

16.

R. M. Boynton, M. Ikeda, and W. S. Stiles, “Interactions
among chromatic mechanisms as inferred from positive
and negative increment thresholds,” Vision Res. 4, 87-117
(1964).

L. M. Hurvich and D. Jameson, “An opponent-process
theory of color vision,” Psychol. Rev. 64, 384-404
(1957).

J. E. Thornton and E. N. Pugh, “Red/green color opponency
at detection threshold,” Science 219, 191-193 (1983).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic
mechanisms in lateral geniculate nucleus of macaque,” J.
Physiol. (London) 357, 241-265 (1984).

B. B. Lee, “Receptive field structure in the primate retina,”
Vision Res. 36, 631-644 (1996).

K. R. Gegenfurtner, “Cortical mechanisms of colour vision,”
Nat. Rev. Neurosci. 4, 563-572 (2003).

T. Wachtler, T. J. Sejnowski, and T. D. Albright,
“Representation of color stimuli in awake macaque primary
visual cortex,” Neuron 37, 681-691 (2003).

M. J. Sankeralli and K. T. Mullen, “Postreceptoral
chromatic detection mechanisms revealed by noise
masking in three-dimensional cone contrast space,” J. Opt.
Soc. Am. A 14, 26332646 (1997).

R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic
detection and discrimination analyzed by a Bayesian
classifier,” Vision Res. 41, 893-909 (2001).

F. Giulianini and R. T. Eskew, “Chromatic masking in the
(AL/L,AM/M) plane of cone-contrast space reveals only
two detection mechanisms,” Vision Res. 38, 3913-3926
(1998).

R. Bouet and K. Knoblauch, “Perceptual classification of
chromatic modulation,” Visual Neurosci. 21, 283-289
(2004).

K. S. Cardinal and D. C. Kiper, “The detection of colored
glass patterns,” J. Math. Imaging Vision 3, 199-208
(2003).

M. D’Zmura and K. Knoblauch, “Spectral bandwidths for
the detection of color,” Vision Res. 38, 3117-3128 (1998).
T. Hansen and K. R. Gegenfurtner, “Higher level chromatic
mechanisms for image segmentation,” submitted to J.
Vision.

A. Li and P. Lennie, “Mechanisms underlying segmentation
of colored textures,” Vision Res. 37, 83-97 (1997).

K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Vol. 22, No. 10/October 2005/J. Opt. Soc. Am. A 2089

luminance and chromatic noise,” J. Opt. Soc. Am. A 9,
1880-1888 (1992).

N. Goda and M. Fujii, “Sensitivity to modulation of color
distribution in multicolored textures,” Vision Res. 41,
2475-2485 (2001).

B. L. Beard and A. J. Ahumada, Jr., “Technique to extract
relevant image features for visual tasks,” in Proc. SPIE
3299, 79-85 (1998).

A. J. Ahumada, Jr., “Perceptual classification images from
Vernier acuity masked by noise,” Prog. Aerosp. Sci. 26, 18
(1996).

B. L. Beard and A. J. Ahumada, Jr.,, “Relevant image
features for Vernier acuity,” Prog. Aerosp. Sci. 26, 38
(1997).

J. M. Gold, R. F. Murray, P. J. Bennett, and A. B. Sekuler,
“Deriving behavioural receptive fields for visually
completed contours,” Curr. Biol. 10, 663-666 (2000).

P. Neri and D. J. Heeger, “Spatiotemporal mechanisms for
detecting and identifying image features in human vision,”
Nat. Rev. Neurosci. 5, 812-816 (2002).

D. B. Judd, “Report of U.S. Secretariat Committee on
Colorimetry and Artificial Daylight,” in Proceedings of the
Twelfth Session of the CIE, Stockholm (Bureau Central de
la CIE, 1951), p. 11.

G. Wyszecki and W. S. Stiles, Color Science, Concepts and
Methods, Quantitative Data and Formulae, 2nd ed. (Wiley,
1982).

H. Irtel, “Computing data for color-vision modeling,” Behav.
Res. Methods Instrum. Comput. 24, 397-401 (1992).

V. C. Smith and J. Pokorny, “Spectral sensitivity of the
foveal cone photopigments between 400 and 500 nm,”
Vision Res. 15, 161-171 (1975).

D. I. MacLeod and R. M. Boynton, “Chromaticity diagram
showing cone excitation by stimuli of equal luminance,” J.
Opt. Soc. Am. 69, 1183-1186 (1979).

D. H. Brainard, “Cone contrast and opponent modulation
color spaces,” in Human Color Vision, P. Kaiser and R. M.
Boynton, eds. (Optical Society of America, 1996), pp.
563-579.

D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner,
“Chromatic properties of neurons in macaque area V2,”
Visual Neurosci. 14, 1061-1072 (1997).

D. J. McKeefry, P. V. McGraw, C. Vakrou, and D. Whitaker,
“Chromatic adaptation, perceived location, and color tuning
properties,” Visual Neurosci. 21, 275-282 (2004).



