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The magnitudes of chromatic and achromatic edge
contrast are statistically independent and thus provide
independent information, which can be used for object-
contour perception. However, it is unclear if and how
much object-contour perception benefits from chromatic
edge contrast. To address this question, we investigated
how well human-marked object contours can be
predicted from achromatic and chromatic edge contrast.
We used four data sets of human-marked object
contours with a total of 824 images. We converted the
images to the Derrington–Krauskopf–Lennie color space
to separate chromatic from achromatic information in a
physiologically meaningful way. Edges were detected in
the three dimensions of the color space (one achromatic
and two chromatic) and compared to human-marked
object contours using receiver operating-characteristic
(ROC) analysis for a threshold-independent evaluation.
Performance was quantified by the difference of the
area under the ROC curves (DAUC). Results were
consistent across different data sets and edge-detection
methods. If chromatic edges were used in addition to
achromatic edges, predictions were better for 83% of the
images, with a prediction advantage of 3.5% DAUC,
averaged across all data sets and edge detectors. For
some images the prediction advantage was considerably
higher, up to 52% DAUC. Interestingly, if achromatic
edges were used in addition to chromatic edges, the
average prediction advantage was smaller (2.4% DAUC).
We interpret our results such that chromatic information
is important for object-contour perception.

Introduction

The detection of edges and contours is one of the
first major processing steps in artificial and natural
vision systems (e.g., Marr, 1982). Edge and contour
detection are traditionally regarded as achromatic
processes. For example, in the classical neurophysio-

logical study by Hubel and Wiesel (1968), neurons that
responded to an oriented luminance contrast were
readily classified as achromatic and orientation selec-
tive and not tested further for chromatic selectivity.
Subsequent studies built on this notion and suggested
that color and orientation are processed by specialized,
distinct populations of neurons that project to different
areas of the brain (Zeki, 1976). This simplistic view has
been incorporated in models of attention that assumed
an initial independent processing of color and shape by
different modules (Treisman & Gelade, 1980). Further,
most computational approaches to edge detection are
based on grayscale images (e.g., Forsyth & Ponce,
2012).

However, there is now a growing consensus that
color plays an important role in the segmentation,
recognition, and memorization of objects (Gegenfurt-
ner & Rieger, 2000; Geusebroek, van den Boomgaard,
Smeulders, & Geerts, 2001; Tanaka, Weiskopf, &
Williams, 2001; Wichmann, Sharpe, & Gegenfurtner,
2002; Wolfe, 1998). Gegenfurtner and Rieger (2000)
used a delayed match-to-sample paradigm to study the
role of color vision in natural scenes. They found that
color vision plays ‘‘a general role in the processing of
visual form, starting at the very earliest stages of
analysis: color helps us to recognize things faster and to
remember them better (p. 805).’’ Wichmann et al.
(2002) found that images were recognized about 5%–
10% better if presented in their natural color. The
advantage disappeared for pseudocolored images,
pointing toward the importance of learned knowledge
about the colors in natural scenes for recognizing new
scenes.

On the one hand, the role of color for human vision
may be questioned based on the fact that color-vision
deficiency often goes unnoticed in daily life unless
diagnosed in a test like the Ishihara test. On the other
hand, the disadvantage of dichromatic color vision
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becomes obvious in special situations such as detecting
fruits against dappled green leaves that vary in
luminance (Mollon, 1989). Mollon concluded (p. 21),
‘‘The disabilities experienced by colour-blind people
show us the biological advantages of colour vision in
detecting targets, in segregating the visual field and in
identifying particular objects or states.’’ Along the same
lines, Tanaka et al. (2001) have argued that color might
be critical for object recognition, because objects that
are represented by color and shape, such as a banana,
can be recognized easier than objects represented by
shape alone, in particular under occlusion conditions
which frequently occur in everyday situations.

We have previously analyzed the the magnitude of
co-occurring chromatic and achromatic edge contrast
in natural scenes and found that the mutual informa-
tion is minute (Hansen & Gegenfurtner, 2009). In other
words, the magnitude of the achromatic edge contrast
at a particular image location does not predict the
magnitude of the chromatic edge contrast at this
location. Nearly all edges combine luminance and
color, and isoluminant edges in natural scenes are as
likely as purely achromatic edges. Thus, information
about object contours is sometimes represented only
chromatically: Consider the image of a red fruit on
green foliage (Figure 1). In the achromatic image, the
edges of the fruit are hardly detectable, because the
luminance of the fruit is almost the same as the

luminance of the background foliage. Any natural or
artificial vision system that tries to detect objects based
on achromatic information alone would probably miss
the fruit. Adding chromatic information changes the
situation: In the chromatic L� M dimension which
codes reddish-turquoise signal variations, the object
boundaries of the fruits are almost perfectly delineated.
A vision system that can use this chromatic informa-
tion will probably detect the fruit. Further, it has been
long noticed that red–green chromatic edges, unlike
achromatic edges, cannot result from shadows or
shading, but indicate a change in surface reflectance
that may signal an object contour (Párraga, Troscian-
ko, & Tolhurst, 2002; Rubin & Richards, 1982).
Algorithms have been proposed based on this notion to
estimate the intrinsic reflectance and shading image
from red–green–blue (RGB) color images (Geusebroek
et al., 2001; Olmos & Kingdom, 2004; Tappen,
Freeman, & Adelson, 2005).

In our previous work we showed that chromatic
edges provide an independent source of information
(Hansen & Gegenfurtner, 2009). We showed that the
mutual information between achromatic edges and
chromatic edges along the cardinal dimensions L � M
and S� (LþM) was negligible. Here we investigate to
what degree humans use this information and benefit
from chromatic contrast information in the perception
of high-level object contours in natural scenes.

Figure 1. Image of an ackee fruit and edges detected based on achromatic and chromatic L/M information. The object contour is

delineated faintly if at all by the achromatic edges but almost perfectly by the chromatic L/M edges. The fruit pops up in both the

chromatic image and the chromatic edge map and can be easily separated from the background. It is the chromatic information in

this image that allows us to detect the fruit fast and easily.
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Our main idea is to use human-marked object
contours in natural scenes as ground truth and use the
response of edge detectors to achromatic and chromatic
dimensions of the image to investigate to what degree
the prediction of the human-marked object contours
based on achromatic edges can be improved if
chromatic edges are also considered.

In general, image contrasts may be classified along a
hierarchy ranging from localized circumscribed con-
trasts via edges—that is, straight, collinear contrast
changes—to longer curved contours that signal object
boundaries. The edge images we compared reside on
different levels of this hierarchy: The edge detectors
detect small edges based on local image statistics that
arise from various sources, such as noise, textures,
shadows, and object boundaries, while the human-
marked contours are based on a fairly high-level scene
segmentation. In fact, the human observers were
instructed to mark ‘‘distinguished things’’ in the image
or salient objects or the outline of an animal in the
scene. In this work we were interested in the
contribution of color to precisely these types of
contours, namely the main and important contours in
an image; it is therefore important to use ground-truth
images that were labeled at a fairly high level, instead of
images where observers were instructed to mark any
minute contrast they perceive. Here and in the
following, we use the term contours to refer to the high-
levels contours at object boundaries that humans
marked in the images.

Methods

We analyzed the contribution of chromatic infor-
mation to predict human-marked object contours in
natural scenes within a receiver operating-characteristic
(ROC) framework. First, we converted the images to
the Derrington–Krauskopf–Lennie (DKL) color space
to separate chromatic and achromatic information in a
physiological meaningful way. Second, edges were
detected using an edge detector (e.g., the Sobel
operator) in each dimension of the DKL color space—
that is, in the achromatic and the two chromatic
dimensions. Third, we used an ROC analysis to
compare how well human-marked object contours
could be predicted based on achromatic or chromatic
edge information or a combination of both. To
combine the edge information, we added the outputs of
the operator for the different layers.

Data sets

We used four data sets of human-marked object
contours: the All Natural Image Database (ANID), the

Berkeley Segmentation Dataset (BSD), the McGill
Color Calibrated Contour Dataset (MGCCCD) and
the Salient Objects Dataset (SOD). The images in these
data sets were taken by professional photographers
(BSD, SOD) or vision scientists (ANID and
MGCCCD).

ANID

The ANID is a collection of 294 images of animals
(Drewes, Trommershäuser, & Gegenfurtner, 2011). The
images in the data set show both the animal and the
background in focus, in contrast to professional images
where the animal is usually in sharp focus against a
blurred background. A student assistant marked the
contour of the animal and, if visible, the animal’s head
with the aid of a commercial image-processing program
(Adobe Photoshop, Adobe Systems, San Jose, CA). For
the present analysis we first cropped the images to a
square containing the animal, to speed up computations,
and then converted the segmented body of the animal to
an outline edge with a width of 1 pixel. We ignored the
segmented animal’s head, because in most cases the head
was not separated by a difference in luminance or color
from the rest of the body. Sample images and human-
marked contours of the animal in the scene are shown in
Figure 2. The ANID is freely available from http://www.
allpsych.uni-giessen.de/ANID.

BSD

The BSD contains hand-labeled segmentations of
various images from a commercial digital image library
(Corel Stock Photo Libraries, Corel Corporation,
Ottawa, Ontario, Canada) to provide an empirical
basis for research on image segmentation and contour
detection (Martin, Fowlkes, Tal, & Malik, 2001). A
portion of the data set is freely available for noncom-
mercial research. The number of these publicly
available images increased over the years from 100 to
300 to 500. We use the notation BSD to refer the most
recent data set of 500 images, and BSD100 and
BSD300 to refer to the other data sets; BSD500 will be
used when necessary for contrast with former versions.
We used the current version of the data set (as of
January 2016), which contains 500 images with 12,000
hand-labeled segmentations from 30 human observers.
Sample images of the BSD are depicted in Figure 2.

To obtain the segmentations, observers were asked
to divide the image into ‘‘distinguished things.’’ More
precisely, observers were given the following inten-
tionally vague instruction to break up the scene in a
natural manner: ‘‘Divide each image into pieces, where
each piece represents a distinguished thing in the image.
It is important that all of the pieces have approximately
equal importance. The number of things in each image
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is up to you. Something between 2 and 20 should be
reasonable for any of our images.’’

MGCCCD

The MGCCCD is a subset of 30 images from two
categories (fruits and landscape) of the McGill Cali-
brated Colour Image Database. A single observer
marked the contours. We scaled the images to a quarter
of their original size (from 1920 3 2560 pixels to 480 3
640 pixels) to match the size of the images in the other
data sets and to speed up computations. Aaron
Johnson collected the MGCCCD. Sample images and
human-marked contours are shown in Figure 2.

SOD

The SOD is a collection of salient-object contours
for the 300 images of the BSD300 (Movahedi & Elder,
2010), which is a subset of the BSD500. Seven observers
viewed an image together with an overlay of human-
marked contours from the BSD300 and marked the
objects they perceived as most salient by clicking on the
corresponding segment or segments. The SOD is freely
available from http://elderlab.yorku.ca/;vida/SOD.

Conversion to DKL color space

We transformed the images from RGB to DKL
color space to separate chromatic and achromatic
information in a physiologically meaningful way.

The DKL color space has three so-called cardinal
directions: an achromatic direction L/M/S and two
chromatic directions—one labeled L/M, where only L
and M cones change at a constant sum, and the other
labeled S, where only the S cones change. The
corresponding cardinal mechanisms are defined as
being orthogonal to a pair of cardinal directions. The
cardinal mechanisms are conventionally labeled LþM,
L � M, and S � (L þM), although they are generally
not computed as such from the cone responses L, M,
and S. In the DKL color space, the cardinal directions
and mechanism axes are aligned, which is not the case
in general (Stockman & Brainard, 2009). The prefer-
ences of the chromatic cardinal mechanisms model the
chromatic preferences of retinal ganglion cells and cells
in the lateral geniculate nucleus (LGN).

We used two different conversion methods to
convert from the RGB input image to DKL: monitor
based and camera based. The monitor-based conver-
sion is based on a particular calibrated monitor and
transforms the image such that the properties of the
DKL axes hold if the image would be viewed on this
monitor. The camera-based calibration transforms the
image such that the properties of the DKL axes hold if
the natural scene depicted by the image would be
viewed. For a camera-based conversion the images
have to be taken by a calibrated camera; this is true
only for the MGCCCD.

Monitor-based conversion

For the monitor-based conversion we use calibration
routines for a standard CRT monitor (Sony GDM 20se

Figure 2. Sample images and human-marked object contours of the data sets used. The Salient Object Dataset is not shown because it

is based on the same images as the 300-image Berkeley Segmentation Dataset, which is a subset of the full 500-image set. The

original human-marked object contours have a width of 1 pixel and have been broadened here to increase visibility. Note that the

vertical line in the image of the bears is an artifact in the original image which has been marked by one observer.

Journal of Vision (2017) 17(3):14, 1–19 Hansen & Gegenfurtner 4

Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/936104/ on 11/07/2018

http://elderlab.yorku.ca/~vida/SOD
http://elderlab.yorku.ca/~vida/SOD


II). We used a conversion method where the axes of the
DKL space are scaled to unity at the limit of the
monitor gamut. Details of this conversion can be found
in Hansen and Gegenfurtner (2013). The conversion
can be expressed by a matrix multiplication:

LþM
L�M

S� ðLþMÞ

0
@

1
A¼

0:2182 0:6889 0:0928
0:8217 �0:5718 �0:2499
0:2318 0:6795 �0:9113

0
@

1
A

R
G
B

0
@

1
A:

Camera-based conversion

For the camera-based conversion we first simulated
how the three cone mechanisms S, M, and L of a
human observer would respond to the image using a
camera-specific conversion routine that is supplied with
the McGill data set. Next, the response of the three
cone mechanisms S, M, and L were transformed into
the response of the three cardinal mechanisms of DKL
color space. Following Johnson, Kingdom, & Baker,
2005 and Párraga et al., 2002, we computed the
achromatic mechanism LþM as the sum of the L and
M cones, and the two chromatic mechanisms based on
the Michelson contrast between different cone types.
We use Roman to denote the cardinal mechanisms Lþ
M, L – M and S – (L þM) and italics to denote the
cone responses L, M, and S.

LþM
L�M

S� LþMð Þ

0
@

1
A ¼

LþM
c L;Mð Þ

c S;LþMð Þ

0
@

1
A

¼
LþM
LþM
L�M

S� LþMð Þ
SþLþM

0
B@

1
CA;

with the Michelson contrast c(x, y) defined as

c x; yð Þ ¼ x� yð Þ= xþ yð Þ:
In the numerical computation of the ratios, we added

a tiny constant to the divisor to avoid division by zero.
The value of this constant was e¼ 22�52, that is the
distance from 1.0 to the next larger double precision
number, as returned by MATLAB’s eps command (The
MathWorks, Natick, MA).

Finally we normalized the mechanism responses to
the interval [0, 1]. We normalized the chromatic
responses globally to ensure that high chromatic edge
responses are not artifacts of a local normalization. A
global normalization of the chromatic mechanism was
feasible because the range of the chromatic contrast
responses was limited due to the divisive normalization
in the equation. Because the equation of the achromatic
mechanism does not involve a divisive normalization,
the range of the achromatic responses varied over
several orders of magnitude for some data sets. We thus

normalized the achromatic responses locally for each
image. The two different normalization methods result
in an overall higher achromatic contrast. We have used
the same normalization scheme in previous work
(Hansen & Gegenfurtner, 2009).

Edge detection

We used different edge-detection algorithms to
compute edges for each dimension of DKL color space
and compared them to human-marked object contours.

Edge-detection algorithms

To detect edges, we used the Sobel operators and
and three biologically motivated algorithms which
model simple cell responses in primary visual cortex
(V1): Gabor filters (Jones & Palmer, 1987; Pollen &
Ronner, 1983), a simple cell model with dominating
opponent inhibition (SimpleCell; Hansen & Neumann,
2004a), and a simple cell model that relies on LGN
input (CORF; Azzopardi & Petkow, 2012). We ran the
SimpleCell and CORF operators with their default
parameters. We used different edge-detection algo-
rithms to investigate to what degree the results depend
on the algorithm.

Performance analysis

Our main question is if and to what degree the
predictions of an edge detector based on achromatic
information can be improved by adding chromatic
information. Note that we were not interested in the
absolute performance of a particular edge detector, but
rather in the relative contribution of chromatic
information for human contour perception.

We used two different framework, receiver-operating
characteristic (ROC) analysis and Precision-Recall
(PR) analysis. Both methods are based on ground-truth
verification—that is, the comparison of a detection
result with ground truth—, and both methods provide
a threshold-independent analysis to capture the trade-
off between hits and false-alarms.

Ground-truth images

Since the both ROC and PR analysis are based on
ground-truth verification, the first step in the analysis is
to specify the ground truth. We used the human-
marked object contours as ground truth against which
the responses of the edge detectors can be compared. In
general, we set a pixel in the ground truth image to 1,
indicating an object contour, if the pixel was marked as
an object contour by any observer. If more than one
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observer labeled the image, other criteria are possible—
for example, a ground-truth object-contour pixel has to
be marked by all observers. These two criteria
constitute the extremes, and any intermediate criteria
may be chosen—for example, a ground-truth object-
contour pixel have to have been marked by at least 50%
of all observers. We investigated the effect of observer
consensus on the results in a separate section, where we
computed different ground-truth images. More pre-
cisely, if N . 1 observers labeled the image, we first
summed the binary object-contour images of all
observers, and then obtained ground-truth images by
thresholding the summed image at 0, 1, . . ., N � 1
(where N is the maximum number of observers that
marked a pixel as an object contour).

ROC analysis

ROC analysis has its origin in signal-detection
theory (Green & Swets, 1966) and is now applied in a
number of diverse fields, in particular the evaluation of
medical diagnostic performance (Pepe, 2003). ROC
analysis captures the trade-off between sensitivity and 1
� specificity—that is, between hit rate and false-alarm
rate.

The hit rate and correct-rejection rate are threshold
dependent: A sufficiently low threshold results in 100%
hits, at the expense of a high false-alarm rate, because
many pixels are considered as contour pixels that have
not been marked by a human observer. For a
sufficiently high threshold, the situation reverses,
resulting in a low false-alarm rate but a also low hit
rate. An ROC curve is a graphical plot that illustrates
the performance of a binary classifier as its discrimi-
nation threshold is varied. The curve is the hit rate as a
function of the false-alarm rate at various discrimina-
tion thresholds (Bowyer, Kranenburg, & Doughtery,
2001). The hit rate is also known as true positive rate
(TPR), sensitivity, d0, or recall (R); the false-alarm rate
is also known as false positive rate (FPR), 1 �
specificity, or fallout (F).

The ideal operator has to be sensitive to all signals
(high hit rate) while at the same time responding

specifically only to the signals and not the noise (low
false alarm rate). In the context of the present work, a
hit is a pixel in the human ground-truth image that is
detected by the edge operator—that is, a pixel that has
a value above threshold in the operator edge image.
Similarly, a false alarm occurs if the detector signals an
edge at a location that has not been marked as an
object contour in the human ground-truth image. The
four cases that occur when an operator responds to a
signal are traditionally represented in a so-called
contingency table (Table 1).

The hit rate or recall R is the number of correctly
detected object-contour pixels (hits) divided by the
number of ground-truth object-contour pixels:

R ¼ A \ Bj j
Aj j :

The false-alarm rate or fall-out F is the number of
false detected object-contour pixels divided by the
number of non-object-contour pixels in the ground-
truth image:

F ¼ Ā \ Bj j
Āj j :

We determined the hit rate and the false-alarm rate
for 101 discrete threshold values 0, 0.01, 0.02, . . ., 1.
For each threshold value we first binarized the operator
edge image by setting all values above the threshold to
1 and all values below to 0. Second, we determined the
number of hits (i.e., the number of pixels that are 1
both in the thresholded edge image and the human
ground-truth image) and the number of false alarms
(the number of pixels that are 1 in the thresholded edge
image but zero in the ground-truth image). After we
determined hits and false alarms for each threshold, we
computed the hit rate by dividing the hits by the
number of object-contour pixels in the ground-truth
image, and the false-alarm rate by dividing the false
alarms by the number of background pixels in the
ground-truth image. The ROC curve can then be
plotted as hit rate against false-alarm rate.

Number of image pixels

jA ¨ Āj ¼ jB ¨ B̄j

Ground-truth image

Edge A Background Ā

Operator Positive response: edge detected (B) Hits tp ¼ jA˙Bj False alarms fp ¼ jĀ˙Bj
Negative response: no edge detected (B̄) Misses fn ¼ jA˙B̄j Correct rejections tn ¼ jĀ˙B̄j

Table 1. The so-called contingency table is a formal way to represent the four possible outcomes when an edge operator detects a
signal. There are two correct responses of the operator, namely a ‘‘hit’’ when a ground-truth edge is detected, and a ‘‘correct
rejection’’ when no edge is detected at a background location; and there are two incorrect responses of the operator, namely a ‘‘false
alarm’’ when an edge is signaled at a background location and a ‘‘miss’’ when no edge is signaled at a ground-truth edge. More
formally, the ground-truth image divides the set of pixels into two subsets of edge pixels A and background pixels Ā. Likewise, the
operator divides the set of pixels into two subsets of edge pixels B and all other pixels B̄. The number of elements in both the unions
of A and Ā and of B and Ā are the number of pixels in the image.
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The ROC curves always start at (0, 0) and end at (1,
1). Curves that are higher represent better performance.
An ROC curve that is equal to the main diagonal (TPR
¼FPR, or sensitivity¼ 1� specificity) corresponds to a
random operator where a positive test corresponds to
flipping a coin with probability of a hit equal to a false
alarm. An ROC curve that is below the main diagonal
is worse than guessing, and hence can be improved
upon by taking the opposite decision.

An ROC curve is a two-dimensional depiction of the
performance of a classifier. It is often desirable and
handy, for example, to compare different classifiers, to
characterize the performance of the classifier by a single
scalar value (Fawcett, 2006). Such a single measure is
the area under the ROC curve (AUC, also AuROC or
A0).

The better the performance of the operator, the
higher the AUC. The value of the AUC varies between
0.5¼ 50% (chance level) for the worst-informative
operator and 1 ¼ 100% for the ideal operator. AUC
values between 0 and 0.5 are possible but correspond to
nondetectors—that is, detectors that respond better to
the background (the nonsignal) than to the edge (the
signal). Such a nondetector can of course be easily
converted to a detector by negating its response. In the
words of Fawcett (2006, p. 863), such a classifier ‘‘may
be said to have useful information, but it is applying the
information incorrectly (Flach & Wu, 2003).’’

The AUC is an empirical estimate of the probability
that the detector correctly responds to the signal plus
noise but not to the noise (Green & Swets, 1966, pp.
45–49; cited in Hanley & McNeil, 1982). In the present
context, the signal plus noise is the edge pixels in the
ground-truth image, and the noise is the background
pixels. The edge-detector response to the image can be
considered as a signal-detection experiment using a
rating paradigm, where the detector rates each pixel on
a continuous scale as being an edge or not. The finding
of Green and Swets (1966) tells us that the AUC
obtained from such a rating experiment is equivalent to
the AUC obtained from a signal-detection experiment
using a two-alternative forced-choice paradigm. The
AUC when computed by the trapezoidal rule is
equivalent to the Wilcoxon–Mann–Whitney statistic
(Bamber, 1975; Hanley & McNeil, 1982); the AUC is
therefore equivalent to the frequency that in all pairs of
pixels randomly picked from the edge map, the pixel
with the higher value is a ground-truth contour pixel.
This interpretation of the AUC holds independently of
the distribution of the underlying data. The AUC is
also a linear transformation of the Gini coefficient
(Fawcett, 2006), which itself is equivalent to half of the
relative mean absolute difference (Sen, 1977).

The AUC can be used to compare different ROC
curves. If the ROC curve for one operator is higher
than that for another operator, then the first operator’s

AUC will also be larger. The converse is not true: A
larger AUC does not imply a uniformly better operator
(Pepe, 2003).

Here we used the AUC as a single measure to
characterize how well the human-marked object
contours can be predicted by the achromatic or
chromatic edge images or a combination of both. The
AUC was computed from the empirical ROC curves by
the trapezoidal rule; no curve fitting was used. The
shapes of the empirical ROC curves could be approx-
imated in most cases well by ideal ROC curves
assuming normal distributions of equal variance. To
grade the performance measured by an AUC we used
the traditional academic point system: 0.90–1.00¼
excellent (A), 0.80–0.89 ¼ good (B), 0.70–0.79 ¼ fair
(C), 0.60–0.69¼ poor (D), and 0–0.59¼ fail (F). To
compare the performance for different inputs (such as
achromatic vs. chromatic and achromatic) we used the
difference between the corresponding AUCs, denoted
by DAUC.

Precision–recall analysis

An alternative approach to ROC analysis is to
evaluate the performance in terms of precision and
recall. Recall is a synonym for hit rate; precision or
positive predictive value is the number of correctly
detected edge pixels divided by number of detected edge
pixels:

P ¼ A \ Bj j
Bj j :

We computed precision–recall (PR) curves for each
image analogously to ROC curves. For each image, we
normalized the operator-detected edge image to the
range [0, 1] and computed precision and recall for each
of the 101 threshold values used to binarize the edge
map. We computed a single curve by averaging
precision and recall curves using the F-measure (van
Rijsbergen, 1979), defined as

Fa P;Rð Þ ¼ 1

a 1
P

� �
þ 1� að Þ 1R

:

The higher the curve of the F-measure, the better the
performance of the operator. For an equal weighting of
precision and recall with a¼ 1/2, the F-measure is the
harmonic mean of precision P and recall R:

F ¼ F1=2 P;Rð Þ ¼ 2PR

Pþ R
:

Following Martin, Fowlkes, and Malik (2004), we used
the maximum along the F1/2 curve to analogous to the
AUC in the ROC analysis to derive a single scalar value
that characterizes the performance of the operator.
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Results

We determined ROC curves for the edge detector
response to achromatic edges (Lum) and compared
them to ROC curves for the edge detector response to
achromatic and chromatic edges (Lum & Col). Object
contours marked by human observers in the color
images were used as ground truth. The ROC frame-
work ensures that the increase in performance is
independent of the threshold used to separate edges
from the background.

A sample image where chromatic edges detected with
the Sobel operator resulted in a considerable improve-
ment is shown in Figure 3. Here the horizon and the
sides of the pyramids are almost invisible in the
achromatic edge map but well delineated in the
chromatic L/M þ S edge image.

The corresponding ROC curves are shown in Figure
4. Interestingly, the best prediction for the human-
marked object contours in this image is obtained based
on chromatic L/M edges alone; adding achromatic
information worsens the prediction. More precisely,
achromatic edges with an AUC of 57% failed to predict
the human-marked object contours, while chromatic
edges (Col ” L/M þ S) gave a fair result (76%). The
combination of achromatic and chromatic edges was
poor (67%)—that is, worse than the prediction of
chromatic edges alone. The same effect occurred when
achromatic edges were added to the chromatic edges

detected in a single chromatic dimension (L/M or S).
The reason for the bad prediction based on achromatic
edges in this image is twofold: First, important
contours in the image are almost isoluminant (such as
the horizon or the pyramid contour against the sky)
and thus missing in the achromatic edges. Second,
unimportant contours such as the stones below the
pyramid or the sand texture have a higher achromatic
than chromatic contrast, leading to false positive
responses. Human contour perception in this image
clearly benefits from chromatic information.

Next, we evaluated the full BSD500 using the Sobel
operator. In all cases, the average prediction was fair,
with an average AUC of 70.8% for the achromatic
edges and 75.2% for the chromatic edges. Two results
obtained for the sample image in Figure 4 hold for the
full data set: Performance was worst for the achromatic
edges and best for the chromatic edges. Adding
achromatic information to the chromatic edges had
only a negligible effect on the performance. The
average improvement was quantified by DAUC(Lum &
Col, Lum)¼AUC(Lum & Col)� AUC(Lum)—that is,
the difference between the AUC based on the
achromatic edges and the two chromatic edges (Lum &
Col) and the AUC based on the achromatic edges
(Lum). Its value was 4.3%.

We also analyzed the performance if only a single
chromatic dimension was added to the achromatic
dimension—that is, for simulated dichromats. The
difference between the AUCs dropped to 1.8% for

Figure 3. A sample image from the 100-image Berkeley Segmentation Dataset, where main contours are much better delineated in

the chromatic than in the achromatic image.
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protanope/deuteranope dichromats, lacking either the
L or M cone type—that is, without the L/M
dimension—and to 1.6% for tritanopes, lacking an S
cone type—that is, without the S dimension.

Images that had the greatest color advantages and
disadvantages are shown in Figure 5. Large advantages
from using chromatic information occur if the observ-
ers marked largely isoluminant contours, such as the
outline of the sports car, the red suit of the woman in
front of the lawn, the bird’s back against the lawn and
its plumage coloration, or the back of the bears against
the water. Small disadvantages occur for animals that
use color to camouflage (like the shark, the moray eel,
the cormorant, and the snake), for artificial objects
with a chromatic texture that is not marked by the
human observers (like the pattern on the Hawaiian
shirt), and, trivially, for essentially achromatic images,
like the fisherman in backlight.

So far, we have shown that chromatic information
improves the prediction of human-marked object
contours. We obtained the results for a particular
choice of data set, edge detector, spatial scale,
observer consensus used to define ground-truth images
from the human-marked edges, and evaluation
framework. In the following we shall investigate how
robust our findings are against variation of these
choices. We shall also run the analysis for color-
calibrated images.

Performance for other data sets and edge
detectors

To quantify the prediction advantage of chromatic
edges, we computed the difference in the AUC between
achromatic and full-color edges, DAUC(Lum & Col,
Lum), and compared it to the prediction advantage for
achromatic edges, DAUC(Lum & Col, Col). Histo-
grams of both measures for the BSD and the Sobel
operator and results averaged across all combinations
of data sets and edge detectors are shown in Figure 6.
The histogram for the color advantage has very few
negative values, which would indicate a color disad-
vantage. On the contrary, the histogram for the
luminance advantage has considerably more negative
values, indicating a luminance disadvantage: For these
images, adding achromatic edges to the chromatic
edges worsens the prediction. For the BSD and the
Sobel operator, color is advantageous for 99.6% of all
images, while luminance is advantageous for only
47.4% of all images. The corresponding values for all
data sets and edge detectors are 85.5% and 67.6%.

These differences are also reflected in the average
prediction advantage. For the BSD and the Sobel
operator the average color-prediction advantage is
4.3%, while the average luminance prediction advan-
tage is even slightly negative (�0.06%), indicating a
luminance disadvantage. For all data sets and edge
detectors, the average color-prediction advantage is

Figure 4. Receiver operating-characteristic (ROC) curves reflect the qualitative finding that for the pyramid image (Figure 3) chromatic

edges can better predict human-marked object contours. ROC curves for all seven possible combinations of the three postreceptoral

channels Lum, S, and L/M are shown. The ROC curve based on achromatic and chromatic edges (Lum & Col, brown) is well above the

curve based on achromatic edges alone (Lum, gray). In fact, achromatic edges fail to predict human-marked object contours, and

combined achromatic and chromatic edges yield a poor prediction. For this image, chromatic edges alone (Col) give the best

prediction; adding achromatic information worsens the prediction (Lum & Col). Each chromatic channel alone results in fair

performance (L/M and S); combining achromatic information with a single chromatic channel decreases the performance to poor

(Lum & S, Lum & L/M). The area under the ROC curve is a single qualitative measure to characterize prediction advantage. Values of

area under the curve for each curve are given in parentheses. Ideal ROC curves for d0 ¼ 0, 1, 2, 3, and 4 are shown for reference

(dotted light gray).
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3.5%, while the average luminance-prediction advan-

tage is significantly smaller, namely only 2.4 (paired-

samples t test), t(4,615) ¼�8.25, p , 2.0002�16. This

reflects the importance of color for human contour

perception.

Next we show separately for each combination of

data sets and edge detectors the percentage of images

with a color advantage and the average color advan-

tage DAUC(Lum & Col, Lum) (Figure 7). We found

that the main result was independent of the edge

detector: For all data sets and edge detectors, adding

chromatic information increased the performance

compared to achromatic information alone. Color

information is advantageous for more than 50% of the

images in each data set, with an average value of 83%.

The difference between the average AUCs for achro-

matic and full-color images were always positive, with

values ranging from 0.7% (CORF for the ANID) to

8.4% (SimpleCell for the BSD). This difference was

significant in 15 out of 20 cases (nonsignificant with

CORF for the ANID, MGCCCD for the SOD, and

Sobel or Gabor for the MGCCCD).

Dependence on spatial scale

We also investigated the dependence of the results
on the spatial scale. The images were blurred by 2-D
Gaussians of different standard deviations from r¼ 1
to 16 pixels. We found that the color advantage as
measured by DAUC(Lum & Col, Lum) increased with
spatial scale from 3.5% without blurring to a
maximum of 4.9% for r¼ 12 and decreased for higher
values of r.

Dependence of performance on observer
consensus in defining ground truth

In this section we analyze how variations in defining
the ground-truth image affect the results. In particular,
we investigate the influence of observer consensus and
edge thickness.

For the ROC analysis, binary ground-truth images
are needed where a pixel is either an edge or not. In the
results presented so far, a pixel has been considered a
ground-truth edge pixel if it was marked by any
observer (defined as 0% consensus). Alternatively,

Figure 5. Images from the Berkeley Segmentation Dataset, where adding chromatic edges resulted in (a) the highest advantages and

(b) the lowest advantages in predicting human-marked object contours. For each image, the original full-color image and the

corresponding achromatic and chromatic image are shown together with the human-marked object contours and the edges detected

in the achromatic dimension and the two chromatic dimensions.
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ground-truth images could have been generated with a
more severe criterion—that is, if they were marked by
at least a fraction of all N observers, with the fraction
ranging from 1/N to N. Does changing this criterion
affect performance? If so, how? One hypothesis is that
the performance remains the same, because increasing
the criterion increases both hits and misses. An
alternative hypothesis is that increasing the criterion
reduces the fuzziness in the ground truth such that the
operator performance would be better because the
number of misses decreases. To affect the comparison
of chromatic and achromatic edges, one must further
assume that lowering the criterion boosts performance
selectively for either chromatic or achromatic edges but
not both.

To address this question we analyzed the data sets
where more than a single observer has labeled the
images—that is, the BSD and the SOD. We ran the
ROC analysis separately for each of the n possible
ground-truth images, where n is the maximum number
of observers who labeled a pixel as an edge. Results are
shown in Figure 8. We found that the number of
images with a color advantage drops as the consensus
increases. This could be interpreted as meaning that

observers agree more on achromatic edges compared to
chromatic edges. The average improvement depending
on consensus differed between data sets: For the BSD
the advantage was largely robust against consensus
changes, while it dropped for the SOD. These
differences could be due to the different nature of
contours in the two data sets: While the observers were
asked to label ‘‘distinguished things’’ in the BSD, for
the SOD they were asked to select just the salient
contours.

The human-marked object contours have a width of
only 1 pixel. This implies that observers have a very
high level of spatial precision when defining object
contours, which may or may not reflect their percept.
To test whether our results are affected by the line
width in the ground-truth data, we varied the criterion
for a pixel to be classified as an edge by dilating the
ground-truth maps with a disk of radius 3 or 6,
corresponding to counting a pixel as hit if it is within a
distance of 3 or 6 pixels from a human-marked object-
contour pixel. We found no substantial difference in the
overall color advantage. Values were 3.7% for a radius
of 3 pixels and 4.5% for a radius of 6 pixels, compared
to 3.5% for no dilation.

Figure 6. Histogram of differences in area under the receiver operating-characteristic curve. These are computed to assess (a) the

color advantage DAUC(Lum & Col, Lum) and (b) the luminance advantage DAUC(Lum & Col, Col); data are shown for the Berkeley

Segmentation Dataset and the Sobel operator (top row) and averaged across all data sets and operators (bottom row). Histograms

are normalized to show the probability; data outside the interval [�15, 15] are not shown. Bold vertical lines mark the average.
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PR analysis

We also used PR curves and the F-measure to
evaluate the contribution of chromatic information.
Analogously to the ROC framework, we quantified the
advantage of chromatic information by the average
difference DF(Lum & Col, Lum) in the F-measure
between achromatic and full-color images. The average
DF-value was small (1.1%), but for some images it was
considerably higher, up to 40%. The DF-value differed

across data sets. For the ANID and the SOD there was
almost no effect (0.1%), while for the BSD, MGCCCD
(monitor-based conversion), and MGCCCD (camera-
based conversion), respectively, the DF-value was 2.2%,
0.8%, and 2.6%. An analysis at different spatial scales
revealed that the effect remained absent for the ANID
(0.1%) but increased for the SOD (2.1%) and the other
data sets (2.5%, 2.7%, and 4.6%, respectively). Values
are given for blurring with a 2-D Gaussian of standard
deviation 4; similar values were obtained for the other

Figure 7. Color advantage for the different data sets and edge detectors. Color advantage is quantified for each combination of data

set and edge detector by (a) the percentage of images where chromatic information was advantageous and (b) the difference

between the area under the receiver operating-characteristic curve for achromatic and chromatic edges (Lum & Col) and achromatic

edges (Lum). Error bars denote the standard error of the mean.

Figure 8. Dependence of color advantage on observer consensus for the Berkeley Segmentation Dataset and Salient Object Dataset.

(a) The percentage of images with a color advantage drops as the consensus increases. (b) The average color advantage as quantified

by the difference between the area under the receiver operating-characteristic curve for achromatic and chromatic edges (Lum & Col)

and achromatic edges (Lum) is largely independent of observer consensus for the Berkeley Segmentation Dataset but drops for the

Salient Object Dataset. Shaded areas denote the standard error of the mean.
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tested standard deviations of 1 and 2. Overall, we found
a color advantage across different scales and data sets
in 15 out of 20 cases.

The mixed results show that the advantage of
chromatic information is not completely independent of
the evaluation framework. The absence of a color
advantage for the ANID data set in the PR framework
may be due to the fact that only a subset of all contours
wasmarked in this data set, namely the animals’ contours.

Discussion

We investigated the contribution of color and
luminance information to predict human-marked
object contours. We used different operators to detect
edges in three dimensions of the DKL color space and
compared them to human-marked object contours
from four different data sets. We used an ROC
framework for a threshold-independent comparison of
edge-detector responses to the ground truth given by
the human-marked object contours. Adding chromatic
information was advantageous for 83% of the images.
The improvement as quantified by the difference
between the AUC for achromatic and chromatic edges
versus achromatic edges, DAUC(Lum & Col, Lum),
was small on average (3.5%) but considerably higher
for some images, up to 52%. Interestingly, the
luminance advantage DAUC(Lum & Col, Col) was
smaller than the color advantage (2.4%). The reason for
this might be that strong chromatic edges likely signal
an object boundary, while strong achromatic edges can
also result from shadow.

Effect of image format

The images of the BSD and the SOD—which builds
upon the BSD—are provided in JPG format. The JPG
image format defines a stronger compression of the
chromatic channels compared to the achromatic
channel, to reflect different sensitivities of the human
visual system. This compression might reduce chro-
matic noise, and this might influence the responses of
small operators like the Sobel operator. This may
explain the particular result for the Sobel operator
applied to the BSD, where chromatic information alone
was as good as achromatic information combined with
chromatic information (Figure 7).

Biases of data sets

In our analysis we used the images in the data sets, so
any bias in these data sets may influence our results.

The data sets are not an unbiased random sample of the
world. We used several data sets to minimize the
influence of any one bias. For example, most images in
the data sets show some objects. Because we focus on
the contributions of color for human contour percep-
tion, the presence of objects in the image—rather than
images of, for example, soil, sand, or lawn—is not
problematic. Further, objects that attract attention are
primarily focused and are therefore in general of high
importance for human vision.

Image statistics versus scene statistics

In our investigation we were interested in the
contribution of chromatic information in contour
perception when natural scenes, not photographs on a
monitor, are viewed. This requires a data set with
object contours marked on calibrated images. A
calibrated camera was used to obtain the images of the
MGCCCD data set; the other data sets are based on
uncalibrated images. For these uncalibrated images we
could use only a monitor-based conversion from RGB
to DKL. To investigate the degree to which the use of
uncalibrated images may affect the results, we used the
MGCCCD to compare results obtained with a camera-
versus a monitor-based conversion. We found that
results were largely independent of the conversion
method: For both methods, color was advantageous
for 90% of the images, and the DAUC values for
achromatic vs. achromatic and chromatic information
were similar (3.9% for the monitor-based conversion
and 5.5% for the camera-based conversion, using the
Sobel operator). We interpret these findings such that
the results are largely independent of the conversion
routine.

Small effect size of the chromatic advantage

The area under the ROC curve varies between 50%
and 100%. This limits the theoretically maximal
advantage to 50%. In practice, most operators do not
fail (AUC , 60%), so even a poor detector has an AUC
above 60%. The value that humans reach in predicting
human-marked object contours (obtained from a leave-
one-out ROC analysis for the BSD) is 85% for the
BSD. Therefore, the AUC values in the domain that we
studied here varies between 60% and 85%—that is, in a
range of only 25%. The average advantage values
below 5% that we found in the present study have to be
judged based on this practically reachable maximal
advantage.

A similar argument can be made for the F-measure.
The small improvement that we found has to be related
to the generally small value in improvement in the F-
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measure in this domain. For example, 30 years of
contour-detection research resulted in an improvement
of the F-measure of 11%, from 60% for the Canny
operator (Canny, 1986) to 71% for a biologically
motivated model based on surround modulation
(Akbarinia & Párraga, 2016).

Natural-scene-statistics findings on the
independence of achromatic and chromatic
edges

The highly correlated cone responses to natural
images are decorrelated by the second-stage mecha-
nisms L þM, L – M, and S – (L þM), which show
some resemblance to the response properties of retinal
ganglion cells. The ganglion cells project along the
optic tract to the LGN; a decorrelated representation
allows for an optimal transmission of chromatic
information from the retina to the LGN and further to
primary visual cortex V1. The first study that showed
this decorrelation was based on information theory
(Buchsbaum & Gottschalk, 1983). Subsequent work by
Atick, Li, and Redlich (1992) extended the analysis to
the spatiotemporal domain. Ruderman, Cronin, and
Chiao (1998) investigated the statistics of cone
responses to natural images and confirmed the findings
of Buchsbaum and Gottschalk.

Investigation of the spatiochromatic structure using
principal-components analysis or independent-compo-
nent analysis revealed that the achromatic and chro-
matic dimensions of the second-stage channels were
entirely decorrelated—that is, based on activity in one
channel, one cannot predict the activity in another
channel (Heidemann, 2006; Ruderman et al., 1998; van
Hateren, 1993; Wachtler, Lee, & Sejnowski, 2001;
Webster & Mollon, 1997). The basis functions found in
these studies are in most cases not uniform, but
spatially structured. This provides evidence that the
physical structure of the world is coded in color and
luminance by the human visual system.

In previous work we investigated the joint distribu-
tion of chromatic and achromatic edges in natural
scenes (Hansen & Gegenfurtner, 2009). We found that
most edges combine luminance and color contrast. This
is reflected in the observation that if one views a single
dimension of a typical image, one can observe much if
not all of the same spatial structure in each dimension.
However, the magnitude and the sign of the luminance
and color contrast at the edges are independent.
Therefore, chromatic edge contrast is an independent
source of information that can thus be linearly
combined with other cues for subsequent processing,
such as object segmentation. The present study
provides evidence that human observers use chromatic
information to delineate object contours.

Zhou and Mel (2008) collected joint responses of
red–green and blue–yellow edge detectors both for ON-
and OFF-edges using the BSD300 as ground truth.
They investigated the rules for combining edge cues.
Because the conditions for a linear combination of cues
were not fulfilled for the color edge data they collected
(statistical independence and exponential ratio), the
combination rule was complex and nonlinear. Here we
used a linear, additive combination of cues.

Note that these findings do not contradict findings in
a different domain, where the dependence of the filter
responses to achromatic natural scenes has been
studied (Karklin & Lewicki, 2006; Schwarz & Simon-
celli, 2001). These studies have found that the strength
of the dependence varies depending on the difference in
orientation and displacement between the filters and
the complexity of the natural scene: The more similar
the filter and the more regular the scene, the higher the
dependency.

Psychophysical findings of chromatic contrast
processing, contour detection, and scene
recognition

The spatial resolution for the processing of achro-
matic stimuli is generally higher than that of chromatic
stimuli. Contrast sensitivity for gratings with a spatial
frequency above 0.5 c/8 is higher for achromatic than
for chromatic gratings (Kelly, 1983; Mullen, 1985;
Sekiguchi, Williams, & Brainard, 1993). The spatial
contrast sensitivity function is high-pass for achromatic
contrast and low-pass for chromatic contrast. Besides
these differences in the contrast sensitivity function, the
processing of achromatic and chromatic form is highly
similar (for a review, see Shevell & Kingdom, 2008). It
has been proposed that achromatic and chromatic
contrast are processed in multiple channels sensitive to
different spatial frequencies that are similar for
achromatic and chromatic processing (Bradley,
Switkes, & De Valois, 1988; Losada & Mullen, 1995;
Reisbeck & Gegenfurtner, 1998; Switkes, Bradley, &
De Valois, 1988; Webster, De Valois, & Switkes, 1990).
Chromatic and achromatic processing are also highly
similar at a higher processing stage, where local
orientations are grouped into coherent contours
(McIlhagga & Mullen, 1996; Mullen, Beaudot, &
McIlhagga, 2000) and object contours are extracted
(Gheorghiu & Kingdom, 2007; Mullen & Beaudot,
2002).

While isolated chromatic and achromatic processing
have been studied extensively, comparatively few
studies have investigated the combined effect of
chromatic and achromatic processing. The overall view
is that chromatic and achromatic information are
combined nonlinearly. Kingdom (2003) studied the
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effect of combining achromatic and chromatic gratings
and found that a 2-D color grating appeared as a 3-D
object if an achromatic grating was added in phase but
appeared flat if the n grating was added out of phase.
Sharman, McGraw, and Peirce (2013b) studied the
detection of achromatic and chromatic blur. They
found that in natural images, chromatic blur was
consistently harder to detect if combined with an
unblurred achromatic image. The effect persisted if the
chromatic and achromatic images were equated for
contrast, showing that the masking was not due to the
fact that in natural scenes, achromatic contrast is
higher than chromatic contrast (Rivest & Cavanagh,
1996). The effect also persisted in pseudocolored
versions of the images where the information in the
chromatic channels was taken from the achromatic
channel and vice versa, ruling out the possibility that
the effect could be attributed to differences in the
achromatic and chromatic image statistics.

A dominant effect of achromatic information in
boundary processing has been found in the Boynton
illusion, where straight chromatic edges are perceived
to be aligned with irregular achromatic edges, and in
the water-color effect (Pinna, Brelstaff, & Spillmann,
2001), where color is perceived to spread between
achromatic contours. These studies suggest that color is
primarily a surface property and plays only a secondary
role in edge detection and localization (Mollon, 1989).
However, a recent study by Sharman et al. (2013a)
challenged this view. Those researchers asked observers
to mark the edge location in superimposed bipartite
achromatic and chromatic fields that were offset by a
small amount (3 arcmin) but appeared to be fused.
When the achromatic and chromatic contrasts were
equated to be equally reliable for localizing the edge,
chromatic information dominated the edge localiza-
tion. The study found that the localization in the
combined stimuli could be predicted from isolated
conditions by a maximum-likelihood model that was
adjusted by giving the chromatic component a higher
weight.

The role of color in edge detection and form
extraction is further substantiated by the fact that many
visual shape illusions persist in purely chromatic
versions. In the tilt aftereffect, observers adapt to a
grating of stripes and perceive the orientation of a
subsequently shown grating to be illusorily tilted in the
direction away from the adapting orientation. The tilt
aftereffect is believed to depend on the interaction of
selectively adaptable orientation channels and has been
found not only in achromatic but also in purely
chromatic—that is, isoluminant—stimuli (Clifford,
Spehar, Solomon, Martin, & Zaidi, 2003). Further,
numerous geometric-optical illusions such as the
Horizontal–Vertical, Poggendorff, Ponzo, and Zöllner
illusions are as strong in the isoluminant version as in

the original achromatic version (Hamburger, Hansen,
& Gegenfurtner, 2007).

Color also contributes to higher-level tasks such as
image recognition. Gegenfurtner and Rieger (2000)
used a delayed-match-to-sample paradigm to investi-
gate the sensory and cognitive contribution of color to
the recognition of natural scenes. Targets were
presented at four different intervals (between 16 and 66
ms) to tap into the two stages of encoding and retrieval
in the recognition process. It was found that color
contributes to both stages. For short presentation times
(16 and 33 ms), color images were encoded better: The
percentage of correctly matched targets was higher if
the color images were initially presented compared to
luminance images. For longer presentation times (49
and 66 ms), color images were retrieved better: The
recognition performance increased if the images were
both presented and tested in color. The advantage of
color in the encoding stage suggests a fast processing of
chromatic information that may have its neural
correlate in cell assemblies in primary and secondary
visual cortex devoted to the processing of chromatic
contours (Shapley & Hawken, 2011).

Design and evaluation of contour detectors
based on human-marked object contours

Other studies have used human-marked object-
contour maps to evaluate the performance of various
edge detectors and design an optimized contour
detector (Martin et al., 2004), or to investigate the
features used for occlusion detection in natural scenes
and design an occlusion detector (DiMattina, Fox, &
Lewicki, 2012).

Martin et al. (2004) trained a classifier based on
human-labeled images to obtain a detector that
combines brightness, color, and texture cues to signal
the posterior probability of a contour in an image.
They found that a linear combination of cues resulted
in the best detector. They quantified the performance
using an F-measure based on precision and recall.
Within the range of F-values marked by 0.58 for a
simple detector based on Gaussian derivatives and 0.8
for the median human observer, their best detector
based on brightness and texture yielded an F-measure
of 0.65 that could be improved to 0.67 if color cues
were added. The small benefit of color—0.02—closely
resembles the value we find in the present work.

None of the edge detectors we investigated could
perfectly predict the human-marked object contours.
Finding an optimal contour detector is an active area of
research, and the ROC framework we present here can
be used to evaluate new models of contour detection.
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ROC analysis versus PR curves

There are two established evaluation methods to
characterize the trade-off between hits and false alarms
in a detection task. One method is based on ROC
curves that plot hit rate versus false-alarm rate (or
recall vs. fallout, in image-retrieval terminology); the
other method uses PR curves that plot precision versus
recall (or sensitivity vs. hit rate). In the context of edge
detection, precision is the number of correctly detected
edge pixels divided by the number of detected edge
pixels, and recall (or hit rate) is the number of correctly
detected edge pixels divided by the number of ground-
truth edge pixels.

Both ROC and PR curves show qualitatively the
same trade-off between misses and false positives. ROC
curves have been used to evaluate edge and boundary
detectors (Abdou & Pratt, 1979; Bowyer et al., 2001)
and junction detectors (Hansen & Neumann, 2004b).
PR curves have been used to evaluate edge and
boundary detectors (Martin et al., 2004).

Martin et al. (2004) argued that ‘‘ROC curves are not
appropriate for quantifying boundary detection’’ (p.
536). The axes for an ROC curve are false-alarm rate
(or fallout) and hit rate (or recall). Fallout is the
probability that a true negative was labeled a false
positive. In the context of edge detection, it is the
number of falsely detected edge pixels divided by the
number of ground-truth background pixels. Martin et
al. continue: ‘‘Fallout is not a meaningful quantity for a
boundary detector since it depends on the size of the
pixels [i.e., the image resolution]. . . . Since boundaries
are 1D . . . the number of true negatives will grow as n2

while the number of true positives will grow as slow as
n [the scaling of the pixel radius]. Thus, the fallout will
decline as much as 1/n’’ (2004, p. 536).

The argument of Martin et al. may be valid if the
absolute performances of detectors are compared across
images of different sizes. However, this reasoning is
unclear because all operators are evaluated for the
same images, namely the BSD, and are not compared
across different data sets with images of different sizes.
Unlike Martin et al., we were not interested in the
absolute performance of detectors rather than in the
benefit of using chromatic information to predict
human contour perception. Any postulated effects of a
stronger decline of the false-positive rate compared to
the hit rate would affect the ROC curves based on
achromatic information and on combined achromatic
and chromatic information in the same way. Further,
all comparisons were made on the same image, never
on images of different sizes.

Moreover, the ROC is a threshold-free comparison,
and the AUC is a well-established measure to
characterize the ROC curve with a single number. For
the PR curves, a different measure is used to

characterize the curve with a single number, namely the
maximum of the F-measure. The maximum of the F-
measure differs in two ways from the AUC: First, the
maximum along the Fa curve is just a single position,
and not an integral measure as the AUC. Second, the
F-measure involves an additional parameter a. This
additional parameter is usually set to 0.5, correspond-
ing to an equal weighting of precision and recall. Of
course, other values would also be possible, resulting in
different values extracted from the Fa curve. Different
a-values may crucially affect the analysis.. Moreover,
due to the need to define the parameter a, the PR
framework does not have a main advantage of the
ROC framework, namely being parameter free.

To sum up, we think that the argument of Martin et
al. (2004) does not apply to the present work, and that
the PR framework in general may have no advantage
over the ROC framework.

Conclusions

In previous work (Hansen & Gegenfurtner, 2009) we
have found that chromatic edge contrast is an
independent source of information. Here we investi-
gated the contribution of color to the detection of
object contours in natural scenes. We found that color
is advantageous for 83% of the images, and that this
advantage can be very high in some cases. We found
the result to be robust against variations in data set,
edge detector, spatial scale, evaluation framework, and
observer consensus. We conclude that chromatic
information is helpful in contour detection.

Keywords: color, luminance, object-contour
perception, natural scenes
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Párraga, Jochem Rieger, Tom Troscianko, Andrea van
Doorn, Maria Vanrell, Thomas Wachtler, and Felix
Wichmann for comments on the work.

The work was supported by DFG Collaborative
Research Center SFB TRR 135.

Journal of Vision (2017) 17(3):14, 1–19 Hansen & Gegenfurtner 16

Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/936104/ on 11/07/2018



Preliminary results have been reported in abstract
form (Hansen & Gegenfurtner, 2013). Supplementary
data and software are available at http://dx.doi.org/10.
5281/zenodo.159566.

Commercial relationships: none.
Corresponding author: Thorsten Hansen.
Email: Thorsten.Hansen@psychol.uni-giessen.de.
Address: Abteilung Allgemeine Psychologie, Justus-
Liebig-Universität Gießen, Gießen, Germany.

References

Abdou, I., & Pratt, W. (1979). Quantitative design and
evaluation of enhancement/thresholding edge de-
tectors. Proceedings of the IEEE, 67(5), 753–763.

Akbarinia, A., & Párraga, C. A. (2016). Biologically-
inspired edge detection through surround modula-
tion. In Richard C. Wilson, Edwin R. Hancock and
William A. P. Smith (Eds.), Proceedings of the
British Machine Vision Conference 2016 (pp. 1–13),
Durham, UK: BMVA Press. Retrieved from http://
bmvc2016.cs.york.ac.uk/

Atick, J. J., Li, Z., & Redlich, A. N. (1992).
Understanding retinal color coding from first
principles. Neural Computation, 4, 559–572.

Azzopardi, G., & Petkow, N. (2012). A CORF
computational model of a simple cell that relies on
LGN input outperforms the Gabor function model.
Biological Cybernetics, 106, 177–189.

Bamber, D. (1975). The area above the ordinal
dominance graph and the area below the receiver
operating graph. Journal of Mathematical Psychol-
ogy, 12, 387–415.

Bowyer, K., Kranenburg, C., & Doughtery, S. (2001).
Edge detector evaluation using empirical ROC
curves. Computer Vision and Image Understanding,
84(1), 77–103.

Bradley, A., Switkes, E., & De Valois, K. D. (1988).
Orientation and spatial frequency selectivity of
adaptation to color and luminance gratings. Vision
Research, 28, 841–856.

Buchsbaum, G., & Gottschalk, A. (1983). Trichro-
macy, opponent colours coding and optimum
colour information transmission in the retina.
Proceedings of the Royal Society B: Biological
Sciences, 220(1218), 89–113.

Canny, J. (1986). A computational approach to edge
detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6, 679–698.

Clifford, C. W., Spehar, B., Solomon, S. G., Martin, P.

R., & Zaidi, Q. (2003). Interactions between color
and luminance in the perception of orientation.
Journal of Vision, 3(2):1, 106–115, doi:10.1167/3.2.
1. [PubMed] [Article]

DiMattina, C., Fox, S. A., & Lewicki, M. S. (2012).
Detecting natural occlusion boundaries using local
cues. Journal of Vision, 12(13):15, 1–21, doi:10.
1167/12.13.15. [PubMed] [Article]
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