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Abstract. In the traditional view, early visual processing is basically the 
extraction of local features by a bank of predefined filters such as Gabor filters. 
Recent results from physiology and psychophysics however stress the 
importance of nonlocal, contextual influences and recurrent interactions. We 
present a model of primary visual cortex V1 for oriented contrast processing 
utilizing recurrent long-range interactions. The core mechanisms of the model 
include 1) localized receptive fields, 2) cooperative nonlocal long-range 
integration, 3) competitive short-range interactions, and 4) interlaminar 
feedforward and feedback processing. In contrast to other models of visual 
contour grouping, the present model uses long-range interactions which are 
confined to colinear and near-colinear elements, in accordance with empirical 
findings (e.g., Bosking et al., 1997). The model can account for empirical data 
on contextual facilitation by colinear fragmented contours and contextual 
suppression by random texture stimuli (Kapadia et al., 1995). With same 
parameters, we evaluate the competencies of the model for the processing of 
camera images. Detection performance of the new model is compared to a basic 
linear feedforward model. When applied to the processing of synthetic and 
natural images, contours can be more robustly extracted compared to a simple 
feedforward scheme. Further we show that intrinsically twodimensional 
features such as corners and junctions can be extracted with high accuracy from 
the resulting contour information. In particular, we show that localization of 
generic junction configurations (T, L, X, Y, W, Ψ) is improved. To analyse the 
junction detection performance, we employ a ROC analysis for a threshold-free 
evaluation of the different methods. Overall, the model shows how biological 
principles of recurrent processing and nonlocal colinear integration result in a 
more robust extraction of elementary image features such as contours and 
junctions. 

1  Introduction 

The robust extraction of elementary image features such as contours and junctions are 
among the first processing steps in most artificial vision systems. Traditional 
computer vision approaches try to solve each problem separately by local, highly 
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specialized filters. In contrast to these schemes, we present an integrated approach 
which is based on biological motivations and allows a coherent, robust extraction of 
contours and junctions within a single architecture.  

2  Model 

In this section we give a brief overview of the model. For a detailed description of 
model equations and parameters the reader is referred to Hansen, 2003 or Hansen & 
Neumann, 2004. 

The model architecture is defined by a sequence of preprocessing stages and a 
recurrent loop of long-range interaction, realizing a simplified architecture of V1 (Fig. 
1). The computational model incorporates a number of properties which are based on 
empirical findings, such as cooperative nonlocal long-range integration, which 
selectively link cells with colinear aligned RFs (Bosking et al., 1997, Gilbert & 
Wiesel, 1983), competitive short-range interactions (Bosking et al., 1997), and 
modulating feedback, where feedback alone is not sufficient to drive cell responses 
(Hupe et al., 1998). 
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Fig. 1. Overview of the model stages. A sketch of the receptive fields for a sample orientation 
of 0 deg is shown above each stage.  

2.1  Feedforward preprocessing 

In the feedforward path, the initial luminance distribution is processed by isotropic 
LGN-cells, followed by orientation-selective simple and complex cells. The 
interactions in the feedforward path are governed by basic linear equations to keep the 
processing in the feedforward path relatively simple and to focus on the contributions 
of the recurrent loop. In our model, complex cell responses provide an initial local 
estimate of contour strength, position and orientation which is used as bottom-up 
input for the recurrent loop. 
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2.2  Recurrent long-range interaction 

The recurrent loop has two stages, namely a combination stage where bottom-up and 
top-down inputs are fused, and a stage of long-range interaction. At the combination 
stage, feedforward complex cell responses and feedback long-range responses are 
added and subject to a nonlinear compression of high amplitude activity following the 
Weber-Fechner law. At the long-range stage the contextual influences on cell 
responses are modeled. Orientation-specific, anisotropic long-range connections 
provide the excitatory input. These long-range connections are modeled by a filter 
which is narrowly tuned to the preferred orientation, reflecting the highly significant 
anisotropies of long-range fibers in visual cortex. The spatial layout of the filter is 
similar to a bipole filter as proposed by Grossberg & Mingolla, 1985. The inhibitory 
input is given by isotropic interactions in the spatial and the orientational domain. To 
implement the modulating feedback, the excitatory long-range input is gated by the 
feedforward activity. Modulating feedback does not generate illusory contours, which 
are generated in higher visual areas (Neumann & Sepp, 1999). In the model, feedback 
selectively enhances bottom-up activities which are consistent within a more global 
context (Carpenter & Grossberg, 1988).  

2.3  Junction Detection 

Corners and junctions are characterized by points in the visual space where responses 
for multiple orientations are present and high overall activity exists within a 
hypercolumn. We use a measure of circular variance to signal multiple orientations. 
The overall activity is given by the sum across all orientations within a hypercolumn. 
Thus, the junction map for a distributed hypercolumnar representation is given by the 
multiplication of the circular variance with the overall activity. To visualize the data, 
single junction points are marked as local maxima in the junction map. 

3  Simulations 

All simulation results shown in this section are based on the same set of parameters. 
Long-range results are shown after 12 recurrent interactions, after which the activities 
have saturated, and are compared to the bottom-up activity at the complex cell stage. 
The edge maps show the sum across all orientations within each hypercolumn.  

3.1  Contour Extraction 

In the first simulation we show that the proposed model can account for empirical 
data on contextual interactions (Kapadia et al., 1995). In good agreement with the 
empirical data, the model responses to a central bar element is enhanced by colinear 
flankers and suppressed by noisy, random textures (Fig. 2). 
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Fig. 2. Simulation of empirical data by Kapadia et al., 1995 shows colinear facilitation and 
contextual suppression by random textures compared to the response to a single bar element.  

Next we employ the model for the processing of synthetic and camera images. The 
recurrent long-range interaction leads to more robust representation of contours (Fig. 
3). Also, small gaps in the contour are closed as long as initial bottom-up activity is 
present.   

 

 
Fig. 3. Contour enhancement for synthetic and a natural image. Left to right in each row: Input 
image, feedforward complex cell response, and long-range response.  

 

3.2  Junction Detection 

In the first simulation we evaluate the localization accuracy of junction responses for 
L-, T-, Y-, W- and Ψ-junctions. We measure the Euclidean distance between the 
ground-truth location and the location as computed by the detection scheme which is 
based on feedforward complex cells alone and recurrent long-range interactions. For 
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all junction types, the localization is considerably better for the method based on 
recurrent long-range interactions (Fig. 4). 
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Fig. 4. Localization of generic junction configurations. For each junction type (L-, T-, Y-, W, 
and Ψ), the distance in pixels from the ground-truth location is considerably smaller for the 
long-range interactions (open bars) than for the complex cell responses (solid bars). 

Finally, we evaluate the junction detection scheme for the processing of camera 
images. Receiver operator characteristic (ROC) analysis is used for a threshold-free 
evaluation of the two approaches (Fig. 5). The ROC curve obtained from the junction 
detection based on recurrent long-range interaction lies above the curve obtained for 
the feedforward complex cell responses. Thus, detection accuracy is increased by the 
recurrent long-range processing.  
 

 
 

Fig. 5. Evaluation of the junction detection scheme for a camera image. Left to right: Input 
image, detected junctions based on the complex cell responses, and on the long-range 
responses, and the corresponding ROC curves (complex dashed, long-range solid). For better 
visualization, only a cut-out of the left part of the ROC curves is shown. 

Overall, the results obtained based on the long-range responses are superior to the 
results based on the purely feedforward complex cells responses. However, the results 
are not perfect in the sense that every corner and junction is detected by the new 
method. The focus of this work is not to propose an ideal junction detector, but to 
show how mechanisms of recurrent long-range processing in V1 lead to a coherent 
representation of contours and junctions. 
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4  Conclusion 

We have proposed a novel method for corner and junction detection based on a 
distributed representation of orientation information within a hypercolumn (Zucker et 
al., 1989). The explicit representation of a number of orientations in a cortical 
hypercolumn is shown to constitute a powerful and flexible, multi-purpose scheme for 
feature extraction.  This scheme can be used to extract and represent intrinsically 1D 
signal variations like contours as well as 2D variations like corners and junctions. 
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