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Color constancy is the ability to perceive constant surface colors under varying lighting conditions. Color constancy has
traditionally been investigated with asymmetric matching, where stimuli are matched over two different contexts, or with
achromatic settings, where a stimulus is made to appear gray. These methods deliver accurate information on the
transformations of single points of color space under illuminant changes, but can be cumbersome and unintuitive for
observers. Color naming is a fast and intuitive alternative to matching, allowing data collection from a large portion of color
space. We asked observers to name the colors of 469 Munsell surfaces with known reflectance spectra simulated under
five different illuminants. Observers were generally as consistent in naming the colors of surfaces under different illuminants
as they were naming the colors of the same surfaces over time. The transformations in category boundaries caused by
illuminant changes were generally small and could be explained well with simple linear models. Finally, an analysis of the
pattern of naming consistency across color space revealed that largely the same hues were named consistently across
illuminants and across observers even after correcting for category size effects. This indicates a possible relationship
between perceptual color constancy and the ability to consistently communicate colors.
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Introduction

Perceived colors of objects do not changemuchwhen seen
under different illuminations, even though the light coming
to the eye from a surface depends both on surface reflectance
and on the illumination. This ability, called color constancy,
is an important factor in the recognition of objects in the real
world. Color constancy has traditionally been characterized
with either asymmetric matching, where two stimuli
embedded in different contexts are matched (e.g. Arend &
Reeves, 1986; Bäuml, 1999; Brainard, Brunt, & Speigle,
1997; Brainard & Wandell, 1992), or with achromatic
settings, where a stimulus is made to appear achromatic
under different illuminants (e.g. Bäuml, 1994; Brainard,
1998; Helson & Michels, 1948; Werner & Walraven,
1982). Asymmetric matches may be collected at any point
in color space, but the stimulus chromaticities used have
generally not spanned the whole range of colors, and the
task of matching stimuli over different illuminants might
not be intuitive for observers (cf. Brainard et al., 1997).
Achromatic adjustments, on the other hand, are usually
easy for observers, but data are collected only for one point
in color space. Measuring only a few points in color space
would be generalizable to the appearance of all colors only

in the case if the illuminant-induced color appearance
changes were uniform over the whole color space. Speigle
and Brainard (1999) compared data from achromatic
settings and asymmetric matching and concluded that
asymmetric matches could be predicted from achromatic
settings, at least with identical viewing conditions. How-
ever, comparisons such as these are rare, and it remains
unclear whether the transformations are indeed uniform
when the stimuli span a larger portion of color space.
As stated above, people rarely make mistakes about

surface colors in real life. However, color constancy in the
laboratory is often less than perfect, except for conditions
where the whole experimental room was lit by one
illuminant (Hansen, Walter, & Gegenfurtner, 2007; Murray,
Daugirdiene, Vaitkevicius, Kulikowski, & Stanikunas,
2006; Rinner & Gegenfutner, 2000). Generally, color
constancy in the laboratory improves when the number of
relevant cues to the illumination is increased (Jin &
Shevell, 1996; Kraft & Brainard, 1999; Yang & Maloney,
2001). One reason for this seeming discrepancy between
real life and laboratory conditions might be that studies on
color constancy did not often differentiate between hue/
saturation matches and surface color matches, even though
this would seem like an important distinction to make when
studying color constancy for naturalistic scenes. Consider a
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scene where one region is lit by direct sunlight, and another
region is in shadow (cf. Figure 1 in Zaidi & Bostic, 2008).
We are usually able to tell which objects have the same
surface color in the two regions, although we are also
aware of the differences in the absolute chromaticities of
the objects in the two regions that we judge as having the
same underlying surface color. Indeed, subjects sometimes
show less color constancy when they are asked to match
hue and saturation of a stimulus than when they are asked
to match surface reflectance (Arend & Reeves, 1986;
Bäuml, 2001). An alternative to matching methods that
overcomes this confusion between surface and hue matches
are forced-choice paradigms, where subjects are asked to
identify surfaces rather than to match them across two
contexts (Bramwell & Hurlbert, 1996; Khang & Zaidi,
2002; Zaidi & Bostic, 2008). The advantage of these
methods is that they measure subjects’ ability to recognize
surfaces as being the same when the illuminant is varied
without making assumptions about subjective appearance.
Color naming is similar to typical forced-choice

paradigms in the sense that it requires observers to choose
one color name from a set of color names that best
describes a given stimulus, without asking subjects to
match appearance across contexts. In addition, it seems
like an ecologically valid task for measuring real-world
color constancy. Consider a green apple either under
bluish skylight or under yellow-orange sunlight: the apple
would most probably be called green under both illumi-
nants, even though the light signal at the retina changes
drastically due to the change in the illuminant spectrum.
Low-level processes, such as chromatic adaptation at the
photoreceptors, account for some of this constancy, but
color categorization has also been hypothesized to play a
role in stabilizing color appearance across viewing
conditions (Jameson & Hurvich, 1989; Smithson, 2005).
A possible shortcoming of color naming is its poor

resolution. Humans are able to discriminate thousands of
colors (Linhares, Pinto, & Nascimento, 2008; Nickerson &
Newhall, 1943; Pointer & Attridge, 1998), but color names
are limited to a few discrete categories, with the number
varying somewhat between cultures (Berlin & Kay, 1969;
Kay & Regier, 2003). However, Hansen et al. (2007)
showed in a recent study that if the whole color space is
covered by test stimuli, the categorical nature of the
responses does not hinder very accurate estimates of the
achromatic point in color space under each test illuminant.
Indeed, the fitted achromatic points were very well con-
strained by the naming responses since each pointVwith a
certain grainVof color space was taken into account.
Color naming has been previously used for investigating

adaptation effects on color appearance (Hansen et al., 2007;
Jacobs & Gaylord, 1967; Smithson & Zaidi, 2004; Speigle
& Brainard, 1996; Troost & de Weert, 1991; Uchikawa,
Emori, Toyooka, & Yokoi, 2002; Uchikawa, Uchikawa, &
Boynton, 1989b; Uchikawa, Yokoi, & Yamauchi, 2004),
effects of narrow achromatic backgrounds on color appear-
ance (Uchikawa, Uchikawa, & Boynton, 1989a), as well as

changes in cone weights caused by incremental and
decremental colored backgrounds (Chichilnisky &Wandell,
1999). Jacobs and Gaylord (1967) measured adaptation to
spectral narrow-band lights and found the color naming
method to be as accurate as and more intuitive than
asymmetric matching for measuring adaptation effects.
Troost and de Weert (1991) as well as Uchikawa et al.
(2004) measured color constancy with both asymmetric
matching and color naming and found higher color
constancy performance with the color naming task. How-
ever, neither of these studies equated displays across the
two tasks, which might explain the disagreement with the
results from Speigle and Brainard (1996), who found
comparable constancy for matching and naming. Hansen
et al. (2007) investigated the effect of spatial and temporal
context on color constancy with color naming. Hansen and
colleagues found almost complete color constancy under
full-field illumination, and gradually less constancy when
the information to the illuminant was decreased.
None of the above studies employed either real or

simulated surfaces with known reflectance spectra. Speigle
and Brainard (1996) used real surfaces but they extended the
stimulus gamut by combining a projected image with the
surfaces, thus not analyzing the data in terms of surface
reflectance. Troost and de Weert (1991) simulated their
stimuli under various illuminants, but did not use surface
reflectance functions and illuminant spectra for the simu-
lation, but rather a type of von Kries transform. It is thus not
possible to say from these studies which surfaces were
classified in the same category over observers, illuminants or
repetitions. Here we extend the color naming paradigm by
using Munsell chips with known reflectance spectra simu-
lated under different illuminations as approximations of
natural surfaces. We analyze the data in a way that allows us
to estimate i) whether all regions of color space remain
equally perceptually stable under illuminant changes, ii) how
this depends on the amount of contextual information, and
iii) whether there is a relationship between naming
consistency across illuminants (color constancy) and naming
consistency across observers. We found that color constancy
was high for some hues but not for others, and that naming
consistency tended to be higher for stimuli remote from the
category boundary. Also, naming consistency across illu-
minants was similar to naming consistency across observers
in magnitude and in its pattern across stimulus hue,
saturation, and lightness, indicating a possible relationship
between color constancy and communication about color.

Methods

Observers

Three naive observers and one of the authors (MO)
participated in the experiment. All had normal color
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vision as tested with the Ishihara color plates and normal
or corrected to normal visual acuity.

Apparatus

The experiment took place in a viewing chamber (2.2 m
high� 2.4mwide� 1.3m deep). The stimuli were displayed
on a Sony Multiscan GDM-F520 monitor with a spatial
resolution of 1280� 1024 pixels and a refresh rate of 100 Hz.
Themonitor was driven by anNVIDIA graphics card and had
a color resolution of 8 bits per channel. The monitor was
placed in a black tunnel behind the chamber and was viewed
through a 10� 8 degree aperture in the back wall. The whole
back wall subtended 45 degrees horizontally and 64 degrees
vertically. The chamber was illuminated with two sets of
three fluorescent lamps (red, green and blue) placed behind a
diffusing sheet on both sides of the chamber. The output of
each of the monitor primaries across the whole voltage range
was measured with a UDT Instruments model 370 optometer
with a model 265 photometric filter. Spectra of the monitor
primaries were measured with a Photo Research PR-650
spectroradiometer. The output of the lamps at different
voltages and the chromaticities of the primaries were
measured with the PR-650 spectroradiometer. The lamps
and monitor phosphors were corrected for nonlinearities in
the input/output relationship with look-up tables, and a
transformation matrix was calculated to convert between
the lamp and monitor primaries. The calibration of the set-up
is described in detail in Rinner and Gegenfutner (2000).

The experiments were written in Matlab (The Mathworks,
Inc.) with the Psychophysics Toolbox extensions (Brainard,
1997; Pelli, 1997).

Stimuli

Stimuli were uniformly colored two degree discs
presented in the center of the monitor screen. Stimulus
colors were chosen from the matte Munsell collection. The
Munsell color space is a color order system developed by
the artist Albert Munsell (Munsell, 1912). Different colors
are ordered with approximately equal perceptual distances
along a hue, chroma (saturation) and value (lightness)
dimension. Value varies between 0 (black) and 10 (white),
chroma between 1 and some number depending on the hue
and value of the particular sample. Hue varies in 100 steps
(40 in the printed samples) around the hue circle.
Altogether 1269 Munsell samples are reproduced in the
matte collection of the Munsell book of color. The
reflectances of the samples for the monitor simulations
were acquired from the Database of the University of
Joensuu Color Group (http://spectral.joensuu.fi/). All
those Munsell chips with value between 4 and 7 were
chosen that fitted the monitor gamut under all experimen-
tal illuminants. This resulted in 469 samples from the
possible 1269 chips. The Judd-Vos corrected CIE chro-
maticities of the chips simulated under a neutral illumi-
nant are shown in Figure 1A. The average luminance of
the whole stimulus collection when simulated under a

Figure 1. The Munsell chip collection used in this study. A: Munsell chips under a neutral illuminant are plotted in the CIE xyY space.
Symbol colors indicate the color of the reflected light from each chip. B shows the projection of the chip chromaticities under four
chromatic illuminants to the CIE x,y plane (illuminants from top left clockwise: reddish, bluish-green, greenish-yellow, violet). Insets show
the color of a neutral chip under each illuminant. Black triangles indicate the monitor gamut.
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neutral illuminant was 9.3, 14.8, 22.5 and 32.5 cd/m2 for
Munsell values 4, 5, 6 and 7, respectively.
The experiment was run under two viewing conditions.

In the full-cue viewing condition, the monitor background
had the same chromaticity as the surrounding wall
illuminated by the lamps. The luminance of the monitor
background and of the surrounding wall was 18 cd/m2,
which corresponded to the mean luminance of the whole
stimulus collection under neutral illumination. Thus, half
of the stimuli (values 4 and 5) were decrements relative to
the background, and half (values 6 and 7) increments. In
this viewing condition, the immediate background of the
stimulus had the chromaticity of the illuminant. In the
reduced-cue viewing condition, the monitor background
was black, and only the wall was illuminated with a mean
luminance of 18 cd/m2. In this condition, all stimuli were
increments relative to the local surround. The only
information about the illuminant came from the peripheral
border between the black monitor background and the
illuminated wall, and from the mean chromaticity of the
simulated stimulus collection.

Illuminant simulation

Five illuminants were generated by combining the
output of three fluorescent lamps in different proportions.
Four of the illuminants were chosen from the cardinal
axes of DKL color space, and can be described as reddish,
bluish-green, violet and greenish-yellow. The fifth illu-
minant was metameric to the standard daylight illuminant
D65 (see Table 1 for Judd-Vos corrected CIE chroma-
ticities of all illuminants). The DKL color space is a linear
transformation of the cone excitation space based on the
Smith and Pokorny cone fundamentals (Derrington,
Krauskopf, & Lennie, 1984; Krauskopf, Williams, &
Heeley, 1982; MacLeod & Boynton, 1979; Smith &
Pokorny, 1975). On one axis, the L and M cone excitations
vary in opposition so as to keep their sum constant
(perceptually reddish-greenish), and on the second axis
the S cone excitations vary in opposition to the sum of the L
and M cone excitations (perceptually yellowish-violet).
The sum of the L andM cone excitations (luminance) varies

on the third axis. The DKL axes were scaled according to
the maximum contrast in the cones produced by the monitor
primaries and normalized to the range [j1 1].
For simulating the Munsell chips, the spectra of each

illuminant were measured with a PR-650 spectroradiometer
off a white reference surface (Photo Research SR-2) that was
placed on the back wall of the viewing chamber. The chip
collection was simulated under each illuminant by taking a
wavelength by wavelength product between the reflectance
spectra of the chips and each illuminant spectrum and using
this value to derive Judd-Vos corrected XYZ values and
device-dependent RGB values. The stimulus collection
simulated under D65 is shown in Figure 1A, and under the
four chromatic illuminants in Figure 1B.

Procedure

Observers viewed the display in the front end of the
chamber from a distance of 187 cm with their heads
stabilized with a chin rest. After observers had adapted to
the illumination for two minutes, the first stimulus was
displayed on the screen for 500 ms. Observers’ task was to
assign the color of the stimulus to one of nine color categories
(green, turquoise, blue, purple, red, orange, yellow, brown,
gray). The color names were given in German (grün, türkis,
blau, lila, rot, orange, gelb, braun, grau). We chose these
categories (8 basic color terms + turquoise) because they
resulted in the clearest division of the DKL color space in a
previous study (Hansen et al., 2007). Observers were
instructed to classify any achromatic chip in the gray
category independent of lightness. Observers responded at
their own pace by pressing one of nine keys, after which the
next stimulus appeared. Each of the 469 chips was
categorized once under each illuminant. The chips were
presented in a randomized order. Different illuminants were
run in separate sessions, whose order was counterbalanced
across observers. The experiment was replicated after six
months to verify test–retest reliability within observers.
In addition to color naming, observers chose the

prototypes, i.e. the best examples, for each category out
of the whole collection of real Munsell chips under
daylight illumination.

Data analysis
Fitting category boundaries

In order to divide the naming space of each observer
into categories, we fitted category boundaries to the color
naming data for each subject and each illumination
condition. For the fitting, the stimuli were represented
according to their surface reflectance so that the only
difference between conditions was the pattern of color
names given to the stimuli. The boundaries were modeled
as straight lines constrained to converge on one point in
color space. The fitting was done for each Munsell value

Illuminant x Y Y (cd/m2)

Neutral .298 .341 87.9
Red .342 .323 95.4
Bluish-green .277 .364 118
Greenish-yellow .325 .432 96.2
Violet .277 .288 94.3

Table 1. Judd-Vos corrected CIE chromaticities of the different
illuminants measured off a white reference surface. The mean
luminance of the whole stimulus collection under the experimental
illuminants was 18 cd/m2 on average.
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separately. The chromaticities of the stimuli under each
illumination were transformed from XYZ values to the
DKL color space to facilitate the comparison to the study
of Hansen et al. (2007). The categories for orange and
brown were pooled for the boundary fitting, because their
centroids, i.e. average chromaticities, were generally the
same but depended on stimulus luminance.
The category boundaries and achromatic points in each

illumination condition were determined with a grid search
procedure (Hansen et al., 2007). Best fitting boundaries
were defined as boundaries that led to the most chips being
classified in the correct category and least chips outside of
the correct category. Preliminary category boundaries were
defined as the average of the centroids of two adjacent
categories. Boundary angles were varied in 1 degree steps
around the preliminary boundary, and the amount of correct
and false classifications was calculated for each boundary
angle. The convergence point, to which all boundaries were
constrained to converge, was varied on a discrete grid with
a spacing of 0.01 DKL units. This procedure would result
in one vector for each convergence point with the
classification errors for each possible angle for each
category. The classification errors were pooled across
categories for each convergence point, and the convergence
point along with the boundaries with the fewest overall
classification errors were chosen.

Transformations in color categories

We modeled effects of illumination changes on color
naming by testing two different types of transformations in
color categories. We used the category boundaries from the
neutral condition as a baseline and sought an optimal fit
between the baseline boundaries and naming data under
each chromatic illuminant by 1) shifting the naming data
two-dimensionally in the isoluminant plane of the DKL
color space until the boundaries were optimally aligned
with the data, or by 2) shifting and scaling the naming data
in the isoluminant plane until an optimal alignment was
found. Shifting meant adding or subtracting two indepen-
dently varied constants to/from the x and y coordinates of
the data. Scaling meant multiplying the x and y coordinates
of the data by two independently varied coefficients.
Numerical search in Matlab was used to minimize fitting
error. For this analysis, the stimuli were represented
according to their chromaticities under each illuminant (i.e.,
the product of the illumination and surface reflectances).

Color constancy

Color constancy was characterized in several ways.
Firstly, the frequency with which each Munsell chip was
classified in the same category across the neutral and each
chromatic illuminant was calculated for each observer. This
index for naming consistency could take on values between
0 (chip classified differently under all illuminations) and
1 (chip classified similarly under all five illuminations),

and is similar to the index defined by Troost and de
Weert (1991). We also calculated naming consistency
across observers for the neutral illuminant to compare
color constancy with inter-observer agreement.
The fact that some color categories are larger than others

might influence naming consistency to some extent: in a
wide category, some stimuli might not shift to a different
category even under a large illuminant change. In that case,
even 0% color constancy would not lead to 0% naming
consistency. We corrected for this effect in the naming data
by calculating a lower bound for naming consistency across
illuminants as follows. First, baseline category boundaries
were fitted to the color naming data under the neutral
illuminant for each subject and each Munsell value
separately. Next, the light signals reflecting off each
stimulus under each chromatic illuminant were calculated
and categorized based on the baseline category boundaries.
Finally, a consistency index was calculated with these
simulated data as described above. The naming consistency
indices derived from the raw naming data were then
corrected by first subtracting the simulated consistency
indices and then rescaling so that the maximum consistency
value remained the same. This correction procedure is
essentially the same as ignoring the chip-illuminant
combinations for which consistent naming would be
expected even in the complete absence of constancy.
The observer consistency index was corrected in a

similar manner. As there are no stimulus chromaticity
changes across observers, we modeled the effect of
category size by rotating the category boundaries in the
neutral condition by a random amount uniformly chosen
betweenj60 and +60 degrees separately for each observer,
after which the observer consistency index was calculated
based on the rotated boundaries. The rationale was that the
largest categories would be most immune to the rotation
and thus would give us an estimate of the effect of category
size on the naming consistency across observers.
In addition to naming consistency, color constancy was

characterized as the stability of the achromatic points under
illuminant changes. We defined achromatic points both as
the centroids of the gray category, and as the convergence
points of the boundary fitting procedure, since these do not
always coincide (Ekroll, Faul, Niederée, & Richter, 2002).
A standard color constancy measure that quantifies the
change in the achromatic point relative to the magnitude
of the illuminant change was calculated for each illumi-
nant change from neutral for both types of achromatic
point (Equation 1). For this measure, the chromaticities of
the chips under the different illuminants rather than the
surface reflectances were used.

CIachrom ¼ Sc I Sp
kkSpkk

: ð1Þ

In Equation 1, vector Sc is the observed shift in the
achromatic point from D65 to a given test illuminant and
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vector Sp the predicted shift of the achromatic point given
perfect constancy. Projecting Sc to Sp gives the common
component of the observed shift in the direction of the
predicted shift, and the constancy index is derived by
dividing the projection by the magnitude of the predicted
shift. Numbers close to 1 indicate high constancy, and
numbers close to 0 low constancy.
Calculating color constancy from centroids of other

categories than gray is problematic due to unpredictable
changes in the form of the stimulus gamut under illumination
changes (Speigle & Brainard, 1996). As a third type of
analysis, we calculated color constancy for the chromatic
categories with a procedure that does not depend on
category centroids. We defined the width of each category
by the angle it subtended in DKL color space, and
quantified color constancy as the change in angle from
the baseline condition for each test condition (Ling, Allen-
Clarke, Vurro, & Hurlbert, 2008). Let EBL and ET be the
sizes in degrees of a given category in the baseline and test

condition, respectively, and Eoverlap be the size in degrees of
the overlapping portion of the category in the baseline and
test condition. The color constancy index is then defined as

Cchrom ¼ Eoverlap
ðEBL þ ETÞ=2 : ð2Þ

If a particular category occupies the same portion of color
space under two illuminants, size of the overlapping portion
(nominator) is the same as the mean size of the two
categories (denominator), and constancy will be close to 1.
In the absence of overlap, constancy will be close to 0.

Results

Naming data for one subject is shown in Figure 2 for the
four Munsell values separately. Stimulus chromaticities

Figure 2. Naming data for subject AMS under the neutral full-field illuminant. Munsell chip chromaticities are plotted in the isoluminant
plane of DKL color space. Chips with Munsell values 4 and 5 are plotted in the top row, and chips with values 6 and 7 in the bottom row.
Symbol color denotes the color name given to a particular chip.
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are plotted in the isoluminant plane of the DKL color
space, and symbol colors denote the color names given to
a particular stimulus. As expected, some categories were
only present at certain luminance levels. For instance,
there was no yellow category at the lowest luminance
level (upper left panel). There was also no blue category
on the highest luminance level (lower right panel), but as
Figure 2 shows, there were practically no chips in the
blue-purple part of color space that would fit the monitor
gamut on the highest luminance level.

Naming consistency
Across illuminants

Figure 3 illustrates the overall uncorrected naming
consistency for observer AA and AG under the full-cue (A)

and reduced-cue (B) viewing conditions. Symbols are
colored according to the mode color category assigned to
that particular stimulus. Symbol size denotes the degree of
consistency across illuminants.
Under full-field illumination, on average 50% of the

chips had an uncorrected consistency index of 1, i.e. these
chips were classified in the same category under all five
illuminants. Consistency index averaged over stimuli and
observers was 0.8. In the reduced-cue viewing condition,
on average 27% of the chips had a consistency index of 1.
Consistency index averaged over all chips and observers
in this condition was .65.
The simulation for the lower bound of naming con-

sistency across illuminants is shown in Figure 4 with the
red dashed curve. Simulated naming consistency was
clearly highest for greenish hues, which reflects the large
size (over 90 degrees) of the green category. On average

Figure 3. Naming consistency over illuminants for observer AA (left column) and AG (right column). The stimulus collection at value level 6
is plotted in the isoluminant plane of the DKL color space. Symbol size indicates the amount of consistency. A: Full-cue viewing condition.
B: Reduced-cue viewing condition.
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4% of the chips remained in the same color category
under all illuminants in the simulation, compared to the
measured rate of 50%. The lower bound simulation for
observer consistency is shown with the solid black curve.
No chips remained in the same category across all
observers, but on average, the simulated observer con-
sistency was of similar magnitude as the simulated
illuminant consistency.
Figure 5 summarizes uncorrected (A) and corrected (B)

naming consistency for the full-cue (gray curves) and
reduced-cue (black dashed curves) conditions as a
function of stimulus hue, chroma, and value. The upper
panel of Figure 5A shows the uncorrected illuminant
consistency index for Munsell hue averaged over observ-
ers. Uncorrected naming consistency peaked near all
prototypical hues except for the red one. Consistency
increased as a function of stimulus saturation (lower left
panel), and remained roughly similar for all lightness
levels (lower right panel). Reducing cues to the illuminant
(black dashed curves in Figure 5A) caused a decrease in
overall naming consistency, but the pattern as a function
of hue, chroma, and value remained similar.
The corrected naming consistency indices are shown in

Figure 5B. All values above zero in this representation
imply higher consistency than would be expected by the
mere categorical stability of stimulus chromaticities under
illuminant changes. Zero indicates the level of consis-
tency in the absence of color constancy. The upper panel
of Figure 5B shows the corrected naming consistency index
as a function of Munsell hue averaged over observers.
Even after the lower bound correction, naming consistency
was not uniform across Munsell space but peaked around

blue, green and orange hues. Consistency was worst for
bluish-green and red hues. Naming consistency dropped
only slightly from the full-cue (gray line) to the reduced cue
(black dashed line) condition; the largest drop was for
bluish and yellowish hues. Overall, the pattern of the data
in the full-cue and reduced-cue conditions was similar
(r = .58, p G .0001).
Comparing 5A to 5B shows that the pattern of the data

in 5A could be partly explained by the different category
widths causing different amounts of baseline naming
consistency. This is especially evident for the green
category, for which the uncorrected index in the full-cue
condition was close to 1, but the corrected index was
around .4 to .6. Whereas the uncorrected index seemed to
coincide with most prototypical hues, the corrected index
coincided mostly only with the blue and orange prototypes.
The lower left panel of Figure 5B shows corrected

naming consistency as a function of Munsell chroma.
After the lower bound correction, naming consistency was
especially high for medium levels of chroma for both
viewing conditions. There was a difference between the
viewing conditions only for chromas below 6. For higher
chromas, consistency was as good in the reduced-cue
condition as in the full-cue condition. The lower right
panel of Figure 5B shows the effect of stimulus lightness
on corrected naming consistency. In both viewing con-
ditions, consistency was lowest for the highest value.
There was also a large drop in consistency from the full-
cue to the reduced cue condition for chips at Munsell
value 6.

Across repetitions

The experiment was repeated six months after the first
data collection to evaluate the consistency of categories
over time. Figure 6A shows a similar plot to Figure 3 for
subject AA where categories under the neutral full-field
illuminant are compared for the two repetitions rather than
for the five illuminants. For this observer, consistency
over time in the baseline condition was .78, and varied
from .58 to .80 (mean .75) between observers. Figure 6B
shows the overall uncorrected naming consistency over
illuminants and over time for the full-cue viewing
condition. Naming consistency was as good or better across
illuminants as it was across repetitions. Consistency was
overall lower for the reduced-cue condition (6C and 6D)
but also approximately of the same magnitude across
repetitions and across illuminants.

Across observers

In addition to calculating naming consistency for each
observer across illuminants and repetitions, we calculated
a consistency index across observers for the neutral
illuminant to see how categorical color constancy related
to inter-observer agreement on color names. Figure 7A

Figure 4. Lower bound simulation for consistency across illumi-
nants (dashed red curve) and across observers (solid black
curve) plotted for Munsell hue. The smooth curve was derived by
averaging simulated values over two adjacent hues and inter-
polating between these averages. Vertical bars indicate the range
of prototypical hues (from left to right red, orange, yellow, green,
blue, purple, red).
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shows the comparison between the corrected naming
consistency index across observers and the corrected
index across illuminants. The observer consistency index
varied across hue in a manner that was rather similar to
the variation in the illuminant consistency index. How-
ever, peaks in the observer consistency index coincided
with the prototypes to a larger extent than the peaks in the
illuminant consistency index. The largest correspondence
between observer and illuminant consistency was for the
orange, green and blue hues. The biggest discrepancy was
around red and yellow where illuminant consistency was
much higher than between observers consistency.
The relationship between observer and illuminant

consistency is further illustrated in Figure 7B. Gray
crosses denote consistency in the full-cue condition, and
black open circles in the reduced-cue condition. Correla-
tion between the corrected observer and illuminant
consistency indices was .61 (p G 0.001) for the full-cue

condition and .73 (p G 0.001) for the reduced-cue
condition.

Category boundaries and color constancy

Figure 8A shows naming data for all subjects in the
baseline condition under full-field illumination. The best
fitting category boundaries are drawn with black lines.
Both the category boundaries and the convergence points
varied across subjects, but the categories overlapped for
the most part (Figure 8B).
The achromatic point does not always need to coincide

with the convergence point of category boundaries in color
space (Ekroll et al., 2002). However, inspection of the data
in Figure 8A indicates that the boundary convergence
points were generally close to the stimuli named gray.

Figure 5. A: Uncorrected naming consistency indices for full-cue illuminants (gray curve) and reduced-cue illuminants (black dashed
curve) are plotted as a function of Munsell hue (top panel), Munsell chroma (lower left) and Munsell value (lower right). Vertical bars in the
upper panel indicate the range of prototypical hues. The smooth curves drawn through the data points were derived by averaging over two
adjacent hues and interpolating between these averages. Shaded areas around the curves in the upper panel, and error bars in the lower
panels indicate the standard errors of the means. B: The corrected naming consistency indices are plotted for Munsell hue (top), chroma
(lower left) and value (lower right). Details as in A.
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Figure 9A plots the average gray category centroids (filled
circles) along with the convergence points of the category
boundaries (open squares) under the full-field illuminants.
Crosses indicate the average chromaticity of the whole
stimulus collection under each of the five illuminants. The
changes in the achromatic loci closely followed the
physical changes in the stimulus chromaticities, which
points to high color constancy of the achromatic point.
Also, the gray category centroids were slightly shifted to
the right from the convergence points, but this tendency
was not statistically significant (L j M coordinate: F(1) =
0.33 (n.s.); (L + M) j S coordinate: F(1) = 0.09 (n.s)).

Achromatic points for the reduced-cue condition are
plotted in Figure 9B. There was less agreement between
the gray centroids and convergence points in this
viewing condition (L j M coordinate: F(1) = 1.35 (n.s.);
(L + M) j S coordinate: F(1) = 5.82, p = 0.02). Also,
achromatic points followed the changes in stimulus
chromaticities to a slightly smaller degree. This drop in
color constancy was evident in the color constancy
indices, which for the full-cue conditions were on average
.96 and .98 for centroids and convergence points,
respectively, and for the reduced-cue conditions .84 for
both centroids and convergence points.

Figure 6. A: Naming consistency under the neutral illuminant over two repetitions for observer AA in the full-cue condition. Chips that were
classified in the same category over repetitions are indicated with filled symbols. B: Uncorrected naming consistency across repetitions
and across illuminants for the five full-field illuminants. Error bars show the standard errors of the mean. Illuminants are indicated on the
abscissa as follows: N: neutral; R: red; bG: bluish-green; yG: yellowish-green, V: violet. C: Naming consistency under the neutral
illuminant over two repetitions for observer AA in the reduced-cue condition. D: Uncorrected naming consistency for the reduced-cue
illuminants.
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Average color constancy for each chromatic category
based on the relative stability of category boundaries is
plotted in Figure 10 with black bars, along with the
constancy for the gray category centroid. The uncorrected
naming consistency indices are plotted with gray bars for
comparison. Color constancy indices were generally lower
for the chromatic categories (on average .75) than for
the gray category (.96). Conversely, naming consistency
was slightly lower for the gray category than the chro-
matic categories (.65 vs. .76). For the gray category, the
color constancy index was much higher than the naming
consistency index (.96 vs. 65), but for the chromatic cate-
gories, the two measures were on average similar (.75 for
both).
For the reduced-cue viewing condition, constancy was

on average lower than in the full-cue condition, but the
pattern of the data was the same: constancy was best for
the gray category calculated from the centroid (.84).
Constancy pooled over categories was on average .63 and
.64, quantified as naming consistency and color constancy,
respectively.

Transformations in category boundaries

We tested a simple model on the effect of illumination
changes on color categories by taking the fitted boundaries
in the baseline condition (neutral illuminant) and search-
ing for the best fit between the baseline boundaries and the
color naming data in each test condition (four chromatic

illuminants) by either just shifting the color naming data
two-dimensionally in the isoluminant plane, or shifting
and scaling the naming data in two dimensions. The
average errors for these two types of fit for stimuli of
Munsell value 6 are plotted in Figure 11A along with a
baseline error rate (the goodness-of-fit of the boundaries
fitted separately in each condition), and the errors of
boundary fits over the two repetitions in each illuminant
condition (reliability). The average proportion of chips
falling in the wrong category with the given boundaries
varies on the ordinate. The two leftmost bars indicate the
baseline error of the boundary fitting procedure, i.e., the
rate of false classifications when fitting boundaries with
grid search for each data set separately. The next two bars
show the error when fitting boundaries from the first to the
second measurement of a given condition. The next two
sets of bars describe the average error when transforming
the boundaries from the baseline condition to the data
measured in the test conditions with four or two
parameters, respectively. The last set of bars show the
error when the boundaries from the baseline condition are
merely superimposed on the test conditions without any
fitting.
Fitting errors for both the shift and the shift & scale

models were close to reliability, indicating that both
models captured important features of the data. Fitting
errors were overall slightly larger for the reduced-cue
condition, but the models seemed to work as well as for
the full-cue conditions. Shifting and scaling the naming
data brought a slight improvement over just shifting the

Figure 7. Comparison between naming consistency across illuminants and naming consistency across observers. A: Corrected naming
consistency as a function of Munsell hue. Red crosses and the red curve plot naming consistency across illuminants. Gray circles and
the gray curve plot naming consistency across observers for the neutral illuminant. Vertical bars indicate the range of prototypical hues.
B: Corrected naming consistency across observers is plotted against consistency across illuminants for the full-cue (gray crosses) and
reduced-cue (black circles) conditions. Each point indicates one Munsell hue, collapsed over saturation and lightness.
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Figure 8. A: Chips with Munsell value 6 under the neutral illuminant are plotted in the isoluminant plane of DKL color space. Each
quadrant is naming data for one subject in the baseline condition. Color categories are indicated with symbol colors. Black lines are best
fitting category boundaries. B: Categories under neutral illumination are plotted as the color angles in the isoluminant plane between 0
and 360 degrees for all observers, and for the full-cue and reduced-cue viewing conditions.
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data, but this difference was small compared to the overall
improvement from the null model to the shift model.
The data from Figure 11A are broken down per

category for the full-cue conditions in Figure 11B and
for the reduced-cue conditions in Figure 11C. There were

large differences in the overall goodness-of-fits between
categories, especially in the reduced-cue conditions. The
baseline fitting errors for the green category, for instance,
were minimal, whereas for the turquoise between 30 and
50 percent. However, relative to the baseline error, fitting
errors for the models were similar across categories.

Discussion

We used color naming to characterize color constancy
under five illuminants in a full-cue and a reduced-cue
viewing condition. We quantified color constancy with a
naming consistency index that does not depend on any
color space metric, but also fitted boundaries to the
naming data and calculated a color constancy index for
the achromatic point as well as for the chromatic
categories. The latter analyses do depend on the color
space where the data are represented, and it was interest-
ing to see whether these two types of analyses would bear
similar outcomes. As a third type of analysis, we tested
two simple linear models to see how categories changed
under illuminant changes.

Naming consistency

Observers named stimuli very consistently across five
moderately different illuminants. Naming consistency was
especially high for hues around green, blue and purple, and
relatively low for reddish hues. This sort of inhomogeneity

Figure 9. Achromatic points averaged over stimulus value in the full-cue (A) and reduced-cue (B) viewing conditions. Filled circles denote
gray category centroids under the neutral and four chromatic illuminants; open squares denote the convergence points of the fitted
boundaries under the five illuminants. Error bars are standard errors of the mean. Crosses denote the average chromaticity of the whole
stimulus collection under each of the illuminants. Illuminant chromaticities are indicated by symbol colors.

Figure 10. Comparison between the color constancy index and the
uncorrected naming consistency index. Black bars plot color
constancy calculated from the gray category centroids (Equation 1)
and from the chromatic category boundaries (Equation 2). Gray
bars plot naming consistency across illuminants. Color categories
are indicated on the x-axis as follows: N: neutral; BG: turquoise;
B: blue; P: purple; R: red; O: orange; Y: yellow; G: green.
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across color space might be explained by the fact that the
employed illuminant changes were not large enough to
push all stimuli out of their category, causing some base-
line consistency even in the absence of color constancy.
This sort of baseline consistency would be expected to be
more pronounced for large color categories, such as green,
and would be confounded with color constancy if not
accounted for. We simulated this effect and used the

simulated index to derive a corrected naming consistency
index. As expected, some stimuli were rather consistent
even without color constancy; the average baseline con-
sistency was around .5 compared to the average measured
index of .8. The correction accounted for some of the
peaks in naming consistency, such as for the green region,
but for some other regions, such as for the orange and
blue, consistency remained high even after the correction.

Figure 11. Boundary fit errors. A: Errors pooled over categories for the full-cue (black bars) and reduced-cue (white bars) viewing
conditions for value level 6. B: Errors shown by category for the full-cue conditions. C: Errors shown by category for the reduced-cue
conditions. Error bars show the standard errors of the means over illuminants (N = 5). Baseline: average errors of the boundary fits in
each illuminant condition separately. Reliability: average errors from fitting boundaries over the two repetitions in each illuminant condition.
Shift & scale: fitting baseline boundaries to the test conditions with two shift and two scale parameters. Shift: fitting baseline boundaries to
the test conditions with two shift parameters. No model: superimposing baseline boundaries on the test data without transformations.
Color categories are indicated on the x-axis as follows: BG: turquoise; B: blue; P: purple; R: red; O: orange; Y: yellow; G: green.
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In other words, consistency for these regions was not only
determined by category size or location in color space.
Observers were generally as consistent when categoriz-

ing stimulus colors over time as categorizing them across
illuminants, and the pattern of inconsistencies across color
space was similar in both cases. This implies, in effect,
very high color constancy; as observers were not perfectly
consistent in their naming performance over time, some
inconsistency in naming across illuminants would be
expected. We were also interested in comparing naming
consistency across illuminants to naming consistency
across different observers. For some hues, such as blue
and orange that observers named most consistently across
illuminants, inter-observer agreement was also high.
Overall, the pattern of consistency as a function of hue
was similar for the two indices except for hues around
yellow and red, where illuminant consistency was much
higher than observer consistency. This implies a possible
relationship between categorical color constancy and inter-
observer agreement on color categories. A similar link
between stability of surface colors and color categories has
been suggested on computational grounds by Philipona
and O’Regan (2006). Philipona and O’Regan showed that
some surfaces have more “singular” reflection properties
than others, meaning that these surfaces cause more stable
cone activity under illuminant changes, and further, that
these singularities can predict the loci of focal hues. How-
ever, their theoretically derived singularity index did not
correlate (r = j0.04, n.s.) to our empirical measure of the
stability of chromaticities. Apparently, the regions of most
stability as measured with color naming are at least partly
different from the regions in color space that cause the most
stable responses in the cone photoreceptors.

Different color constancy metrics

We found rather similar magnitudes of color constancy
with the naming consistency index that does not involve
assumptions about color space metrics, and the color
constancy indices that intimately depend on the color
space in which they are calculated. There were some
differences, however. For the gray category, the color
constancy index approached 1, compared to the naming
consistency index of .65. For the chromatic categories, the
two indices came closer at a level around .75. It seems
that if color constancy is only measured from the
achromatic point and quantified with the traditional color
constancy index, constancy for the rest of color space
might be overestimated. On the other hand, the naming
consistency index when calculated only for the gray
category would underestimate overall constancy. Speigle
and Brainard (1999) were able to predict the amount of
constancy in chromatic settings from achromatic settings
when measuring both tasks under simultaneous asymmetric
viewing. In this viewing condition, where fixation was
constantly altered between two fields, constancy was

around .70 for both achromatic settings and asymmetric
matching. For a traditional achromatic setting task where
only one stimulus had to be fixated, constancy was much
higher (.94). This latter condition is comparable to our full-
cue viewing condition, and consequently is in agreement
with the high constancy index we found based on the gray
namings.
One large difference between the traditional asymmetric

matching task and the achromatic setting task is that in the
former, full adaptation to any of the two illuminants is
hindered due to constant changes in fixation, in contrast to
the latter task where only one context is viewed. Our
results together with Speigle’s and Brainard’s findings
suggest that when measuring constancy under full adapta-
tion to the illuminant, constancy for the achromatic point
might exceed constancy for the rest of color space.

Boundary transformations

One important motivation for this study was to find out
what kind of transformations the perceptual color space
undergoes under illuminant changes. The shift model,
where the naming data was just moved around rigidly in
the isoluminant plane, worked nearly as well as the shift
and scale model where the data was both moved around
and scaled on the x and y axes. This indicates that any
transformations were accounted for mainly by a rigid shift
of the whole color naming space. It is possible that our
shift and scale model did not capture all changes in the
data, but the fact that fitting errors were roughly of the
same magnitude as test–retest variability indicates that
the fits were rather good. The boundary fits were overall
a bit worse in the reduced-cue viewing conditions,
indicating that performance was noisier in this viewing
condition compared to the full-cue condition. However,
fitting errors were again of the same magnitude as test–
retest variability, indicating a good fit to the data.

Relationship to previous research

Two previous studies used a similar paradigm and
stimuli to the present experiment. Troost and de Weert
(1991) measured categorical color constancy with simu-
lated patches embedded in a neutral or a chromatic
background. Troost and de Weert also found higher
naming consistency with the background that had the
illuminant chromaticity, i.e. in their full-cue condition, but
the consistency indices that they report are overall lower
than in the present study. On average, 38% of the stimuli
in Troost and de Weert’s study were classified in the same
category under all illuminants, compared to 50% in the
present study. For the reduced-cue condition, Troost and
de Weert reported 10% compared to the present 27%
consistency. Moreover, their color constancy indices were
systematically lower than what we found: .65 compared to
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.97 under full-field illumination. A few differences in the
methods might explain the higher color constancy we
observed. We used surface reflectance and illuminant
spectra to simulate stimuli under illuminant changes,
whereas Troost and de Weert used a type of von Kries
transform to derive stimulus chromaticity coordinates
under each test illuminant. This method might under-
estimate the complexity in the transformations in stimulus
chromaticities under illuminant changes (cf. Smithson,
2005). Moreover, we conducted the experiments in a
viewing chamber where observers were immersed in the
illumination, and even under reduced viewing conditions,
the wall in the periphery was illuminated. Recent studies
show that the size of the field of view is important for
color constancy (Hansen et al., 2007; Murray et al., 2006).
Recently, Hansen et al. (2007) used color naming to

investigate the effect of spatial and temporal context on
color constancy. Hansen et al. had observers name stimuli
from the DKL isoluminant plane in various viewing
conditions with differing amounts of cues to the illumina-
tion. The full-cue and reduced-cue viewing conditions of
the present study are similar to their conditions 1 and 6,
where they observed color constancy indices of .99 and
.50, respectively, compared to .97 and .84 in the present
study. An important difference between their condition 6
and our reduced-cue condition is that because they did not
simulate their surfaces under the test illuminants, the mean
chromaticity of the stimulus collection was not biased to
the illuminant. In this case the only cues to the illuminant
were in the peripheral visual field. In the present study,
however, observers were able to use the mean chromaticity
of the stimulus collection as an additional cue, which
might explain the difference in the degree of color
constancy between the two studies.

Conclusions

The accuracy with which single observers name colors
across illuminants in full-cue conditions seems to be only
limited by their accuracy of naming the same colors over
time, pointing to nearly perfect categorical color con-
stancy. The strong correlation between naming consis-
tency across illuminants and naming consistency across
observers after correcting for category size effects sug-
gests a relationship between color constancy and consis-
tent communication about color.
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