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Abstract. The visual system is constantly confronted
with the problem of integrating local signals into more
global arrangements. This arises from the nature of early
cell responses, whether they signal localized measures of
luminance, motion, retinal position differences, or dis-
continuities. Consequently, from sparse, local measure-
ments, the visual system must somehow generate the
most likely hypothesis that is consistent with them. In
this paper, we study the problem of determining
achromatic surface properties, namely brightness. Mech-
anisms of brightness filling-in have been described by
qualitative as well as quantitative models, such as by the
one proposed by Cohen and Grossberg [Cohen and
Grossberg (1984) Percept Psychophys 36: 428-456]. We
demonstrate that filling-in from contrast estimates leads
to a regularized solution for the computational problem
of generating brightness representations from sparse
estimates. This provides deeper insights into the nature
of filling-in processes and the underlying objective
function one wishes to compute. This particularly
guided the proposal of a new modified version of
filling-in, namely confidence-based filling-in which gen-
erates more robust brightness representations. Our
investigation relates the modeling of perceptual data
for biological vision to the mathematical frameworks of
regularization theory and linear spatially variant diffu-
sion. It therefore unifies different research directions that
have so far coexisted in different scientific communities.

1 Introduction

Experimental studies indicate the existence of distinct
perceptual subsystems in human vision, one that is
concerned with contour extraction and another that
assigns surface properties to bounded regions. The
emerging picture from the experimental investigations
is one in which shape outlines are initially extracted,
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followed by the assignment of attributes such as texture,
color, lightness, brightness, or transparency to regions
(Bressan et al. 1997; Elder and Zucker 1998; Rogers-
Ramachandran and Ramachandran 1998; see also
Grossberg and Mingolla 1985). Several perceptual
completion phenomena (see Pessoa et al. 1998) suggest
that, on a functional level, regions inherit local border
contrast information by means of “spreading mecha-
nisms” or ‘“filling-in” (Paradiso and Nakayama 1991;
Caputo 1998). The assignment of surface properties
would then be dependent on the determination of
stimulus contrast in various feature dimensions — such
as luminance, motion direction and velocity, and depth —
that would be used to fill-in bounded regions.

In this paper, we first review recent empirical findings
about perceptual filling-in and surface property deter-
mination. We show that the filling-in of brightness
through a diffusion process can be understood in terms
of the general framework of feature reconstruction
through regularization that is widely used in computer
vision. In general, the problem of deriving a dense rep-
resentation of surface quality, such as brightness or
color, from local estimates, such as luminance or chro-
matic border contrast, is ill-posed. Given sparse contrast
estimates at image contours, the problem of finding a
corresponding brightness or texture representation has
no unique solution nor is it guaranteed to be stable.
Such an inverse problem needs to be regularized in the
sense that certain constraints have to be imposed on the
space of possible solutions. It will be demonstrated that
the steady-state representation of filled-in brightness, as
proposed by Cohen and Grossberg (1984), provides a
regularized solution of the inverse problem of generating
a dense representation from local estimates.

Based on our formalization of filling-in within the
framework of regularization theory, we introduce a new
version of brightness filling-in. As shown below, given
sparse contrast estimates at image contours, diffusive
filling-in generates a brightness representation that is
driven by both a smoothness constraint and the input
data (i.e., the contrast estimates). This representation
should not be confounded, however, by data terms at
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locations where they are not available — such as inside
uniform luminance regions. Accordingly, our proposed
scheme employs a confidence measure to ensure that data
terms are only considered where available. As demon-
strated through simulations, this allows filling-in to
more readily account for extended regions of uniform
brightness. Finally, we also demonstrate the behavior of
our new version of filling-in with classic stimuli, such as
the Craik-O’Brien-Cornsweet (COC) stimulus (Corn-
sweet 1970).

2 Empirical evidence for neural filling-in mechanisms

Among those perceptual surface qualities that relate to
photometric quantities, brightness is defined as perceived
illumination and /ightness relates to perceived reflectance
(Beck 1972; Fiorentini et al. 1990). In the following, we
consider only luminance stimuli depicting flat matte 2-D
surface layouts that are devoid of any scenic attributes
depending on surface orientation, shadowing, and depth
variations. Under those conditions the reflected light of
different regions and their reflectivities are directly
related, and the neural mechanisms affect brightness
and lightness in similar ways. We therefore make no
particular distinction between the two attributes bright-
ness and lightness (compare Fiorentini et al. 1990). The
luminance-to-brightness mapping is not unique but
depends on the figural arrangement that surrounds the
target region (for a detailed discussion, see Todorovi¢
1987; Pessoa et al. 1998). Consequently, the processes of
brightness perception are not primarily reconstructive in
their nature but are mainly guided by invariance
properties that help to generate robust percepts under
variable scene conditions. As a result, percepts are
created which can systematically deviate from the
pattern of input intensities. The goal is to reveal the
neural computational mechanisms underlying these
processes of brightness perception.

Paradiso and Nakayama (1991) used a visual masking
paradigm to investigate two issues: the role of edge in-
formation in determining the brightness of homoge-
neous regions, and the temporal dynamics of brightness
perception. They reasoned that if brightness perception
relied on some form of activity spreading, it would be
possible to demonstrate its existence by interrupting it. If
boundaries interrupt spreading, what happens when new
borders are introduced? Is this filling-in process affected
before it is complete? Figure 1 shows the paradigm they
used as well as the basic result. The target is presented
first and is followed at variable intervals by a mask. For
intervals of the order of 50-100 ms, the brightness of the
central area is highly dependent on the shape of the
mask. For example, for a C-shaped mask, a darkening
of the middle region is observed, with the bright region
“protruding” inside the C. For a circular-shaped mask,
an inner dark disk is perceived. Both these results are
consistent with the hypothesis that brightness signals are
generated at the borders of their target stimuli and
propagate inward. Moreover, contours interrupt the
propagation. Thus, for example, for a circular-shaped

Target / Stimulus Mask

(brief display)

Fig. 1. Masking paradigm in the temporal dynamics of brightness
study by Paradiso and Nakayama (1991). Brightness suppression of a
disk-shaped target by a mask. The target and mask are each presented
for 16 ms. Optimizing the temporal delay between target and mask
yields a percept in which the brightness in a large central area of the
disk is greatly suppressed. Brightness suppression is highly dependent
on the arrangement of the contours in the mask

Percept

mask, brightness signals originating from the target
border seem to be entirely “blocked” (hence a dark
middle disk). An altogether different outcome results for
larger delays between target and mask stimuli. If the
mask is presented after 100 ms, the brightness of the
central region is largely unaffected. Corroborating
the hypothesis that the propagation of brightness signals
is involved, Paradiso and Nakayama (1991) showed that
brightness suppression depended on the distance be-
tween target and mask. In particular, for larger distances
maximal suppression occurred at later times, revealing a
propagation rate of 110-150 deg/s (6.7-9.2 ms/deg); see
also Stoper and Mansfield (1978). Recently, Caputo
(1998) employed a similar masking paradigm to inves-
tigate brightness filling-in within texture patterns. Again
the spreading could be mainly blocked by the mask if the
stimulus-to-mask interval was in accordance with the
propagation rate required to travel the distance between
boundary and mask position.

De Valois et al. (1986) employed center-surround
standard (reference) and matching (variable) stimuli,
similar to the ones used in classic simultaneous contrast
studies. They compared the results of direct changes in
brightness where the center of the standard pattern was
explicitly modulated in luminance (as was the matching
pattern), to the induced changes that occurred when the
surround was modulated sinusoidally while the center
was kept constant at the mean level (i.e., a temporal
version of simultaneous contrast). Their studies revealed
two main findings: (1) the temporal modulation at fre-
quencies ranging from 0.5 to 8 Hz had little effect on the
apparent brightness change in the direct condition; and
(2) in the induced condition, the amount of brightness
change fell drastically as the temporal frequency in-
creased (around 2.5 Hz). (Note that these frequencies
are much lower than the ones usually revealed in flicker
studies, which have cutoff frequencies of more than
30 Hz and peak around 4-6 Hz.) These results can
be interpreted in terms of a spreading mechanism of



induction that occurs over time, one that would provide
a spatially continuous representation for filling-in. Rossi
and Paradiso (1996) replicated the brightness induction
results of De Valois et al. (1986) and studied the role of
pattern size. Recently, Davey et al. (1998) investigated
the temporal properties of brightness induction in COC
patterns (cf. Fig. 11). Their main finding was that in-
duced brightness in the COC gratings was stronger and
persisted until higher temporal frequencies for higher
spatial frequencies (see Pessoa and Neumann (1998) for
a discussion of these results).

In summary, these studies are suggestive of active
neural filling-in processes that are initiated at region
edges. In brightness filling-in, the brain seems to be gen-
erating a spatially organized representation, and it seems
to be doing so through a roughly continuous propagation
of signals, a process that takes time (see Pessoa et al.
1998). Below we show how the use of standard techniques
for the solution of inverse problems is useful in eluci-
dating the computational and mathematical properties of
the putative filling-in brain mechanisms.

3 Filling-in for the dense representation
of surface properties

Many of the objects we perceive have roughly uniform
regions of surface color, brightness, and depth. At the
same time, cells in the visual cortex in general do not
respond to uniform regions, but rather to discontinuities
(Hubel and Wiesel 1962, 1968). In other words, many
neurons respond more strongly to boundaries than to
regions or surfaces. In the vicinity of object borders,
contrast signals are produced by the visual system. How
should the appearance of inner regions be determined
given the absence of direct neural support? To introduce
concepts, we consider the task of generating a contin-
uous representation of surface layout as one of painting
(or coloring — Mumford 1994) an empty region that is
bounded by the local measures at region boundaries.
The task thus consists of generating an internal repre-
sentation of surface properties from sparse data. Indi-
vidual surfaces occur at different sizes and with various
shapes. Therefore, any such mechanism has to be
insensitive to such size and shape differences. Filling-in
models suggest that bounded local contrast measures are
used in the determination of surface appearance through
a process of lateral spreading, or diffusion (Gerrits and
Vendrik 1970; Cohen and Grossberg 1984; Hamada
1984).

Models of brightness perception were among the first
to explore the dichotomy of boundary and surface
subsystems. Based on stabilized image studies, Gerrits
and Vendrik (1970) proposed that the perception of
brightness depends on filling-in processes that occur
within separate oN and ofF channels. The two channels
would be involved in “brightness” (B) and ‘“‘darkness”
(D) processes, respectively (Jung 1973). Figure 2 (left)
sketches the main elements of their model. These basic
ideas were formalized by Cohen and Grossberg (1984)
and Grossberg and Mingolla (1985), who proposed a
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Fig. 2. Macroscopic components of filling-in models. Left: The raw
stimulus is preprocessed utilizing a center-surround processing stage.
The resulting antagonistic contrast responses feed to separate filling-in
stages that generate “brightness” (B) and “darkness” (D) activation.
Juxtaposed B-D activations form local barriers which in turn prevent
filling-in to spread into bounded regions. Superposition of equilibrat-
ed B- and inverted D-activity on a reference, or Eigengrau, level
determines the final brightness percept (Gerrits and Vendrik 1970).
Right: Contrast signals from the preprocessing stage are input to
boundary detection (BCS) and filling-in (FCS) stages. Filling-in is
regulated by boundary signals that constrain signals to occur within
bounded regions. The activity within the filling-in stage is the model’s
correlate of perceived brightness (Grossberg and Todorovic 1988)

model of complementary boundary and surface systems
(boundary contour system/feature contour system, BCS/
FCS). In a nutshell, BCS/FCS processing occurs as
follows. The input distribution is initially processed by
center-surround mechanisms, analogous to retinal gan-
glion cells that code luminance ratios at image edges.
Contrast signals are then used in two ways. The BCS
extracts boundaries (as in other edge-detection algo-
rithms) and further groups them into surface boundary
arrangements. Contrast signals are also fed to a filling-in
stage (in the FCS) where they undergo a process of
lateral spreading. The FCS computations determine the
appearance of the incoming stimulus, such as brightness,
hue, and depth (see Fig. 2, right). The two systems are
involved in complementary computations and, as indi-
cated by image stabilization studies (Krauskopf 1963;
Yarbus 1967), the final boundary signals produced by
the BCS are used to regulate a filling-in process that
occurs within the FCS system. Grossberg and Todorovi¢
(1988) showed how this proposal is capable of qualita-
tively accounting for several brightness phenomena,
including simultaneous contrast, brightness assimilation,
the COC effect, the Hermann grid, and Mondrian
displays. Figure 2 (right) contains a sketch of the main
elements of the model proposed by Grossberg and
Todorovic. Recent simulations of the model by
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Fig. 3. a Profile of an example stimulus arrangement with a light
region in the center and a darker background. b Processing of such
stimulus utilizing initial center-surround interaction produces local
activations in the vicinity of the contrast. For the generation of a dense

(a) —

Arrington (1994) have also shown that it is capable of
accounting for data on the temporal dynamics of
brightness perception, as studied by Paradiso and Na-
kayama (1991) (see above). A recent extension of the
model motivated by phenomena exhibiting brightness
gradients (Pessoa et al. 1995) was used to account for
stimuli such as trapezoidal and triangular Mach bands
(see Pessoa 1996a,b), low- and high-contrast missing
fundamental stimuli, and sinusoidal waves.

For concreteness, let us consider how a simple BCS/
FCS scheme can explain brightness perception in a
simplified figure—ground scene (see Fig. 3). For sim-
plicity we employ a 1-D representation of the stimulus
and assume only an oN channel is present. The lumi-
nance difference between the disk and the surround
produces contrast signals associated with the dark-to-
light transitions. Contrast signals are then used in two
ways. They generate boundary signals that determine
the regions of influence of the initial contrast measure-
ments. Contrast signals (or a blurred version of them)
are also sent to the filling-in stage. There, filling-in sig-
nals undergo lateral diffusion. Initially, filling-in signals
are equivalent to (blurred) contrast signals. With time,
the distribution of activity of filling-in signals changes as
they spread laterally. Spreading occurs as long as signals
are not stopped by a boundary. Eventually, after the
brightness signals spread, a brightness plateau ensues
defining a center region as lighter than the background.
Overall, the BCS/FCS in particular, as well as other
filling-in proposals (Hamada 1984; Arrington 1996) may
be viewed as attempts to bridge the gap from local
contrast responses (ratios) to more continuous spatial
representations (which in the BCS/FCS comprise the
equilibrated filling-in signals).

The task of integrating local measurements into more
global percepts is not limited to brightness perception.
In fact, it is a central problem in early vision (Poggio
et al. 1985). For instance, the domains of depth and
motion perception are confronted with similar chal-
lenges. Using random dot stereograms, Julesz (1971)
showed that the visual system strives to find a smooth
surface layout compatible with the disparity informa-
tion. This holds even in cases where only a minor
fraction of points gives rise to localized disparity signals
(so-called 5% stereograms; Julesz 1971, p. 122). Instead
of perceiving individual dots floating in depth, the sub-
ject perceives a surface in depth that is consistent with
the local estimates. Recent evidence suggests that depth
is assigned to the interiors of bounded homogeneous
regions in which only the vertically oriented boundaries
provide a source of local disparity (Nakayama and
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representation of surface quality the empty inner region must be
somehow filled with activation. ¢ Filling-in mechanisms take the initial
contrast responses near the luminance step and paint the rest of the
region by a process of lateral spreading, or diffusion

Shimojo 1992). The depth assignment revealed by these
and other studies may be mediated by a filling-in
mechanism similar to the one for the determination of
brightness. Starting from sparsely localized disparity
estimates, a smooth surface in depth would be generated
(see Anstis and Howard (1978) and Brookes and Stevens
(1989) for other depth-brightness-related illusions;
compare also the discussion in Howard and Rogers
(1995) on depth- and motion-induced contrast illusions
similar to brightness).

The visual system is thus constantly confronted with
the issue of how to integrate local signals into more
global arrangements. Mathematically, this can be in-
terpreted as solving an inverse problem. From sparse,
local measurements, the visual system must somehow
generate the most likely hypothesis that is consistent
with them. This reconstruction process is in general not
well defined (or well-posed), as there may be an infinite
number of possible configurations consistent with the
sparse measurements. Constraints are thus required in
order to define a unique solution that would correspond
to the percept. Below, we investigate filling-in as a
mechanism solving the inverse problem of generating
dense representations from sparse estimates.

4 Filling-in as a mechanism to solve an inverse problem
4.1 The basic filling-in equation

The filling-in equation analyzed in this section has been
used as a building block in several models of early vision
(e.g., Gove et al. 1995; Pessoa et al. 1995; Grossberg and
McLoughlin 1997). Within the empty space of bounded
regions, activity generated by initial measurements
spreads laterally, whereas at boundaries the diffusion
stops. Cohen and Grossberg (1984) — see also Grossberg
and Todorovi¢ (1988) for an extension to the 2-D case —
suggested a nonconservative filling-in mechanism which
utilizes a steady (or clamped) source of local input
signals, c¢. The resulting filling-in activity will be denoted
by v. The lateral spreading of activity v is controlled by
an auxiliary boundary system which generates local
activities w. In addition, in order to take into account a
neurally plausible implementation based on leaky cell
compartments, a passive decay of activity (with rate K)
is also incorporated. In all, the discretized equation for
the filling-in mechanism reads

o = —Kv; + ¢; + Z (v —v:)py - ()

JEN;



In this equation i and j denote spatial locations, and the
sum over a nearest-neighbor coupling, ./";, corresponds
to the discretized diffusion component that is controlled
by a spatially varying permeability p(w). [The scalar
function which denotes the efficacy of lateral spreading
is termed diffusivity in the (nonlinear) diffusion literature
(e.g., Weickert 1997). In our problem domain, this
relates to the permeability of an assembly of laterally
interacting model cells, or compartments. We therefore
use the second term throughout the paper.] The
permeability is defined by a monotonically decreasing
function of boundary signals w, for example
pi; = p/(1 +a(w; +w;)), which is independent of v.

4.2 Filling-in, diffusion and regularization theory

Filling-in in continuous form. The discretized filling-in
equation, (1), contains a diffusion and a linear reaction
term, the latter to bias the equilibrium solution towards
the contrast input at region boundaries. The diffusion
term is described by the sum of weighted differences
between activations at neighboring network sites. Each
component represents a numerical first-order difference
term whose efficacy is modulated by p;;. Each difference
can therefore be considered as a discretized version of

the spatially continuous form p(w)Vv, where w = w(x),
such that the term . . (v; —vi)p; is a first-order
discretization of V - (p(+) - Vo(x)) with

p(vi —vic1) = pVv =y, p(vig1 —v;) = pVv =y,

and (v, —y) = V -y
for the 1-D case (compare with Fig. 4). Overall we can

formulate the filling-in equation in continuous form as

du(x;1) = V- (p(w) - Vo(x;1)) + g(v, ¢) (2)

O 0000 =

Fig. 4. Sketch of the discretized network for filling-in. Left: Scheme of
lateral interaction based on nearest neighbor coupling in a 1-D grid
(AN ={i—1,i+ 1}) to generate filling-in activities v;. Each node in
the filling-in network is fed by excitatory feedforward projections from
sparse contrast activation ¢;. Lateral coupling between neighboring
lattice sites is modulated by inhibitory external inputs generated in the
boundary system (p;; the wheel icons indicate pooled activation from
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with  ¢g(v,¢) = c(x;t) — Kv(x;t) (0, =0/0t). Here
X = (x,y) denotes the spatial coordinates and V is the
generalized differentiation operator (O, Gy)T. By this
mechanism the diffusion is biased by a source, ¢(x;?),
associated with local contrast measurement signals, and
a sink, —Kv(x;t), that, in the absence of any input,
produces a decay of activation at rate K [compare
Eq. (1)]; p(-) is the spatially variant function that
controls the permeability. The steady-state solution of
(2) identifies a state in the diffusion system in which the
driving input and the spontaneous decay are balanced
without further lateral spreading of activation.

Continuous filling-in and diffusion mechanisms. The con-
tinuous filling-in equation, (2), reveals many similarities
with mechanisms used in diffusion models of computer
vision (see Weickert (1997) for a recent review). Without
the bias term g(v, ¢) = ¢(x;¢) — Kv(x;¢) in (2), the filling-
in mechanism results in a standard spatially variant, or
inhomogeneous, linear diffusion equation. The permeabil-
ity coeflicient is locally controlled by the activities w(x)
of the segregated topographically organized boundary
system, which leads to an inhomogeneous process. The
diffusion process itself is linear since the permeability
function p(-) is independent of v and the bias term g(-) is
a linear function of v. In addition, the filling-in process is
isotropic since p(-) is a scalar-valued function, and
consequently, the resulting flow ® = p(-)Vv is oriented
parallel to the gradient of the filled-in activity. (Please
note that in an anisotropic scheme, the direction of
maximum spread varies locally, e.g., pointing along the
direction of iso-intensity lines or the tangent of a
boundary.) In all, the filling-in mechanism displayed in
(2) is a linear isotropic, geometry-driven process in
which the local graduation of lateral spreading is
controlled by the external form-sensitive boundary
system. The filling-in equation also contains an addi-
tional source and a sink component. Taken together

filters tuned to different orientations). Right: Numerical approxima-
tion of spatial derivatives (difference scheme for the central site
coupled to its direct neighbors; efficacies are denoted by signed
multipliers). The three-level cascade realizes the spatially variant
diffusion component V - (pVv) in 1-D, the hatching highlights those
nodes whose contribution is modified by the spatially variant
permeability
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they define a linear reaction term which guarantees that
the equilibrium solution will be close to the input. Such
reaction terms have been used in a number of compu-
tational vision models for non-linear diffusion and
reaction-diffusion processes (e.g., Schnérr and Sprengel
1994; for an overview, see Weickert 1997).

oN and OFF contrast systems. Modeling brightness
reconstruction from local contrast information must
take into account the non-negativity of cell responses.
Consider a luminance contrast such as in Fig. 3: oN
contrast cells signal the luminance increment at the
brighter region whereas Off contrast cells signal the
luminance decrement for the darker region in the vicinity
of the edge (not shown). For the filling-in mechanism to
function properly, the diffusion must be based on
separate representations for oN and OFF contrast acti-
vation, respectively (see Gove et al. 1995; Pessoa et al.
1995; Arrington 1996). Therefore, the computational
architecture includes two segregated oN and ofF filling-
in networks that generate activities v*(x;¢) and v~ (x; 1),
following the dynamics

ot (xs1) = ¢t (x;1) — Kvt (x;0)+V - (p(w) - Vo' (x;1)),
ov™(x;8) = ¢ (x;¢) — Kv™ (x;6)+V - (p(w) - Vv (x;1)) .
3)

In both systems the permeability is controlled by the
activation of the auxiliary boundary system. The
corresponding discretized filling-in equations ¢, and o,
are defined in accordance to the scheme shown in (1).

Computing brightness representations and regularization
theory. Computing dense brightness representations
from local contrast estimates can be formulated more
generally as finding a solution for v (the brightness) in
the space X given the measured contrast data ¢ in some
space Y. The mapping between elements in the pair of
spaces (X, Y) is denoted by the operator 4, thus ¢ = Av.
In our case 4 merges together the initial center-
surround filtering (see Neumann 1996). The existence
and uniqueness of a solution and its continuous
dependence on the data cannot be guaranteed since
the measurements may be noisy and are sparse. The
inverse problem is therefore classified as ill-posed in the
sense of Hadamard (Tikhonov and Arsenin 1977,
Poggio et al. 1985; Bertero et al. 1988). The solution
to the problem has to be regularized such that proper
constraints are imposed on the possible set of candi-
dates in the function space of solutions. We select the
function o as the solution that minimizes the norm
|40 —c|ly subject to the additional constraint of
smoothness of ©#, where smoothness is characterized
by a minimized derivative (e.g., of first order). The
overall goal is to minimize the constraint given by
the local differences between the measured data and the
reconstructed function values (data term) and the
stabilizing functional imposed on the function (smooth-
ness term). This results in the goal of minimizing the
quadratic functional

l4v = ¢|* + 2||Po]|* — min (4)

where P denotes a ‘“‘constraint operator” (a mapping
P : X — Z) that stabilizes the solution for the inverse
problem and || - || represents a proper norm in the spaces
Y and Z (Poggio et al. 1985). For a detailed discussion of
the formal mathematical background we refer to Bertero
et al. (1988) and Baumeister (1987).

In order to solve the inverse problem we minimize a
quadratic functional E(v) = [, Eq(v,c) + AE,(v) — min
to yield a solution function that realizes a compromise
between the data term (“‘similarity’ or “‘closeness’ to the
data) and the model term (“‘smoothness’ of the solution)
(Gelfand and Fomin 1963). If we consider only first-
order variations in the smoothing term, the resulting
functional for each contrast channel reads

E(Ui)
— [ [ Pl ot ot rox]dedy — min
Q

(5)

where  F = ik (X)(KvF(x) — ¢*(x))” + p(w)(vF(x)+
U;E(x))z, with w = w(x) and x = (x,y). Again, ¢* repre-
sents the local estimated contrast data in either oN or
oFF channel, v* is the brightness function we search for
in the function space for the given inverse problem,
vy (), v, (-) are its first-order partial derivatives, and « is
a function that represents local confidence measures at a
sparse set of locations. The permeability p(w) serves as a
spatially variant regularization parameter that allows
the modulation of the magnitude of the contribution of
the smoothness term (compare Terzopoulos 1986).

The necessary condition for the existence of a solu-
tion for this minimization problem is denoted by the
Euler—Lagrange (E-L) equation, which for F results in
(Gelfand and Fomin 1963)

0 2 0 o 0
2l - (&c@l);tF+@)/az);EF> =0 . (6)

In the functional defined for the given F we seek a
solution close to the data, while at the same time
minimizing the first-order derivatives of the approxi-
mating function [see Eq. (5)]. The corresponding E-L
equation for oN and OFF contrast activation finally reads

Ki(x)(Kv™ (x) — ¢*(x)) = V- (p(w) - Vo5 (x)) =0 .
(7)

4.3 Analysis and predictions

Above we have derived an equation for the continuous
filling-in mechanism [see Eq. (3)] and the E-L equation
for the membrane-regularized solution for generating a
brightness representation [see Eq. (7)]. This indicates
that the ill-posed problem of constructing a dense
representation of surface property is regularized by the
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Fig. 5. Left: Generation of a brightness representation using standard
filling-in. Given a constant confidence value everywhere (k(x) = 1),
the zero contrast values for inner regions (thin line) force the model
terms to approach this reference value (thick line). Right: Simulations
of standard filling-in for different permeability values,
p € {15,45,135} (normal, bold, and extra bold, respectively). The
decay parameter was set constant to K = 1. The process of standard
filling-in produces a “bending” in the final activity distributions where
the amount of bending increases for lower values of p (see text)

mechanism of diffusive filling-in utilizing the network
depicted in Fig. 4. An important difference between the
above-mentioned equations remains, however. In (7)
the data compatibility term (Kv*(x) — ¢*(x)) denoting
the similarity between the signal and the measured input
data is multiplied by an explicit confidence measure, or
“data availability” coefficient, K (x) = #(x). Thus in
the process of generating a representation from sparse
data, the contribution of a data compatibility term
should only be effective at those locations where input
data is available. If a confidence measure is omitted, any
data point in the otherwise sparse input field would be
used.

The situation represented by (3) may be interpreted
as if a confidence measure of constant value, e.g.,
k(x) =1, exists at all spatial positions, irrespective of
the distribution of input measurements. In this case, a
missing input measurement (corresponding to object
regions away from borders) is treated as a zero-ampli-
tude data point that should be approached by the
function that represents the dense surface property.
Thus uniform regions must always, at equilibrium, ex-
hibit “bowed” signal distributions. Figure 5 (left) illus-
trates the situation. Associated with a luminance
pedestal, contrast signals will be generated in the vi-
cinity of the edges. Given that i(x) = 1 everywhere and
that the local measures for inner regions value zero, a
bow in the signal distribution is generated such that at
inner positions the model term is driven to zero. The
parameter p in  the permeability  function
p(w) = p/(1 + aw) regulates the flatness of the filled-in
signal: decreasing the value of p decreases the contri-

(a) (b)

Fig. 6a,b. Sketch of the “bowing” effect in the filled-in signal
distribution for a mechanism not utilizing any confidence measure:
a A region bounded by two contours with contrast input at one side
(dashed bold). Filled-in activation (continuous line) tends to bend
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bution of the smoothness term and, therefore, increases
the relative contribution of the input data. As a result,
the signal approaches more closely the available input
data and — with the non-vanishing confidence measure —
gets more bowed. Figure 5 (right) shows the results of
computer simulations of a luminance pedestal stimulus
using (1). The actual amount of bending depends on the
permeability p of the diffusion equation. For smaller
permeability values the bending is quite considerable,
for larger values it can be reduced, but it is always
present.

The amount of “bowing” in the distribution of a
brightness signal also depends on the size of a target
region which is to be filled-in by local contrast re-
sponses at the edges. For illustration purposes, con-
sider a bounded region (corresponding to the pedestal
in Fig. 5) in which input contrast is available only near
its left boundary. (This restriction is feasible since in
the filling-in process any contribution of input contrast
superimposes in a linear fashion. Therefore, the effects
of “bowing” can be studied in this reduced scenario.)
Based on our analysis above, assuming constant unit-
value confidence values filling-in approaches zero input
data; however, always keeping the balance between the
closeness to the data and the imposed smoothness
constraint of the underlying energy functional (5).
Consequently, if the ratio between the number of sites
having zero input and the total number of sites in-
creases, the tendency of the filled-in signal to approach
zero amplitude is stronger. Figure 6 sketches the layout
and the predicted amplitudes of filling-in response.
This observation predicts that without an additional
mechanism to control the influence of the input data,
filling-in is not invariant against the size of a surface
region.

5 Confidence-based filling-in

We have shown above how to relate diffusive filling-in to
the regularization of the inverse problem of generating a
brightness representation from sparse data. Based on
this analysis, we propose a new extended scheme of
confidence-based filling-in. Our proposal utilizes a con-
fidence function to validate the availability of input
contrast that contributes to the data compatibility term
in the corresponding regularization functional. We now
discuss how model complex-cell responses can be
effectively used to compute confidence values.

downward as to approach the level of zero input activation. b A larger
region but with the same input conditions as in case a. The difference
in the decline of activity is highlighted by the gray rectangle
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5.1 Complex cell response and confidence measure

Input contrast, and simple- and complex-cell responses.
How should confidence be defined in the domain of
contrast measures and the generation of a brightness
representation? Consider again the structure of the
hierarchical processing of input luminance distributions.
Initial center-surround interaction by unoriented filters
generates contrast responses, c*,in separate oN and OFF
channels that flank any sharp luminance transition
(edge) (the computational stages involved in the initial
center-surround processing are described in the Appen-
dix). Contrast responses are then integrated by oriented
weighting functions which define the subfields of cortical
simple cells. Simple-cell responses in turn feed into
polarity-insensitive model complex cells.

Simple-cell responses are computed by integrating
juxtaposed contrast responses from elongated offset
subfields. In order to generate more localized
responses in case of a localized luminance transition
(edge), we “boost” the response by using an additional
component of multiplicative combination of both
sub-field responses (see Neumann et al. 1999). In
particular, for a cell sensitive to dark-light (DL)
luminance transitions (polarity) for orientation 0 at
location x, we get the steady-state response SH(x),
and the response SFP(x) for a cell with light-dark
(LD) sensitivity.

Complex-cell responses are generated by pooling the
simple-cell responses of opposite contrast polarity. Here
we utilize the self-normalizing properties of shunting
interactions proposed by, for example, Grossberg (1980)
which has recently been adopted by Heeger (1992) to
explain empirical data of cortical cell responses. At
steady state, the mechanism reads

Se-(x) + S (x)
“op + {(SPE 4+ 8P @A, (x)

Zy(x) =P (8)

where o, and f, are constants and A denotes an isotropic
weighting function to integrate activations in a space/
orientation neighborhood.

(@ \ ﬁ _______ ON  (b)

Confidence measure. The shunting mechanism contrib-
utes a divisive inhibitory component such that the
complex-cell responses are compressed in a nonlinear
fashion (compare Heeger 1992). The steady-state re-
sponses can now be directly utilized to derive a spatially
continuous field of confidence measures to gate, or

modulate, the input contrast responses [compare
Eq. (7)]. We get

- K

RO = 520+ 9)

where Z(x) = maxy(Zy(x)), and ¢ is a small tonic input
which is needed to achieve the well-posedness of the
functional in (5). K corresponds to the decay parameter
and f is a scaling constant; both are utilized to achieve a
proper mapping of confidences in a range of [0, 1].

The key observation is that simple-cell responses are
pooled to form a field of complex-cell responses. After
spatial pooling, these cell responses are more uncertain
with respect to edge position than the initial input con-
trast responses. Thus, the inherent positional uncertainty
always spans the spatial extent covered by the distribu-
tion of center-surround filters. Of central importance
here is the fact that the representations of local oN and
OFF responses generated by center-surround filters are
used as the input signals for both filling-in and model
complex cells — the latter via the intermediate stage of
simple cell integration. Both representations are thus
spatially related. Simple- and complex-cell responses
define a continuous representation that implicitly en-
codes the presence and validity of contrast estimates that
are used for filling-in. Hence, complex-cell responses can
be used to define confidence measures. The stages of this
scheme with their different computational roles are
depicted in Fig. 7.

5.2 Discretized confidence-based filling-in

Similarly, we can also derive a discretized version of the
new filling-in equation. We first sample the confidence

Fig. 7a—c. Computational principles involved in confidence-based
filling-in. a Input profile of a bright region on a darker background
(dashed lines). oN and OFF contrast responses near luminance edges
(thick lines). b Spatially offset oN and OFF contrast responses are
integrated into opponent subfields of cortical simple cells which are
pooled to form complex-cell responses (thin lines). High amplitude
responses (bold arrows) are sharpened to generate localized boundary

activations (thick lines). ¢ oN and OFF contrast responses (thick lines)
feed into separate filling-in systems. Boundary responses generate
barriers at locations of luminance edges (bold arrows) to control the
lateral spreading in the filling-in systems (dashed arrows). Confidence
signals derived from broadly tuned complex-cell responses (dashed
lines) control the contribution of the data term in the regularization
functional



activity x(x) (9) at discrete positions, ;. In accordance
with (1) we get

o7 = (¢ — Kvi)i; + Z (vjjE - U?E)p,:/ .

JEN

(10)

The steady-state response for 1';?[ =0 (for all i) is given
by the linear system M - v = ¢*, in which M denotes the
matrix of lateral interactions on the discrete grid, v*
denotes the steady-state filling-in activations, and c¢*
represents the contrast inputs weighted by the gain of
the spatially varying confidence-values. For parameters
K > 0 and using the definition of the confidence function
K;, the matrix M is guaranteed to be invertible. The
solution for the filled-in activities is thus defined by
viE=M".¢* .

(11)

6 Simulations

The properties of the discretized filling-in mechanisms of
(1) and (10) have been investigated on the basis of
various types of stimuli. First, we demonstrate the
dependency of the results of standard filling-in (1) on
the parametrization and the brightness predictions on
the actual region size. Confidence-based filling-in is
shown to be more robust against these degrees of
freedom. The mechanism of confidence-based filling-in is
then applied to psychophysical stimuli. In order to
demonstrate the model’s invariance properties and its
capacity to deal with real world data, we also show
results of processing real camera images. All the
resulting brightness predictions shown below were
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generated by taking the difference between activities
from on and oFF filling-in networks. The reference level
is set to the “Eigengrau”, such that we get

b(x) = gray + (v7(x) — v (x)) . (12)

6.1 Invariance properties

Our first investigation focuses on the properties of the
filling-in mechanisms and their dependency on the
parameter settings and the size of the region to be
filled-in. We start with simple luminance patterns each
with a central light square of different size on a dark
background (see Fig. 8). The brightness signals gener-
ated by the standard filling-in mechanism (1) tend to
bow depending on the strength of the permeability
coefficient. An increase in the permeability helps the
generation of flat signals (see Fig. 8, bottom, left panel
in first and second pair). The corresponding brightness
patterns generated by the confidence-based filling-in
mechanism remain invariant against these parameter
changes and are always flat (Fig. 8, bottom, right panel
in first and second pair). The results of the confidence
mechanism remain stable for the different sizes of the
square figure.

Next, the same mechanisms have been applied to
another test image that contains shapes of different form
and size but with the same luminance level. The results
reveal the potential weaknesses of standard filling-in:
depending on the size or diameter of a pattern (which is
unknown), the brightness signals appear at a different
amplitude and show different amounts of bowing
(Fig. 9). With the confidence-based filling-in mechanism,

prrEs=

-

o TR |

Fig. 8. Generation of brightness appearances for rectangular test
patterns of different sizes utilizing mechanisms of standard and
confidence-based filling-in. Top row: Pairs of luminance pattern (left)
and profile (right), each for a small and a large test square,
respectively. Input size was 128 x 128 pixels with bright regions of

32 x 32 (small) and 64 x 64 (large) pixels. Bottom row: Simulation
results for both pattern sizes shown in pairs of standard filling-in (lef?)
and confidence-based filling-in (right) for each pattern size. The
parameter settings in both models are K = 0.5 and p € {15,45,135}
(solid, dashed, and dotted lines, respectively)
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the brightness patterns appear homogeneous and of al-
most the same brightness. (Note that the small varia-
tions in the brightness amplitude are mainly due to
different contrast input levels that are measured at the
shape boundaries. Since the contrast is measured using
an isotropic center-surround mechanism, the responses
vary as a function of local contour curvature.) This
property holds true for virtually arbitrary large homo-
geneous regions, since zero confidence values switch off
the data term in the interior of such regions. We con-
clude that confidence-based filling-in helps to generate a
brightness representation that is largely invariant against
shape size and, therefore, improves the robustness of
filling-in mechanisms.

Fig. 9. Filled-in brightness signals for shapes of different size but
same luminance. Signals are generated by the filling-in mechanisms
using the parameter settings that achieved proper results for the
“square” test pattern above. Top row: Input luminance pattern (lef?),
and brightness signal generated by standard filling-in (middle) and by
confidence-based filling-in (right). Bottom row: Corresponding profile
sections of the luminance function and the brightness patterns taken
along the diagonal (from upper left to lower right corner)

6.2 Brightness data

In this section we demonstrate the ability of the
confidence-based mechanism of filling-in to process
classical luminance patterns that have been investigated
in brightness perception. The first simulation demon-
strates that the model is able to produce brightness
contrast effects, as have previous filling-in schemes
(Grossberg and Todorovic 1988; Pessoa et al. 1995;
Neumann 1996). Figure 10 shows that gray patches of
identical luminance appear darker or lighter depending
on the luminance of the adjacent surround. This effect is
known as simultaneous contrast (see Fiorentini et al.
1990).

With the other stimuli, we particularly focus on re-
mote border contrast effects and their creation of
brightness differences. These cases provide examples of
the crucial role that edges have on brightness appear-
ance. For example, two regions of equal uniform lumi-
nance separated by a “cusp edge” appear of different
brightness — the COC effect (see Cornsweet 1970;
Todorovic 1987). These types of stimuli have been
identified as the most challenging ones for alternative
theories of brightness perception such as, for example,
filter theories. In fact, as yet only filling-in models ap-
pear to properly predict the brightness appearance for
COC stimuli and their variants (compare Blakeslee and
McCourt 1997, 1999).

Figure 11 (left) shows the input luminance distribu-
tion of a standard COC stimulus where a cusp edge
appears in the center. The lower-luminance side of the
cusp is associated with a uniformly darker region, and
the higher-luminance side of the cusp with a uniformly
brighter region. Figure 11 (right) shows the prediction
generated by the confidence-based filling-in mechanism.
As with previous filling-in proposals (e.g., Grossberg
and Todorovic¢ 1988), it correctly predicts the effect.

A sequence of cusp edges having pairwise opposite
contrast polarities generates a brightness pattern of a

Fig. 10. Simultaneous contrast patterns.
Top row: 2-D luminance stimuli of a con-
stant gray patch embedded in surrounds of
decreasing luminance. Central row: Lumi-

nance profiles from central 1-D horizontal

cross sections through the stimuli shown in

the rop row. The constant gray level of the
central square is highlighted by the dashed
line. Bottom row: Profile sections from
corresponding 2-D simulation results utiliz-
ing confidence-based filling-in. The dashed
line serves as a reference level generated by

the mean brightness activity measured at the
central regions of all four patterns
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Fig. 11. Processing two regions of identical luminance level separated
by a luminance cusp (the Craik-O’Brien-Cornsweet stimulus). Left: 2-
D input stimulus. Center: Profile of central cross section through the
input luminance pattern. Right: Profile section from the corresponding
2-D simulation result utilizing confidence-based filling-in

+
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Fig. 13. Processing camera images of a flat 3-D object acquired from
different distances. The target object of low reflectance on a lighter
background surface is illuminated by a primary light source that
generates a visible illumination gradient. Top (left to right): Input
intensity image of the object at a larger viewing distance and a profile

series of alternating dark and bright patches (stripes)
similar to a rectangular square wave. Such a stimulus is
shown in Fig. 12. As discussed in Sect. 2, the temporal
dynamics of brightness perception in such a COC ar-
rangement is consistent with a filling-in mechanism.
Confidence-based filling-in, at equilibrium, again cor-
rectly predicts the appearance of the final brightness
square-wave pattern.

6.3 Real world application

In order to demonstrate the functional significance of
the newly proposed mechanism, we show the processing
results for a camera image of a real object. In order to
exclude any possible influences from 3-D effects (e.g., by
shadowing or variations in surface orientations), we
used a card-board attached to a flat background surface.
This intrinsically flat scene was directly illuminated by a
point-like light source at a distance of approximately
2 m. This generates a significant intensity gradient in the
original intensity image. The target surface has been
imaged from distances of about 2 and 1 m.
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Fig. 12. Filled-in brightness signals for a square wave pattern made of
Craik-O’Brien-Cornsweet cusps of opposite contrast polarities. Lef:
Input luminance pattern. Middle: Horizontal profile. Right: Profile of
the 2-D brightness pattern generated by confidence-based filling-in

section (left pair); the corresponding result of confidence-based filling-
in is shown together with a profile section (right pair). Bottom (left to
right): Corresponding input representations and processing results for
the object at a closer viewing distance

The results of processing are shown in Fig. 13. This
demonstrates that the mechanism of confidence-based
filling-in is capable of generating a representation of
homogeneous surface properties. The result is indepen-
dent of the projected region size, thus showing the
property of size invariance. Also, the illumination gra-
dient is discounted and the noise is successfully sup-
pressed.

7 Discussion and conclusions
7.1 Results

This article makes three main contributions. First, we
provide a unification of filling-in models (that attempt to
explain perceptual data) and regularization approaches
widely used in computer vision. This investigation
provides deeper insights into the computational mech-
anisms of filling-in processes and the underlying objec-
tive function one wishes to compute. In particular, we
have identified an energy functional for the computation
of a brightness representation that is minimized by the
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employment of the filling-in mechanism. Second, the
analysis of filling-in in the context of regularization
theory helped to identify a potential weakness in the
standard approach, namely the variable bowing of the
representation of homogeneous surface properties.
Third, the results of this analysis guided the proposal
of confidence-based filling-in. The filling-in systems are
fed by sparsely located oN and OFF contrast signals near
the boundaries of regions whose perceptual brightness
quality will be generated. Reliable local nonzero confi-
dence measures are thus located in the vicinity of object/
region boundaries. Since the stages of oriented contrast
detection will also be fed by initial contrast responses,
there exists a spatial coincidence of localized contrast
data (the generating input for filling-in), significant
responses from oriented contrast cells, and high confi-
dence values to guide the filling-in process. This led us to
propose that a spatial distribution of transformed
contrast responses may act to gate the oN/oFF signals,
thus emphasizing the data contribution for the filling-in
process.

It is interesting to note that Paradiso and Nakayama
(1991) suggested that filling-in processes could be related
to the visual system’s solution of the ill-posed problem
of brightness reconstruction (Poggio et al. 1985). The
present paper shows that diffusive filling-in as proposed
by Cohen and Grossberg (1984), as well as other vari-
ants such as confidence-based filling-in, in fact provide a
regularized solution to the problem of brightness re-
construction. However, the precise mechanisms by
which the visual system implements such computations
remains an open question (see the discussion associated
with Pessoa and Neumann 1998; Pessoa et al. 1998).

7.2 Related work

Filling-in models of brightness perception. Our analysis
showed that the filling-in mechanism proposed by
Cohen and Grossberg (1984) and Grossberg and
Todorovic (1988) generates a regularized solution to
the problem of creating a representation of surface
brightness. The analysis further revealed a potential
weakness in its original formulation: missing contrast
measures at region interiors are treated as zero-ampli-
tude inputs to the filling-in systems. As a consequence,
the final filled-in representation will always be ““bowed,”
a problem that is more or less severe depending on the
diffusion parameters and the size of the bounded region.
The model of Grossberg and Todorovic (1988) em-
ployed a residual luminance activation (nonzero DC
level) from the initial stage of retinal oN-center/oFF-
surround processing. Consequently, an already dense
input activity distribution — superimposed (compressed)
luminance and contrast measures — feeds into the filling-
in system. It has been shown in Neumann (1996) that
Grossberg and Todorovi¢’s (1988) scheme can be
generalized such that on- and orr-channels carry
localized contrast activations and a parallel segregated
luminance channel which encodes a blurred and non-
linearly compressed version of the original luminance

signal. The filled-in contrast activation is finally com-
bined with the luminance activity to generate the
brightness appearance. Therefore, the visible amount
of bending in the brightness signal depends on the
relative proportion of the filled-in contrast responses in
relation to the luminance activation.

More recent versions of filling-in models such as in
Gove et al. (1995) and Pessoa et al. (1995) utilize oN and
ofrF-contrast channels that feed segregated filling-in
mechanisms. The latter approach also employs a dense
representation of compressed luminance information in
a segregated channel. Our analysis predicts that the final
brightness representation depends on the precise pa-
rameter setting and the size of the surface regions to be
filled-in with the corresponding surface property. In the
model of Pessoa et al. (1995), as in Grossberg and
Todorovi¢’s (1988) model, these effects can be ““hidden”
by the relative contribution of the luminance activation.
The steady-state activity distributions in the ON/OFF
filling-in systems, however, is predicted to vary with
parameter settings and with the sizes of the projected
surface regions and may, therefore, be adjusted by
proper parameter tuning.

The same insight also applies to the model of filling-in
of brightness qualities in segregated depth planes pro-
posed by Grossberg and McLoughlin (1997). Here,
spatially localized disparity (or relative depth) informa-
tion is measured at local luminance discontinuities, or
contrasts, in order to find surface boundaries. Boundary
segments initiate a first stage of monocular filling-in. The
equilibrated filling-in activities pass on to a stage of
center-surround processing, through which spatial con-
trasts in the filling-in representation are detected.
Matchable ipsi- and contralateral input responses de-
termine the generators of the binocular filling-in which,
in turn, determines the final layout of surface brightness
in depth. Again, the dynamics of the lateral spreading
systems is governed by the same basic equation that has
been analyzed above. This diffusion process tends to
generate spatially inhomogeneous brightnesses for large
surface regions to be filled-in. A confidence-based
mechanism, on the other hand, will help to generate flat
homogeneous layout of surface brightness, independent
of the given constant parameter settings.

Processes of surface reconstruction in computer vision.
The generation of a brightness representation using
filling-in has several aspects in common with computa-
tional approaches for surface reconstruction in comput-
er vision. In general the problem is that of generating a
rich (or dense) representation given only sparse and
possibly conflicting samples of the input pattern. In
particular, a critical problem is the integration of sparse
data provided by separate modules for shape recovery,
such as in stereopsis, motion, and monocular shape-
from-X processing (Grimson 1981; Marr 1982; Terzo-
poulos 1986). Poggio et al. (1985) identified several
computational problems in early vision as instances of
“inverse optics.” These problems are classified as ill-
posed since a unique solution does not exist. Surface
reconstruction from sparse estimates is also ill-posed.



Initial approaches employed in surface reconstruction
(Grimson 1981; see also Marr 1982) utilized stabilizing
functionals in 1-D of the form

q dm 2

with constant coefficients (Tikhonov and Arsenin 1977).
A regularized solution v minimizes the stabilizing
functional such that it closely approximates the estimat-
ed data and is smooth in-between. The problem with
constant coefficients p,, is that sharply localized discon-
tinuities in the reconstructed function v tend to be
smoothed out. Terzopoulos (1986) presented more
elaborate computational approaches for surface recon-
struction that involve discontinuities. He utilized con-
trolled-continuity stabilizers to minimize the smoothness
functionals. These spatially-variant functions are real-
valued weighting functions p,(x) with a range of
magnitudes in the interval [0, 1]. At depth discontinu-
ities, p,(x) = 0 should be achieved to break the conti-
nuity of the reconstructed surface (Terzopoulos 1986).
At the same time, approaches to surface reconstruction
have utilized confidence values at discrete locations to
justify the contribution of data terms (Szeliski 1990).
The measure of data compatibility uses a weighted
Euclidean norm of the difference between the estimated
data and the reconstructed function. A proper choice for
the confidence measure is x; = (1/6?) - §;, available at
sparsely distributed (discrete) image locations sampled
by &; (the Kronecker delta), with o7 denoting the
variances of signal measurements (Terzopoulos 1986;
Szeliski 1990). Thus the confidence is increased for
reliable measurements with only minor noise. These
authors suggest that the confidence value should ap-
proach zero at locations where there is no input
measurement available from previous processing stages.

We have identified the filling-in mechanism as one
that corresponds to a diffusion equation that minimizes
a first-order variational problem. The steady-state so-
lution of a filled-in brightness representation corre-
sponds to a smoothed approximation of estimated input
data by a physical membrane with tension. Whereas
Terzopoulos relied on the generation of a (usually in-
complete and error prone) discontinuity map by some
external processes, we discussed, in the domain of
brightness, the close spatial relationship between con-
trast detection (by model complex cells) and center-
surround filtering whose signals are used for filling-in
(see Fig. 7).

The lateral spreading of activity in filling-in also
shares some similarities with the conception of the re-
covery of intrinsic images (Barrow and Tenenbaum
1978). These intrinsic images are defined as 2-D arrays
of scene properties such as depth, surface orientation,
illumination, and reflectance. Each layer is assumed to
be in spatial registration with the original luminance
distribution. In this framework, a given input (image) is
processed with three basic classes of mechanisms. So-
called vertical processes ensure pointwise consistency of
intrinsic properties based on a pre-defined imaging
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equation (which utilizes a simple Lambertian reflectance
model). Horizontal processes ensure the continuity (or
smoothness) of the representation within each intrinsic
image layer. Finally, edge-marking mechanisms take an
edge map of detected contrasts as input and manipulate
these initial estimates by allowing the generation of new
edge elements — which in turn break the continuity of the
otherwise smooth intrinsic attribute(s) — or delete initial
edge estimates. Filling-in relates to the category of
horizontal processes in their nature of laterally propa-
gating localized measurements of surface qualities to
neighboring sites within a layered representation. Al-
though the intrinsic image model was never formally
specified, its original conception ensues from computa-
tions in a pointwise fashion as the imaging condition
must be achieved at any spatial position. Therefore, by
definition, information is not filled-in to otherwise
empty spaces, which is the key aspect in the case studied
here.

7.3 Further issues

A fundamental constraint that applies to filling-in
models, but not necessarily to computer vision applica-
tions in general, comprises the nature of perceptual data.
Data must be used to assess perceptual models, and as
such they should also be used to evaluate perceptual
models that make use of regularization theory. For
instance, the minimization of first-order information
dictated by membrane regularization needs to meet the
data on the perception of brightness. We, therefore,
propose the use of regularization theory as a mathe-
matical tool to predict perceptual data for the generation
of homogeneous surface qualities. In turn, data derived
from psychophysical experiments should be used to test
the model against stimuli, thus verifying or invalidating
the suggested mechanisms involved in the generation of
surface appearance. We emphasized in our description
that the results of standard filling-in tend to ‘““bend”
generating concavities in a signal representation that
attempted to be flat. This tendency can be circumvented
by a mechanism of confidence-based filling-in. It re-
mains, however, a topic of further research to investigate
the perceptual representation and whether or not it
contains similar ““bendings”. For example, early studies
by von Békésy (1968) provide some evidence that
brightness slightly erodes as one moves farther away
from an edge. However, these studies utilized techniques
and stimuli that are not directly compatible with the
cases studied here. Also, that author’s evaluation
techniques do not allow the drawing of specific psycho-
physical references that could be compared to any of our
computational predictions.

Our definition of confidence-based filling-in is mainly
motivated by the theoretical argument of achieving a
representation of dense brightness (or lightness) quanti-
ties that are measured at region boundaries. Whether this
computational principle to achieve this invariance is also
adopted by the visual system remains a topic of further
detailed investigation. In any case, the utilization of
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regularization theory has outlined a theoretical frame-
work for the study of filling-in mechanisms to explain
processes of perceptual completion. Finally, given the
growing evidence for neural filling-in (see Pessoa and
Neumann 1998; Pessoa et al. 1998), the elucidation of the
underlying brain mechanisms will greatly help to bridge
the gap between the perceptual and neural domains.
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Appendix: Center-surround preprocessing

The raw input luminance distribution L is spatially
processed, or filtered, by antagonistic center-surround
mechanisms that resemble the opponent interaction of
retinal ganglion cells. These mechanisms feed two
parallel pathways selective to opposite contrast polari-
ties, namely oN and ofFF. The equilibrated responses are
generated by

xE = (4 + net] + net;) ™! ((B +C) [net” — net7]"

+(B — C)(net;" +net;)) , (A1)
where [x]" = max(x,0) (rectification) and net* denote
low-pass filtered versions of the input luminance L
utilizing a small space constant for the center and a
larger space constant for the surround; i/ is a spatial
position index.

The x-responses undergo an additional stage of
competitive interaction generating DC-level-free con-
trast responses to feed the boundary system. Activations
of oN and OFF contrast channels are
_ +:|+ )

of = —x]" and ¢ =[x (A2)

A detailed description and analysis is presented in
Neumann (1996).
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