Behavior Research Methods, Instruments, & Computers
1992, 24 (4), 560-564

PRAXIS: Brent’s algorithm for
function minimization

KARL R. GEGENFURTNER
New York University, New York, New York

Implementations of Brent’s (1973) PRincipal AXIS
(PRAXIS) algorithm in the widely used C and PASCAL
programming languages are presented. The algorithm
minimizes a multivariate function without using deriva-
tives. An example computer program that calculates a
maximum likelihood estimate of the parameters of a
psychometric function illustrates the use of the routine.
Another algorithm, Localmin, also due to Brent (1973),
efficiently finds the minimum of a univariate function.
An example program uses this algorithm to estimate the
polychoric correlation coefficient from a pxq table of ob-
served frequencies.

The problem. Finding the minimum of a multivariate
function fis a common problem in psychological research.
For example, fitting a model to a set of data points in-
volves minimizing the deviation of the model’s predic-
tions from the data points. A simple case with which we
are all familiar consists of linear regression using least
squares. To find the best estimates of the slope and the
intercept, we differentiate the error function with respect
to each of the parameters, set these derivatives to 0, and
solve the resulting system of equations for the unknown
parameters.

This standard recipe, however, fails in many cases when
the model function is more complicated. Partial derivates
might not exist, or the resulting set of equations might
not have an explicit solution. In those cases we have to
resort to numerical methods that search the parameter
space in a systematic way.

Common approaches. The most intuitive minimiza-
tion technique is the method of steepest descent. The main
idea is to change the current parameter estimates in the
direction of the largest decrease in f. For a linear func-
tion, this direction is the direction of the negative of its
gradient. We find the minimum value of the function along
this direction and iterate the procedure until the function
can no longer be decreased.

This method has some serious drawbacks, making it
slow and inefficient. If we minimize f along a direction
u, the gradient at that minimum point will be orthogonal
to u. Therefore, the only search directions used in this
procedure are the ones orthogonal to the gradient at the
starting point. In the case where the minimum is not lo-
cated in one of those directions from the current point,
the procedure typically meanders in small steps along a

Correspondence should be addressed to K. Gegenfurtner, Howard
Hughes Medical Institute and Center for Neural Science, New York
University, 4 Washington Place, New York, NY 10003.

valley, instead of making large steps in the direction of
the minimum.

To improve convergence, we can make use of the fact
that most functions are fairly well approximated by a qua-
dratic function near their minima. A method that con-
verges quickly to the minimum of a quadratic function
will also quickly find the minimum of a general function.
Quickly in this case means that the number of iterations
is finite. Algorithms with this property are called quad-
ratically convergent. We can classify these algorithms by
the kind of information they use to find the minimum.

The first class of methods uses information on the par-
tial derivatives of the function. Typically, during one iter-
ation, information on the matrix of the second partial
derivatives is built up and used to solve for the minimum
of the quadratic. Algorithms using this approach have been
proposed by Fletcher and Powell (1963) and Broyden
(1967). Derivative methods are generally more efficient
than the *‘direction-set”” methods, which minimize f along
a set of search directions chosen to make the algorithm
quadratically convergent. This approach is taken in
Brent's (1973) method, given below.

On the other hand, the direction-set methods are more
general. They work even when derivatives do not exist.
It should be noted that we cannot simply use the more
efficient derivative methods by approximating derivatives
numerically. The roundoff errors involved in the calcu-
lation of derivatives are significant, and the number of
function evaluations necessary to do so diminishes the ef-
ficiency advantage. Furthermore, methods using deriva-
tives do have problems in certain cases, which makes the
derivative-free methods appear more stable and robust.

Finally, it should be pointed out that special algorithms
exist for the case where the function to be minimized is
a sum of squares f = L, f7. In this case, the informa-
tion in the individual residuals can be used efficiently (see,
e.g., Levenberg, 1944).

Brent's algorithm. PRAXIS is a modification of
Powell’s (1964) direction-set method. Powell devised an
algorithm in which the set of search directions u", . . .,
u (n is the number of parameters) is repeatedly updated
until a set of conjugate directions (with respect to a qua-
dratic form) is reached after r iterations. Therefore, at
the next iteration, the minimum will be found if the func-
tion to be minimized was indeed quadratic. The algorithm
proceeds as follows: Let x‘© be an initial approximation
to the minimum, and set the initial search directions
u®, ..., u® to the columns of the identity matrix. For
all i = 1,..., n, compute \? to minimize f(x“""
AUy Set x@ = x-D4AOyD) Foralli = 1,. ..,
n—1, setu® = u* P, Replace u™ by x®-x®. Com-
pute A to minimize f(x® -+ u‘™), and replace x© by
x@ 4+ ™. This procedure is iterated until the function
minimum is reached according to some criterion. Brent
gives a proof that the procedure will reach the minimum

Copyright 1992 Psychonomic Society, Inc. 560

of a quadratic function in n iterations. The algorithm is
therefore quadratically convergent.

Powell’s (1964) algorithm depends on keeping the u®’
conjugate. If, however, one of the A\“) above vanishes,
the corresponding direction vector u'”? will also vanish,
and therefore the direction set will no longer span the en-
tire parameter space and the correct minimum may not
be found. Additional precautions have to be taken to en-
sure that the u” remains conjugate. This couid be done
by resetting the u™” to the columns of the identity matrix
after every n iterations, but this would throw away use-
ful information about the function. In Brent’s (1973) ex-
tension of Powell’s method, therefore, the matrix of the
search directions is replaced by its principal axes, thereby
ensuring conjugacy and keeping previously obtained infor-
mation. Other modifications include the option of auto-
matic scaling of the different variables, the incorporation
of random steps into the procedure to avoid ‘‘resolution
ridge’’ problems, and the extrapolation of the minimiza-
tion path along quadratic space curves. A detailed dis-
cussion of the algorithm is given in Brent.

It should be noted at this point that PRAXIS does not
allow one to specify any constraints on the problem. For
example, the range of values that a parameter can take
cannot be restricted. This is not a big problem, however,
since constrained problems can usually be converted into
unconstrained ones by parameter transformations or sim-
ple penalty functions. Also, like almost all other methods,
PRAXIS will search for local minima. For a discussion
of global minimization, see Brent (1973). In practice, one
would typically start the algorithm at a variety of differ-
ent starting points. If it converges to the same solution
every time, it is good evidence that the minimum found
is global.

Usage. PRAXIS is declared as follows:

double praxis (double (*func)(), double x[], int n),

where func is a pointer to a function returning a double,
X is a pointer to an array of doubles holding the initial
estimates of the minimum upon procedure entry and
returning the final estimates on exit, and the integer vari-
able n is the number of parameters. PRAXIS calls the
function finc repeatedly with arguments x and » until a
minimum is found. PRAXIS returns the function value
obtained at the minimum as a double.

There are various global variables to fine tune the
algorithm:

prin: An integer variable that controls the printed out-
put from the routine. A value of 0 suppresses all output,
1 only prints starting and final values, 2 (the default) prints
a detailed map of the minimization process, and 3 prints
eigenvalues and eigenvectors of the search directions as
well.
~tol: A double used for the stopping criterion.
PRAXIS returns to the calling program if the criterion
2 |]x® —x*=1|| < 2| x| I rolis fulfilled more than

PRAXIS 561
Table 1
Data From a Brightness Discrimination Experiment
Stimulus Intensity ‘‘Yes'” Responses Comparisons
1 10 2 49
2 20 3 48
3 30 13 48
4 40 31 50
5 50 38 47
6 60 48 49

ktm times. e is the machine precision, the smallest num-
ber so that I+e>1.

ktm: An integer value used above. The default for ktm
is 1, which suffices for most cases. However, if PRAXIS
indicates that the problem is difficult to minimize (see illc
below) a higher value (e.g., 4) leads to a more conserva-
tive stopping criterion.

step: A double specifying the maximum step size. It
should be set to the maximum expected distance between
the initial guess and the solution. Exceptionally small or
large values of step lead to slower convergence on the
first few iterations.

illc: A logical variable specifying whether the problem
is known to be difficult to minimize (ill conditioned). HI-
conditioned problems are prone to roundoff error, and
convergence is typically slower. PRAXIS will set ilic to
a value of 1 if it finds the problem to be ill conditioned.

scbd: A double controlling the automatic scaling fea-
ture. Scbd acts as an upper limit on the scaling factor.
Therefore, the default value of 1.0 disables automatic scal-
ing. When the scaling is very different for the different
parameters, the function is harder to minimize and schd
should be increased to a value of 10. '

maxfun: An integer number specifying the maximum
number of calls to func. PRAXIS will return after max-
Jun calls even when the minimum has not been found. A
value of 0 indicates no limit on the number of calls.

Example. As an example, we will use PRAXIS to fit
a psychometric function to a set of data points. The data
in Table 1 illustrate the outcome of a hypothetical exper-
iment on brightness discrimination, On each experimen-
tal trial, two patches of light are presented to a subject:
a reference light with an intensity of 35 units, and a vari-
able intensity comparison light. The subject has to indi-
cate which one of the two lights was brighter. The first
column of the table gives X;, the intensity of the compar-

"ison light in arbitrary units. The second column is the

number of times that the subject judged the comparison
to be brighter than the reference R;, The third is the num-
ber of times, Nj, that each comparison was made.

We will not go into the theory behind the use of psycho-
metric functions here. Details on that and on other fitting
methods are given, for example, in Bock and Jones
(1968). Suffice it to say that we want to fit the relative
frequencies of ‘‘yes’’ responses Ry/N; with a cumulative
Gaussian probability distribution. We do so by the method

562 GEGENFURTNER

of maximum likelihood. We search for parameters p and
o of the Gaussian so that L(x,0;X) is maximal. We can
use PRAXIS to minimize

~nL = LR; nP((Xi—p)/o)
+ (Ni—R) In(1-P((Xi—p)/a)),

where P(x) is the cumulative standard normal probability
distribution.

The program in Listing 1 reads X;, R;, and N; from its
input, calls PRAXIS to minimize the negative of the log-
likelihood function, and prints the final estimates of u and
and o (in this case, ¢ = 37.1, and 0 = 12.9).

LISTING 1
PMF, a Program for the Maximum-Likelihood
Estimation of the Parameters of a
Psychometric Function

#include <sudio.h>
Hinclude <math.h>
#define NMAX 1000

double X[NMAX]. /* comparison intensities */
RINMAX)], /¥ munber of correcr responses */
NINMAX]; /* number of comparisons */

int ncat; /* mumber of comparison stmuli */

extern double praxis(: B

extern double PO, /* cumulative Gauss. prob. */

L), 7* likelihood function *}

main({argc, argv)
char *arpv(l;

double mean, /* estimate of the mean */

sd. 1* estimate of the standard devianon *!
like. ¥ log likelihood * |
x[2]; /* parameter vector */

ncat = 0

mean = sd = 0.0
1* read daia *1
while (scanf("%lg %lg %lg", &X{ncat], &Rl[ncat], &N[ncat]) == 3) [
mean += X[ncath
sd += pow(X([ncat], 2.0
ncat++;
}
mean /= ncat;
sd = sqrt(sd /ncat — pow(mean, 2.00);
* our initial parameter estimates are simply the */
* mean and s.e. of the physical intensities */
x[0] = mean;
x[1] = sd;
like = praxis(L, x. 2);
mean = x[0];
sd = x[1]
printf"Mean = %g SD = %g -log(L) = %ghn", mean, sd, like},
}

double L{x, n)
double x[].
int
{
double loglike, p;
int i

loglike = 0.0;
for (i=0; i<ncat; i++) {
p = PU(X[El — x[OD/x[1]x
loglike += log(p) * R[] + log(1.0-p) * (N(i] - RIil)

return -loglike;

Table 2
Comparison of PRAXIS and STEPIT
PRAXIS STEPIT
Function No. Calls Minimum No. Calls Minimum
Rosenbrock (1) 194 1.619e-17 456 0.149-10
Rosenbrock (2) 183 1.154e-09 377 0.462e-07
Rosenbrock (3) 320 1.130e-15 592 0.142¢-13
Helix 209 3.363e-17 231 0.140e-44
Cube 218 3.638e-15 529 0.309e-08
Beale 113 8.098¢-14 157 0.364e-13
Singutar 443 1.135¢e-16 929 0.285e-12

Note—The th;ce different entries for Rosenbrock were obtained with
different starting points.

Efficiency. To show the relative efficiency of PRAXIS,
we will compare it with another minimization subroutine
in widespread use, the FORTRAN routine STEPIT
(Chandler, 1969). Table 2 gives the number of function
evaluations and the obtained minima for a number of test
functions from the literature. For a detailed description
of the test functions, see Brent (1973). The test programs
were straightforward translations between C and FOR-
TRAN up to the STEPIT or PRAXIS function call.

Even though the different compilers used for the dif-
ferent routines make it hard to compare the numbers
directly, it is indicative of the larger efficiency of PRAXIS
that it consistently found a minimum in fewer function
calls. In most cases, the minimum itself is smaller as well.

The one-dimensional case. Often all that is required
is to minimize a function of one variable. In that case,
it is more efficient to resort to a special routine than to
apply a multidimensional minimizer. Routines generally
fall into two classes. Bracketing routines systematically
reduce the interval in which the minimum is to be found.
Other routines approximate the function locally and then
extrapolate. Whereas the first group has the best worst-
case behavior, the second group of methods converges
much quicker around the function minimum, the point
where most functions are well approximated by parabolas.
Brent (1973) gives a routine, Localmin, that combines the
advantages of both methods. Interpolation steps are per-
formed if they lead to significant improvement; otherwise
a golden-section search is done. In a variety of tests, this
method has been shown to be one of the most efficient
in use. We give an implementation of the Localmin pro-
cedure from Brent’s book in the C programming language.

Usage. The declaration for Localmin is as follows:

double localmin (double (*func)(),
double *x, double a, double b),

where func is a pointer to the function to be minimized.
x holds a pointer to the one and only parameter to func,
and a and b are the lower and the upper bounds for x.
Localmin finds the minimum of func over the interval
(a,b). Upon return to the calling program, x points to the
value where func has a minimum, and the value of func
at that point is returned. There are no global variables
controlling execution.

LISTING 2
POLYC, a Program to Compute the Polychoric
Correlation Coefficient from a pxq Table
of Observed Frequencies

#tinclude <swdio.h>
kinclude <math.h>
#define MAXR 10 /* maximum nwnber of rows */
#tdefine MAXC 10 /* maximum manber of columns */
double localmin(), /* unaivariate minimizer */
L(), 1 likelihood funcion */
Zpl), 1* inverse I=dim gaussian */
P(), /* [=dim gaussian prob. distr */
binorm(); /* 2~dim gaussian prob disir ¥
int datalMAXR][MAXC], #* observed frequencies *f
marg{MAXR]), /* row marginals */
cmargMAXC]; 7* column marginals */
int nr, /* number of rows */
nc, /* number of columns */
ntotal;
double alpha[MAXR], 7* row category boundaries */
betalMAXC]; /* column category boundaries */
double PA[MAXR][MAXC]; /* 2-dim gaussion volune * |
double Pe{MAXR]IMAXC]: /* cumud. 2—dim gaussian volume * |
double tho = 0.0; /* polychoric coefficient */

main(arge, argv)
char *argv;
{
int i, j;
double fmin;

1* read number of rows and columns */
scanf("%d %d", &nr, &nc),
for (i=0; i<nr; i++) {
for (j=0; jeng; jH+) {
/* read frequencies */
scanf("%d", &data[il(j]);
* compute marginals */
rmarglil += datalil(j};
cmarg(j} += datali}(j};
ntotal += datai][jl;
}
}
!* cumulate marginals and fir univariate Gaussians to them */
for {i=1; i<nr; i++) { * rows */
rmarg(i] += rmarg[i-1];
alpha(i-1] = Zp{(deuble)rmarg[i-1] {double)niotal);
}
alpha{nr=1} = 10.0;

for (j=1; j<nc: j+t) { * columns *|
cmargljl += cmarg[j=1];
beta[j-1] = Zp((double)cmarg(j-1]/(double)ntotal);
}
beta[ne-11 = 100
¥ maximize likelihood */
fmin = localmin(L, &rho, -1.0, 1.0);
printf("rho = %5.3f L. = %g\n", tho, fmin);
1

double L(rest)
double rest; /* the current estimate of r ¥/
{

int 1, j;

double loglike = 0.0;

for (i=0; i<nr; i++) {
for (j=0; j<nc; j++) {
Pd[il(j] = binorm(aipha[l], betaljl, rest);
Pefil(jl = PdIIG)

if (i>0 ‘

Pdi}lj] —= Pcli-1](j];
itG>0

P[l{j] ~= Pcli)(j-1];
iFE>0&&ji>0

| Pd(i}[j] += Peli-1i{j~1]
loglike += datl[i}[j] * log(PdLil(i)

} /

return -loglike;

PRAXIS 563

Example. As an example of how to use Localmin, we
give a program that calculates the polychoric cotrelation
coefficient g from a pX g table of observed frequencies
(see Drasgow, 1986). o is a measure of bivariate associ-
ation between two ordered categorical variables. It is
assumed that the variables follow a bivariate normal dis-
tribution and that the categories arise from polychotomi-
zation. For the case of a 2X2 table, p can easily be
calculated from the observed frequencies. This coefficient,
known as the tetrachoric correlation coefficient, was intro-
duced by Pearson. For the general case of a p X table,
the estimation of g is more difficult and has to be solved
by iterative methods (Tallis, 1962). Not only g is
unknown, so are the category borders of the bivariate nor-
mal, To reduce the amount of calculation, we first fit
univariate normals to the marginals of the table and then
maximize the likelihood function with respect to g only.
This method is called the two-step method, and numeri-
cal simulations have shown that the estimates of g are very
close to those obtained by a full maximum-likelihood es-
timation. The program POLYC below implements this
two-step method, using Localmin to find the minimum
of the negative of the likelihood function. In this case

P g
—InL = Y, ¥ niyIn(Py),

i=1 j=1
where #;; is the number of obsetvations in category ¢ of
the first variable and category j of the second. Pj; is the
probability of an observation in that category, obtained
by integrating over a rectangular area of a two-dimensional
Gaussian probability distribution ¢ enclosed by the cate-
gory boundaries «; and B;:

B o
Py = jj [@y.0dyar.

B @

The program POLYC in Listing 2 reads from its input
the number of rows and columns in the table, and then
for each row the frequencies in each category. It then fits
univariate Gaussians to the marginals of the table and calls
Localmin to find the maximum-likelihood estimate of the
polychoric correlation coefficient ¢.

Availability. The C source code for all routines and
programs (the PRAXIS and Localmin C functions, the
POLYC and PMF programs, and various functions for
calculating one- and two-dimensional cumulative normal
probability functions, which are not given in the text) is
available from the author at no cost. A TURBO-Pascal
version of PRAXIS is also available. Send a 3.5-in. for-
matted MS-DOS floppy disk and a self-addressed stamped
envelope. Alternatively, users with access to electronic
mail can obtain the program by sending an e-mail note
to karl@cns.nyu.edu, requesting the program.,

REFERENCES

Bock, R. D., & Jongs, L. V. (1968). The measurement and prediction
of judgment and choice. San Francisco: Holden-Day.

BrenT, R. P, (1973). Algorithms for function minimization without
derivatives. Englewood Cliffs, NJ: Prentice-Hall.

564 GEGENFURTNER

Brovpen, C. G. (1967). Quasi-Newton methods and their application
to function minimization. Mathematics of Computation, 21, 368-381.

CHANDLER, 1. P. (1969). STEPIT: Finds local minima of a smooth func-
tion of several parameters. Behavioral Science, 14, 81-82.

DrasGow, F. (1986). Polychoric and polyseriat correlations. In S. Kotz,
N. L. Johnson, & C. B. Read (Eds.), Encyclopedia of statistical sci-
ences: Vol. 7 (pp. 68-74). New York: Wiley.

FLETCHER, R., & PowgLL, M. J. D. (1963). A rapidly convergent
descent method for minimization. Computer Journal, 6, 163-168.

LEVENBERG, K. A. (1944). A method for the solution of certain non-

tinear problems in least squares. Quarterly of Applied Mathematics,
2, 164-168.

PoweLrL, M. J. D. (1964). An efficient method for finding the minimum
of a function of several variables without calculating derivatives.
Computer Journal, 7, 155-162.

TALLIS, G. M. (1962), The maximum likelihood estimation of correla-
tion from contingency tables. Biometrics, 18, 342-353.

(Manuscript received September 3, 1991;
revision accepted for publication fuly 6, 1992.)

